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Abstract1

Lake trophic state indices have long been used to provide a measure of the trophic state2

of lakes. Over time it has been determined that these indices perform better when they3

utilize multiple metrics and provide a continuous measurement of trophic state. We utilize4

such a method for trophic state that is based upon a Proportional Odds Logistic Regression5

(POLR) model and extend this model with a Bayesian multilevel model that predicts nutrient6

concentrations from universally available GIS data. This Bayesian multilevel model provides7

relatively accurate measures of trophic state and has an overall accuracy of 60%. The8

approach illustrates a method for estimating a continuous, mutli-metric trophic state index9

for any lake in the United States. Future improvements to the model will focus on improving10

overall accuracy and use variables that are more sensitive to change over time.11

Introduction12

In this brief research note, we extend a model for estimating a continuous multi-metric trophic13

state index described by Nojavan et al. (n.d.). This model uses lake elevation and in situ14

measurements of total nitrogen, total phosphorus, and secchi depth to provide a continuous15

index of trophic state. The drawback of the developed POLR model is the cost of monitoring16

multiple predictor variables (e.g., nutrients). This is addressed in the extended application17

by linking nitrogen and phosphorus to universally available GIS variables. The goal of the18

extended POLR model is to allow prediction of the trophic state of all lakes (i.e. lakes with19

limited field data) in the United States.20

Methods21

We present the extended application of the developed POLR model using a Bayesian multilevel22

model. Our modeling work flow is as follows:23

1. Develop a random forest model, using R’s randomForest package, with 5000 trees using24

only GIS variables to identify the best predictor variables for nitrogen and phosphorus.25

2. Develop the extended application model (the Bayesian multilevel model) using R’s26

rjags package to run Just Another Gibbs Sampler (JAGS) from inside of R. JAGS is27

a program for simulation and analysis of Bayesian hierarchical models using Markov28

Chain Monte Carlo (MCMC).29

3. Assess the performance of the extended application model using a hold-out validation30

method (90% training set, 10% evaluation set).31

We link nitrogen and phosphorus in the POLR model to a separate nutrient model built32

from universally available GIS data, thereby, avoiding the need for nitrogen and phosphorus33

data, costly variables to measure for all lakes. The number of variables for each response34
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variable, nitrogen or phosphorus, was decided using random forest model’s variable selection35

plots(Hollister, Milstead, and Kreakie 2016).36

Results and Discussion37

Selected GIS variables for nitrogen and phosphorus were initially screened with variable38

selection plots (Figures 1 and 2).The figures show model mean squared error as a function39

of the number of variables. The best representation of nitrogen and phosphorus could be40

achieved using three variables, adding more than three variables had incremental (< 0.1)41

impact on root mean square error. The three most important variables were ecoregion, %42

evergreen forest, and latitude. The random forest models provided estimates of variable43

importance for nitrogen and phosphorus and the results are reported in figures 3 and 4.44

Figure 5 represents the regression models. The extended POLR model is grouped into two45

blocks (gray shaded rectangles). The trophic state classification regression, the POLR model46

in the lower block, includes nitrogen, phosphorus, secchi disk, and elevation as predictors. The47

nutrient model, in the upper block, estimates the means of nitrogen and phosphorus based48

on ecoregion, % evergreen forest, and latitude. The two blocks are connected through the49

estimated means of nitrogen (µNitrogen) and phosphorus (µP hosphorus) to form the combined50

model which enables trophic state classification for all lakes without the costly sampling51

requirement. The relationship between nitrogen, phosphorus, and their predictors was52

examined using multilevel linear regression models. The standard deviation of the normal53

distribution, as well as each parameter in the regression model, were then assigned non-54

informative prior distributions (uniform, or nearly so, to allow the information from the55

likelihood to be interpreted as a probability).56

The three selected variables, latitude, eco-region, and % evergreen forest, appear to be57

capturing patterns of total nutrient concentration at three different spatial scales. Figures 658

& 7 depict the partial dependency plot for latitude, the marginal effect of latitude on the59

predicted outcome of nitrogen or phosphorus in the random forest model. For example for60

predicted total nitrogen, high concentrations in the northern and southern extremes of the61

continental US and the lowest predicted concentrations correspond to the mid-latitudes. The62

ecoregion variable represents an intermediate scale among these three variables and represents63

the variation between the regions. Finally, the % evergreen variable was summarized within64

a 3 kilometer buffer around each lake and is presumably summarizing more local land use65

decisions that are adjacent to lakes.66

As mentioned, the extension of the developed POLR model uses eco-region, latitude, and67

watershed level % evergreen forest as predictors for nitrogen and phosphorus. This contrasts68

with prior trophic state classification models that are applied to all lakes, regardless of69

the differences across scale. Lake trophic index, and hence lake trophic classes, should be70

calculated differently in different eco-regions to accommodate variation in landform and71

climate characteristics and our proposed model and extension bares this out by identifying72

and including and eco-regional approach to quantifying trophic state. Furthermore, the73
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Figure 1: Random Forest model’s output for nitrogen with GIS only variables as predictors.
Shows model mean squared error as a function of the number of variables.
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Figure 2: Random Forest model’s output for phosphorus with GIS only variables as predictors.
Shows model mean squared error as a function of the number of variables.
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Figure 3: Random Forest model’s output for nitrogen predictors. Importance plot for GIS
variables. Shows percent increase in mean squared error. Higher values of percent increase in
mean squared error indicates higher importance
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Figure 4: Random Forest model’s output for nitrogen predictors. Importance plot for GIS
variables. Shows percent increase in mean squared error. Higher values of percent increase in
mean squared error indicates higher importance.
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Figure 5: Directed Acyclic Graphical (DAG) model. The lower box depicts the POLR model
with its four predictors of secchi disk depth (SDD), elevation, nitrogen, and phosphorus. The
upper box is the extension to the POLR model to predict nitrogen and phosphorus using
universally available GIS variables. 8
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Figure 6: Partial dependency plot for predicted total nitrogen over the range latitude: the
effect of latitude on predicted total nitrogen when the rest of the predictors are held constant.

9
PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27913v1 | CC BY 4.0 Open Access | rec: 21 Aug 2019, publ: 21 Aug 2019



1.37

1.45

1.53

−1e+06 0e+00 1e+06

Latitude

L
o
g
1
0
 P

T
L
  
(µ

g
/L

)

Figure 7: Partial dependency plot for predicted total phosphorus over the range latitude:
the effect of latitude on predicted total phosphorus when the rest of the predictors are held
constant.
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developed multilevel model structure can be further expanded to lake-specific trophic state74

index, upon availability of multiple measurements for each lake.75

Mathematically, the models were set up as follows:76

Nitrogenij ∼ N (µNitrogenij
, σ2

Nitrogen) (1)

where µNitrogenij
= XNitrogenB, XNitrogen is the matrix of predictors, and B is the vector of77

coefficients. Nitrogenij is the ith nitrogen observation in the jth ecoregion.78

Phosphorusij ∼ N (µP hosphorusij
, σ2

P hosphorus) (2)

where µP hosphorusij
= XP hosphorusΓ, XP hosphorus is the matrix of predictors, and Γ is the vector79

of coefficients. Phosphorusij is the ith phosphorus observation in the jth ecoregion.80

The overall accuracy of the extended POLR model was 0.6 and the balanced accuracies were81

0.78, 0.77, 0.69, 0.68 for oligotrophic, mesotrophic, eutrophic, and hypereutrophic classes,82

respectively (Table 1). Table 2 shows the confusion matrix for the extended POLR model.83
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Table 1: Coefficients for the extended POLR model.
Mean Standard Deviation

Cutoff points/Thresholds
COligo|Meso -156.60 44.04
CMeso|Eu -6.18 8.29
CEu|Hyper 121.32 35.04

POLR model coefficients

αElevation -40.20 12.86
αNitrogen -44.33 29.29
αP hosphorus 165.90 46.96
αSecchi Disk Depth 0.18 5.23

Multilevel model coefficients for nitrogen

β%Evergreen 0.00 0.01
βEcoregion1

0.34 0.13
βEcoregion2

-0.78 0.12
βEcoregion3

0.96 0.15
βEcoregion4

-0.37 0.10
βEcoregion5

0.59 0.10
βEcoregion6

0.68 0.09
βEcoregion7

-0.01 0.10
βEcoregion8

-1.00 0.10
βEcoregion9

0.11 0.12
βLatitude 0.11 0.05

Multilevel model coefficients for phosphorus

γ%Evergreen -0.00 0.01
γEcoregion1

0.40 0.09
γEcoregion2

-0.90 0.09
γEcoregion3

0.73 0.11
γEcoregion4

-0.38 0.08
γEcoregion5

0.53 0.08
γEcoregion6

0.71 0.07
γEcoregion7

-0.32 0.08
γEcoregion8

-0.69 0.08
γEcoregion9

0.07 0.09
γLatitude -0.03 0.03

Logistic distribution’s scale parameter σ 75.64 21.27
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Table 2: Confusion matrix for multilevel POLR model. Each element of the matrix is the
number of cases for which the actual state is the row and the predicted state is the column.

Oligo Meso Eu Hyper
Oligo 5 3 0 0
Meso 3 12 7 1
Eu 0 0 16 10
Hyper 0 1 3 9

The extended POLR model calculates lake trophic index and classes differently for different84

eco-regions. Please refer to Table 1 for varying coefficients in different eco-regions. For example,85

eco-regions 3, 6, and 5, corresponding to Northern Plains, Temperate Plains, and Southern86

Plains, have the highest positive coefficients for nitrogen. Hence, nitrogen plays a significant87

role in moving the trophic state index and class toward the eutrophic/hypereutrophic side of88

the trophic continuum. Further Table 1 shows the coefficients for latitude and % evergreen.89

We included these predictors as they were selected as important variables by the random90

forest model. They may not help predictions dramatically but they do not hurt the results.91
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