1	Nutrient and pathogen suppression properties of anaerobic
2	digestates from dairy manure and food waste feedstocks
3	
4	Short Communication
5	
6	Brendan J. O'Brien ¹ , Deborah A. Neher ² , Eric D. Roy ^{1*}
7	
8	¹ Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington,
9	VT, USA 05405
10	² Department of Plant and Soil Science, University of Vermont, Burlington, VT, USA 05405
11	
12	
13 14 15 16 17 18 19 20 21	*Corresponding author: Dr. Eric D. Roy 210 Aiken Center 81 Carrigan Dr. University of Vermont Burlington, VT 05405 <u>eroy4@uvm.edu</u> +1-802-656-7359
22	
23	
24	
25	
26	

27 ABSTRACT

28

29 Anaerobic co-digestion of dairy manure and food wastes is increasing in the New England region 30 of the United States because of policy measures intended to divert organic materials from 31 landfills, reduce greenhouse gas emissions, and increase renewable biogas energy production. 32 The sustainability of this approach depends on the management and valorization of remaining 33 solid and liquid residues (i.e., digestates) after anaerobic digestion. Few studies have 34 characterized digestates derived from combined dairy manure and food waste feedstocks. In this 35 study, we analyzed screw-press separated liquid and solid digestates from 6 of 26 (23%) 36 operational full-scale facilities in New England. We quantified multiple pools of nitrogen and 37 phosphorus in these materials, with results suggesting that in most cases these nutrients largely 38 exist in forms that can be recycled via slow-release fertilization, with smaller fractions in forms 39 more easily lost to the environment. Furthermore, we found that solid digestates can inhibit 40 mycelial growth of a common soilborne fungal pathogen, *Rhizoctonia solani*, suggesting 41 potential to manage resident soil pathogens. Capitalizing on both nutrient recycling and pathogen 42 suppression co-benefits will likely be useful in digestate valorization efforts. 43 44 45 46 **KEYWORDS** 47 48 nitrogen, phosphorus, nutrient recovery and recycling, biogas residues, anaerobic co-digestion,

49 digestate, pathogen suppression

50 GRAPHICAL ABSTRACT

4

68 1. INTRODUCTION

69

70 Anaerobic digestion (AD) is the process of microbial decomposition of organic substrates 71 in the absence of oxygen to generate methane biogas for energy production [1]. Operations may 72 be designed as either mesophilic or thermophilic. Although thermophilic conditions are generally 73 more effective at removing pathogens, reducing odor emissions, and increasing rates of organic 74 matter degradation [2], mesophilic conditions are preferred for treating animal manure because 75 of a greater robustness of the process [3]. AD can process a wide range of organic materials, 76 including animal manure, crop residues, food processing wastes, post-consumer food scraps, and 77 municipal sewage sludge [4]. Methane production is the primary goal, which is optimized by 78 manipulating the biodegradability of the influent feedstock [5,6]. For example, dairy manures are 79 relatively high in recalcitrant carbon and have small (< 10) C:N ratios [7], resulting in low 80 methane yield [8,9]. "Food waste" encompasses a wide range of materials of both animal and 81 plant origin diverted from food processing and post-consumer. Compared to dairy manure, food 82 wastes contain more easily degraded carbon with a higher C:N ratio than is found in dairy 83 manure [10]. AD of food waste alone generates ammonia gas that destabilizes digester reactions 84 [7,11,12]. Co-digestion of dairy manure and food wastes can both increase biogas production and 85 improve process stability [7,12] and is, therefore, an attractive strategy in the context of policies 86 aiming to divert food wastes from landfills in the New England region of the United States (U.S.) 87 and elsewhere (e.g., Vermont Act 148).

In addition to biogas, AD produces residues, or digestates, that can be used as fertilizer, soil amendment products, animal bedding [13-17], or substrates for edible mushroom cultivation [18]. Digestate characteristics are influenced by the properties of the feedstock [19-21], as well

5

91 as the AD process, parameterization, and reactor type [22-24]. Digestates can be separated into 92 solid and liquid fractions with different physicochemical and biological profiles, which 93 determine their agronomic value and environmental risk [13-16,25]. Mechanical screw-press 94 separators are the most common method of solid-liquid separation used on manure digesters [15-95 16, 25]. Solid digestates (i.e., coarse solids) are generally >20% dry matter and contain 96 recalcitrant lignocellulosic biomass not degraded under AD conditions [26]. Solid digestates are 97 more economical to transport than liquid material [27], and are usable as a soil amendment to 98 increase plant growth [15-16] and stimulate soil microbial activity [19]. Post-screw press liquid 99 digestates are typically applied as fertilizer for feed crops or pasture fields adjacent to digesters 100 and may pose a similar eutrophication risk to using raw manure as fertilizer over time, depending 101 on management strategy [28]. Technologies, including dissolved air flotation (DAF) and 102 centrifugation, can be used to process post-screw press liquid digestates and capture fine solids 103 not removed by screw press (e.g., [29]).

104 Characterization of digestates derived from combined dairy manure and food waste 105 feedstocks remains uncommon (Table S1), which limits information available for various 106 analyses (e.g., modeling) and product development. Furthermore, often only bulk (i.e., total) 107 measures of nitrogen (N) and phosphorus (P) contents are reported, and liquid and solid digestate 108 fractions are rarely assessed. Some studies quantify multiple forms of nitrogen (e.g., NH₄-N and 109 organic N) (Table S1), but fail to consider N stability during material handling, and very few 110 have examined multiple measures of P [30]. Understanding N and P forms and stability within 111 digestates is important to: (a) better predict of material usefulness as a nutrient source to plants through time [31], (b) serve as an indicator of potential nutrient losses to the environment via 112 113 volatilization or leaching [28], and (c) identify nutrient pools to target for nutrient recovery

114 strategies [32]. A potential important co-benefit of recycling nutrients in digestate is pathogen 115 suppression, specifically biocontrol of *Rhizoctonia solani*, a pathogenic root fungus which 116 negatively affects crop production worldwide [33]. 117 Our objectives in this study were to (a) quantify the N and P compositions of screw-press 118 separated liquid and solid digestates from 6 of 26 (23%) full-scale operational facilities in the 119 New England region, and (b) test an alternative use for coarse solids as a biocontrol treatment for 120 Rhizoctonia solani. 121 122 2. MATERIALS AND METHODS 123 **2.1. Digester selection** 124 We sampled six full-scale mesophilic (37 - 40 °C) manure digesters equipped with 125 screw-press solid-liquid separators in Sept-Oct 2017 with permission from farmers/operators. 126 We obtained information on digester characteristics through the EPA AgSTAR Database [34], 127 state regulatory agencies, and farmer/operator interviews. Dairy manure was a feedstock at all

sites, ranging from 18-100% of total annual feedstock among the six digesters (Table 1). Various

129 "food wastes" (including source separated organics and/or food processing residuals) were co-

- 130 digested at five sites ranging from 1-39% of total annual feedstock and included whey waste
- 131 water and dairy process waste, source separated organics, and brewery waste (Table 1). Other

132 feedstocks included fats, oils, and grease (FOG), glycerin, dissolved air flotation sludge (DAF),

recycled digester effluent, and <1% other additives used to stabilize internal digester conditions.

134 **2.2. Digestate sampling**

We collected five equivalent subsamples of liquid digestate (LD) and solid digestate (SD)
in parallel following screw-press separation at 15-min intervals over the course of one-hour and

137 mixed separately to form a composite liquid sample and a composite solid sample for each 138 digester. We then divided the composite liquid sample into two 1-L subsamples stored in brown 139 polyvinyl bottles, transported on ice, and then frozen until analysis of P content and 140 physiochemical properties. Likewise, we divided the composite solid sample into two 1-L 141 subsamples, of which we immediately froze one to preserve for inorganic N analysis, and the 142 spread the second evenly in a plastic tray 15 cm deep, where it cured passively for 45 days in a 143 greenhouse (13 - 27°C) before additional physicochemical analysis. We intended for the curing 144 period to simulate farm management practice, which allows for passive composting and air-145 drying under cover before solids are recycled as animal bedding on the farm or sold as an 146 amendment product. After the curing period was complete, we homogenized solid digestate 147 samples by hand and placed three representative 1-L subsamples in frozen storage for additional 148 physicochemical analysis. We previously describe some basic characteristics of cured solid 149 digestate for Digesters A and E in [18], but provide new additional data for those materials here.

150

2.3. Physicochemical characteristics

Physicochemical characteristics measured included total solids, total volatile solids, pH, conductivity, and total carbon at the University of Maine [35]. Total solids for liquid and solid digestates were determined gravimetrically. Dry materials (for solid digestates only) were then combusted for 6 hrs at 550°C to determine total volatile solids as mass loss on ignition. Total carbon (for solid digestate only) measurements were made by dry combustion and analysis using a Leco CN-2000.

157 **2.4. Nitrogen analyses**

For liquid digestate, total Kjeldahl N (TKN) was measured by sulfuric acid digestion,
heat distillation, and titration with NaOH and NH₄-N was quantified using a 1 *M* KCl extraction

NOT PEER-REVIEWED

Peer Preprints

followed by colorimetric analysis. We estimated organic N as the difference between TKN and
NH₄-N. We assumed that TKN values were representative of total N in liquid digestates and
NO₃-N was negligible because we expect anaerobic conditions within the digesters to inhibit
nitrification.

164 For cured solid digestates, extractable NH₄-N and NO₃-N were determined at the 165 University of Maine from 5 g dried and sieved ($\leq 2 \text{ mm}$) samples in 50 mL of 1 M KCl (1:10 166 solids:solution ratio). Extract solutions were vacuum filtered (0.45 μ m) before determination by 167 colorimetric analysis using an O.I. Alpkem A/E ion analyzer. We extracted NO₃-N and NH₄-N in 168 duplicate from fresh solid digestate using an identical extraction protocol, diluted below 10 ppm, 169 and analyzed samples using methods described in [36] and [37], respectively, with a BioTek 170 Synergy HT microplate reader. TKN for fresh solid digestate materials was measured using the 171 same methods applied for liquid digestates and we again assumed that organic N was the 172 difference between TKN and NH₄-N. Due to the potential for ammonia volatilization from 173 digestates during drying and combustion, we calculated total N for solid digestates as the sum of 174 $TKN + NO_3 - N$.

175 **2.5. Phosphorus analyses**

In addition to the bulk measure of total P, we used three P extractions to quantify different pools of P ranging from soluble/mobile to plant-accessible to stable in cured liquid and solid digestate materials. Water-extractable P, which can include soluble reactive P and dissolved organic P, is considered a proxy for the most readily available P fraction and poses the greatest risk of leaching [38]. Olsen P and 2% citric acid extractable P have been shown to serve as effective proxy measures for P fractions likely to become accessible to plants [30-31,39]. We assume that any P extracted by the Olsen test is also extracted with 2% citric acid.

183 For liquid digestates, we developed an extraction protocol that identifies the following 184 pools of P: (a) water-extractable soluble reactive P, (b) water-extractable P of other forms (e.g., 185 dissolved organic P), (c) total P of centrifuge-separated fine solids, (d) Olsen P of centrifuge-186 separated fine solids, and (e) 2% citric acid extractable P of centrifuge-separated fine solids. To 187 determine water-extractable P, we diluted 2 g dry mass equivalent liquid digestate samples 1:100 188 with deionized water, placed on a shaker for 1 hr, and centrifuged for 20 min at 4066 x g [38]. 189 We decanted an aliquot of the unfiltered sample and analyzed it for total P [40]. We filtered a 190 second portion (0.45 μ m) and analyzed this sample for orthophosphate by colorimetry (details 191 below). We then homogenized the residual separated fine solids, determined % moisture based 192 on remaining mass, and performed Olsen P and 2% citric acid extractions in parallel. We 193 obtained Olsen P from 0.5 g dry mass equivalent fine solids extracted with 0.5 M NaHCO₃ 194 adjusted to pH 8.5 to achieve a solids:solution ratio of 2:40 with a shaking time of 0.5 hr [39]. 195 For 2% citric acid extractions, we used 0.5 g dry mass equivalent fine solids sample extracted 196 with 2% citric acid solution to attain a solids: solution ratio of 1:100 with a shaking time of 1 hr 197 [30]. We sent a third sample of residual fine solids to University of Maine for total P analysis (1 198 g dried ground sample combusted at 550°C for 6 h and extracted in a 50% HCl solution, after 199 which P was measured, in accordance with EPA Acid Digestion Method 3051). 200 For solid digestates, total P in cured solids was determined at University of Maine using

the same method described for fine solids above, and we measured water-extractable P, Olsen P, and 2% citric acid extractable P in parallel. We obtained water-extractable P by adding deionized water to 1 g dry weight equivalent sample to achieve a solids:solution ratio of 1:100 and shaking on a horizontal shaker for 1 hr [38]. We performed Olsen P (2 g dry mass equivalent solid digestate, 2:40 solids:solution ratio, shaking time = 0.5 hr) and 2% citric acid extractable P (1 g

206	dry mass equivalent SD, 1:100 solids:solution ratio, shaking time = 1 hr) extractions for cured
207	solid digestate using the solutions described for liquid digestate above. We conducted all water-
208	extractable P, 2% citric acid extractable P, and Olsen P extractions in duplicate, with extracts
209	filtered (0.45 μ m), diluted to < 1 ppm, and analyzed for orthophosphate using the malachite
210	green method [41]. We adjusted dilutions of Olsen P extracts to pH 7 with 1 drop 10% H ₂ SO ₄ so
211	they would not react with acidic ammonium paramolybdate solution in plate wells. We read
212	samples in triplicate on plates at 630 nm using a BioTek Synergy HT microplate reader with a
213	detection limit < 0.02 ppm.
214	2.6. Other nutrients
215	One-gram dried ground sample was combusted at 550°C for 6 h at the University of
216	Maine and extracted in a 50% HCl solution, after which B, Ca, Cu, Fe, K, Mg, Mn, Na, total P,
217	and Zn were measured in accordance with EPA Acid Digestion Method 3051.
218	2.7. Plate competition assay
219	We tested fresh and cured SD samples from digesters B, C, D, and F for suppression of
220	fungal pathogen Rhizoctonia solani using an agar plate competition assay [42-43]. Briefly, we
221	added independent pairs (reference and test) of 0.5 g of each SD material (fresh and cured) to
222	10 mL of sterile water in 25 mL test tubes then shaken overnight. The next day, we prepared a
223	pair of conical flasks per sample containing 1.5 g agar in 90 mL deionized water. We poured the
224	reference pair member into one flask and both flasks were autoclaved for 30 min. We added the
225	test pair member to water agar after the mixture had cooled to 45°C. Next, we gently swirled the
226	contents of both the reference (non-living microbes) and test (living microbes) gently to mix, and
227	poured them into 100 mm \times 15 mm plastic petri plates. Once the agar hardened, we transferred
228	plugs of <i>R. solani</i> growing on potato dextrose agar onto the surface of each plate and then

229	incubated at room temperature for 24 h. We recorded three of the longest mycelium radii to the
230	nearest mm, and used the mean as a representative measure to compare suppressive potential
231	among different digestate samples. We quantified suppression of <i>R. solani</i> as the reduction in
232	growth between test and reference plates.
233	
234	3. RESULTS AND DISCUSSION
235	
236	3.1 Physicochemical characteristics of digestates
237	Liquid and fresh solid digestates contained a range of 2.2 to 5.1% and 21.5 to 33.2% total
238	solids, respectively (Table 2). A 45-d curing period for solid digestate materials increased total
239	solids to 28.4 to 40.8%, which was mostly organic matter (total volatile solids = 23.7 to 35.5 %,
240	total carbon = 41.1 to 46.5% of dry matter). Cured solid digestate materials from digesters
241	accepting \leq 1% food waste (A-C) had pH values in the narrow range of 8.4 to 8.5, whereas cured
242	solid digestate materials from digesters accepting more diverse feedstocks (D-F) exhibited lower
243	pH values (7.3 to 7.9) (Table 2). These pH values support prior reports for digestates, ranging
244	from 7.3 to 9.0 [22].
245	Digester E had the greatest cured solid digestate conductivity at 7 mmhos cm ⁻¹ , while all
246	other cured solid digestate materials were in the range of 2.5 to 4.3 mmhos cm ⁻¹ . Salts in some
247	digestate products may pose limitations for soil application due to plant sensitivities. However,
248	there is little agreement on how to classify salts in organic amendments and what, if any, limits
249	should be set [44]. The University of Maine Soil Testing Lab recommends that final compost
250	blends with soil or container media/potting mixes have conductivity values < 4 mmhos cm ⁻¹ .
251	Digestion operations increasing their food waste intake should monitor conductivity in digestate

252 products to aid the design of effective products. For nutrients, we describe N and P results below,

while data for other nutrients can be found in the supplementary materials (Table S2).

254 **3.1. Nitrogen composition of digestates**

Organic N accounted for 50-66% of total N in liquid digestate samples (Table 3), indicating that these materials offer a mixture of readily plant-available inorganic N and N in organic forms likely to become available to plants more slowly (Figure 1a). Efficient N recycling liquid digestate to crops will depend on aligning N availability with crop demand and limiting N losses to the environment. The large fraction of N existing as NH_4^+ indicates risk of ammonia volatilization, depending on application timing and method. Further research is needed on this topic.

Total N ranged from 19.6-56.2 g N kg⁻¹ fresh solid digestate on dry basis, although curing 262 263 reduced differences between materials as shown by more similar and consistent N contents after 264 curing (Table 4). Results for cured solid digestate materials revealed that N loss occurred during 265 45-d curing period in four of six samples and was especially pronounced (28-60% N loss) for 266 two of the samples, both containing substantial food waste in their feedstocks (Figure 1b and 1c). 267 This reduces the amount of N available for recycling into crops. Relatively high N loss could be 268 the result of differences in N content of influent feedstocks and may also be influenced by 269 digester designs, e.g., complete-mix plug-flow. Model simulations have suggested that plug-flow 270 reactors produce smaller effluent concentrations of total N compared to complete-mix units [45]. 271 In our study, N loss during curing appears to have been driven by volatilization of ammonia 272 $(NH_4^+ \text{ to } NH_3)$ or coupled mineralization-volatilization (organic N to NH_4^+ to NH_3) (Figure 1b 273 and 1c). The latter is supported by the fact that the total N reduction exceeds the inorganic N 274 measured in the initial fresh solid digestate for some samples. We observed traceable NO₃-N in

13

all cured solid digestate materials, providing evidence for nitrification during the curing process
(Table 4). C:N ratios in cured solid digestate ranged from 15:1 to 21:1 across all six materials
(Table 2), indicating potential for further N mineralization in some materials, which would
increase the bioavailability of N in these solid digestate materials over time.

279

3.2. Phosphorus composition of digestates

280 Total P in liquid digestates ranged from 0.22 to 0.66 g P kg⁻¹ liquid digestate with a mean of 0.47 ± 0.16 g kg⁻¹ (Table 3). Across liquid digestate samples, P contained within centrifuge-281 282 separated fine solids accounted for 73-87% of total P (Figure 1d). Olsen extractions liberated 12-283 15% of the P in liquid digestate centrifuge-separated fine solids, and an additional 55-69% on top 284 of that was extracted by 2% citric acid, indicating that the majority of P contained in liquid 285 digestate fine solids is in forms likely to become plant-available over time [30] (Table 3). Water-286 extractable P accounted for 13-27% of total P in liquid digestate and included a mixture of 287 soluble reactive P and other forms (e.g., dissolved organic P) (Figure 1d). We propose that the P 288 liberated from fine solids by 2% citric acid P minus water extractable P (including soluble 289 reactive P and other forms) is a metric that indicates the presence of slow-release P. This metric 290 equaled $41 \pm 14\%$ of total P in liquid digestates (Table 3). Previous authors have reported that 291 water-extractable P is a good predictor of short-term P fertilization effect [30,46]; however, this 292 form of P is also likely to be more readily lost to the environment via leaching or runoff [28,38]. 293 Therefore, we hypothesize that, over repeated applications to soils, digestate materials that 294 contain a greater amount of slow-release P (as defined here) may facilitate more efficient 295 recycling of P from digestates to plants. Further experimentation is needed to test this hypothesis. 296 For cured solid digestate materials, total P ranged widely from 4.9-13.7 g P kg⁻¹ dry solid 297 digestate with a mean \pm standard deviation equal to 8.1 \pm 3.4 g P kg⁻¹ dry solid digestate (Table

298 4). Approximately 8-35%, 9-29%, and 49-100% of the total P contained within cured solid 299 digestate materials was water-extractable, Olsen-extractable, and 2% citric acid-extractable, 300 respectively (Figure 1e). These results suggest that the majority of P contained in cured solid 301 digestate materials is not immediately bioavailable or leachable, but is likely to become available 302 to plants in the future. Similar to liquid digestates, we propose that the difference between 2% 303 citric acid P and water-extractable P, which accounted for $59 \pm 14\%$ of total P, is likely an 304 indicator of slow-release P that should be tested in subsequent studies of digestate as a fertilizer. Total P was a poor predictor of water-extractable P ($r^2 = 0.38$, P = 0.19) or Olsen P ($r^2 = 0.33$, P 305 = 0.23), indicating that total P measurements included in conventional compost tests may not be 306 307 good predictors of leaching or immediate plant-availability of P in solid digestate. However, 2% 308 citric acid P and our proposed slow-release P metric were predicted well by total P ($r^2 = 0.98$, P < 0.001 and $r^2 = 0.68$, P < 0.045, respectively), suggesting that total P results do provide a 309 310 meaningful measure of P likely to become plant available in solid digestate materials over time.

311 **3.3.Other nutrients**

312 Data for other nutrients are contained in the supplementary materials (Table S2).

313 **3.4. Plate competition assay**

Growth of *R. solani* was reduced in cultures containing raw coarse solid digestate compared to corresponding reference (autoclaved) cultures for all materials tested (Figure 2). Both fresh and cured solid digestate materials from facilities B, C, D, and F are likely to contain microbes which, through competitive advantage, may act as pathogen suppressants of *R. solani*. Cured SD showed greater suppression of *R. solani* than fresh SD for digesters B and D (Figure 2). This finding is supported by other studies that suggest more mature composts are more suppressive

NOT PEER-REVIEWED

Peer Preprints

than immature composts, due in part to lower concentrations of labile carbon which favor

321 pathogens, and the presence of microbial consortia which may act as biocontrol [42].

322 4. CONCLUSIONS

323 Our results provide a detailed picture of N and P compositions in both liquid and solid 324 anaerobic digestates derived from dairy manure and food waste feedstocks. Nutrients contained 325 in these digestate materials can be expected to largely become bioavailable over time, providing 326 fertility benefits in soil management or greenhouse crop production. However, we also identified 327 forms of N and P that are more likely to be lost to the environment, which will present 328 challenges in the pursuit of efficient nutrient recycling from digestate to crops. Further 329 experimentation, ideally over longer times than commonly employed in short-term bioassays, is 330 needed to test our proposed slow-release P metric. In addition, our results suggest solid digestate 331 products contain active microbial communities that inhibit fungal pathogens including R. solani. 332 Future work should examine microbial community composition and succession within solid 333 digestate products to determine optimal use for biocontrol. Ultimately, digestate valorization 334 efforts that bundle nutrient recycling with co-benefits such as pathogen suppression may prove 335 more successful.

336

337 ACKNOWLEDGEMENTS

We acknowledge Adrian Wiegman, Lauren Bomeisl, Thomas R. Weicht, and Sydney Stegman
for assistance with sample collection and laboratory work. We also thank Dr. Carol Adair for
comments on drafts of this manuscript. This work was supported by Casella Waste Systems, Inc.

342

344 **REFERENCES**

345	1.	Insam, H., Gómez-Brandón, M., Ascher, J.: Manure-based biogas fermentation residues -
346		Friend or foe of soil fertility? Soil Biol. Biochem. 84, 1–14 (2015).
347		doi:10.1016/j.soilbio.2015.02.006
348	2.	Collivignarelli, M.C., Bertanza, G., Abbà, A., Sordi, M., Pedrazzani, R.: Synergy
349		between anaerobic digestion and a post-treatment based on Thermophilic Aerobic
350		Membrane Reactor (TAMR). Environ. Prog. Sustain. Energy. 36, 1802–1809 (2017).
351		doi:10.1002/ep.12677
352	3.	Moset, V., Poulsen, M., Wahid, R., Højberg, O., Møller, H.B.: Mesophilic versus
353		thermophilic anaerobic digestion of cattle manure: Methane productivity and microbial
354		ecology. Microb. Biotechnol. 8, 787-800 (2015). doi:10.1111/1751-7915.12271
355	4.	USDA, 2009. Manure Use for Fertilizer and for Energy, Report to Congress. U.S.
356		Department of Agriculture, Washington, DC.
357	5.	Amon, T., Amon, B., Kryvoruchko, V., Zollitsch, W., Mayer, K., Gruber, L.: Biogas
358		production from maize and dairy cattle manure — Influence of biomass composition on
359		the methane yield. 118, 173-182 (2007). doi:10.1016/j.agee.2006.05.007
360	6.	Balsari, P., Bonfanti, P., Bozza, E., & Sangiorgi, F. 14-20 August 1983. Evaluation of
361		the influence of animal feeding on the performances of a biogas installation
362		(mathematical model). In Third International Symposium on Anaerobic Digestion.
363		Boston, MA, USA, A (Vol. 20, p. 7).
364	7.	Zhang, C., Xiao, G., Peng, L., Su, H., Tan, T.: The anaerobic co-digestion of food waste
365		and cattle manure. Bioresour. Technol. 129, 170-176 (2013).
366		doi:10.1016/j.biortech.2012.10.138

367	8.	Li, T., Mazéas, L., Sghir, A., Leblon, G., Bouchez, T.: Insights into networks of
368		functional microbes catalysing methanization of cellulose under mesophilic conditions.
369		Environ. Microbiol. 11, 889–904 (2009). doi:10.1111/j.1462-2920.2008.01810.x
370	9.	El-Mashad, H.M., Zhang, R.: Biogas production from co-digestion of dairy manure and
371		food waste. Bioresour. Technol. 101, 4021-4028 (2010).
372		doi:10.1016/j.biortech.2010.01.027
373	10.	Agyeman, F.O., Tao, W.: Anaerobic co-digestion of food waste and dairy manure :
374		Effects of food waste particle size and organic loading rate. J. Environ. Manage. 133,
375		268–274 (2014). doi:10.1016/j.jenvman.2013.12.016
376	11.	Banks, C.J., Chesshire, M., Heaven, S., Arnold, R.: Anaerobic digestion of source-
377		segregated domestic food waste: Performance assessment by mass and energy balance.
378		Bioresour. Technol. 102, 612-620 (2011). doi:10.1016/j.biortech.2010.08.005
379	12.	Zhang, Y., Banks, C.J., Heaven, S.: Co-digestion of source segregated domestic food
380		waste to improve process stability. Bioresour. Technol. 114, 168-178 (2012).
381		doi:10.1016/j.biortech.2012.03.040
382	13.	Tampio, E., Marttinen, S., Rintala, J.: Liquid fertilizer products from anaerobic digestion
383		of food waste: Mass, nutrient and energy balance of four digestate liquid treatment
384		systems. J. Clean. Prod. 125, (2016a). doi:10.1016/j.jclepro.2016.03.127
385	14.	Tampio, E., Salo, T., Rintala, J.: Agronomic characteristics of five different urban waste
386		digestates. J. Environ. Manage. 169, 293-302 (2016b).
387		doi:10.1016/j.jenvman.2016.01.001

388	15. Teglia, C., Tremier, A., Martel, J.L.: Characterization of solid digestates: Part 1, review
389	of existing indicators to assess solid digestates agricultural use. Waste and Biomass
390	Valorization. 2, 43-58 (2011a). doi:10.1007/s12649-010-9051-5
391	16. Teglia, C., Tremier, A., Martel, J.L.: Characterization of solid digestates: Part 2,
392	assessment of the quality and suitability for composting of six digested products. Waste
393	and Biomass Valorization. 2, 113-126 (2011b). doi:10.1007/s12649-010-9059-x
394	17. Möller, K., Müller, T.: Effects of anaerobic digestion on digestate nutrient availability
395	and crop growth: A review. Eng. Life Sci. 12, 242-257 (2012).
396	doi:10.1002/elsc.201100085
397	18. O'Brien, B.J., Milligan, E., Carver, J., Roy, E.D.: Integrating anaerobic co-digestion of
398	dairy manure and food waste with cultivation of edible mushrooms for nutrient recovery.
399	Bioresour. Technol. 285, 121312 (2019). doi:10.1016/j.biortech.2019.121312
400	19. Abubaker, J., Risberg, K., Pell, M.: Biogas residues as fertilisers - Effects on wheat
401	growth and soil microbial activities. Appl. Energy. 99, 126-134 (2012).
402	doi:10.1016/j.apenergy.2012.04.050
403	20. Tambone, F., Scaglia, B., D'Imporzano, G., Schievano, A., Orzi, V., Salati, S., Adani, F.:
404	Assessing amendment and fertilizing properties of digestates from anaerobic digestion
405	through a comparative study with digested sludge and compost. Chemosphere. 81,
406	577583 (2010). doi:10.1016/j.chemosphere.2010.08.034
407	21. Tambone, F., Orzi, V., D'Imporzano, G., Adani, F.: Solid and liquid fractionation of
408	digestate: Mass balance, chemical characterization, and agronomic and environmental
409	value. Bioresour. Technol. 243, 1251-1256 (2017). doi:10.1016/j.biortech.2017.07.130

410	22. Zirkler, D., Peters, A., Kaupenjohann, M.: Elemental composition of biogas residues:
411	Variability and alteration during anaerobic digestion. Biomass and Bioenergy. 67, 89-98
412	(2014). doi:10.1016/j.biombioe.2014.04.021
413	23. Weiland, P.: Biogas production: Current state and perspectives. Appl.
414	Microbiol.Biotechnol. 85, 849-860 (2010). doi:10.1007/s00253-009-2246-7
415	24. Baldi, M., Collivignarelli, M.C., Abbà, A., Benigna, I.: The valorization of ammonia in
416	manure digestate by means of alternative stripping reactors. Sustain. 10, 1-14
417	(2018).doi:10.3390/su10093073
418	25. Zhang, Q., Hu, J., Lee, D.J.: Biogas from anaerobic digestion processes:
419	Researchupdates. Renew. Energy. 98, 108–119 (2016). doi:10.1016/j.renene.2016.02.029
420	26. van der Wurff, A.W.G., Fuchs, J.G., Raviv, M., Termorshuizen, A.: Handbook for
421	composting and compost use in organic horticulture. (2016)
422	27. Møller, H.B., Lund, I., Sommer, S.G.: Solid-liquid separation of livestock slurry:
423	Efficiency and cost. Bioresour. Technol. 74, 223-229 (2000).
424	doi:10.1016/S09608524(00)00016-X
425	28. Stutter, M.I.: The composition, leaching, and sorption behavior of some alternative
426	sources of phosphorus for soils. Ambio. 44, 207–216 (2015). doi:10.1007/s13280-014-
427	0615-7
428	29. Newtrient., 2017. Manure Technology Catalogue and personal communication
429	withtechnology team supporting the catalogue. Newtrient, LLC, Chicago, IL.
430	30. Brod, E., Øgaard, A.F., Haraldsen, T.K., Krogstad, T.: Waste products as alternative
431	phosphorus fertilisers part II: predicting P fertilisation effects by chemical extraction.
432	Nutr. Cycl. Agroecosystems. 103, 187-199 (2015b). doi:10.1007/s10705-015-9731-4

433	31. Brod, E., Øgaard, A.F., Hansen, E., Wragg, D., Haraldsen, T.K., Krogstad, T.: Waste
434	products as alternative phosphorus fertilisers part I: inorganic P species affect fertilisation
435	effects depending on soil pH. Nutr. Cycl. Agroecosystems. 103, 167-185 (2015a).
436	doi:10.1007/s10705-015-9734-1
437	32. Roy, E.D.: Phosphorus recovery and recycling with ecological engineering: A
438	review.Ecol. Eng. (2017). doi:10.1016/j.ecoleng.2016.10.076
439	33. Garcia, V.G., Onco, M.A.P., Susan, V.R.: Review. Biology and systematics of the form
440	genus Rhizoctonia. Spanish J. Agric. Res. 4, 55-79 (2006).
441	doi.org/ <u>10.5424/sjar/2006041-178</u>
442	34. EPA, 2018. AgSTAR: Biogas Recovery in the Agriculture Sector.
443	https://www.epa.gov/agstar
444	35. Peters, J., Combs, S.M., Hoskins, B., Jarman, J., Kovar, J.L., Watson, M.E., Wolf, A.M.,
445	Wolf, N.: Recommended Methods of Manure Analysis (A3769). Univ. Wisconsin
446	Extension. 1-3 (2003). doi:Recommended Methods of Manure Analysis (A3769)
447	36. Doane, T.A., Horwáth, W.R.: Spectrophotometric determination of nitrate with a
448	singlereagent. Anal. Lett. 36, 2713-2722 (2003). doi:10.1177/0095399713481599
449	37. Weatherburn, M.W.: Phenol-Hypochlorite Reaction for Determination of Ammonia. Anal.
450	Chem. 39, 971–974 (1967). doi:10.1021/ac60252a045
451	38. Kleinman, P., Sullivan, D., Wolf, A., Brandt, R., Dou, Z., Elliott, H., Kovar, J., Leytem,
452	A., Maguire, R., Moore, P., Saporito, L., Sharpley, A., Shober, A., Sims, T., Toth, J.,
453	Toor, G., Zhang, H., Zhang, T.: Selection of a water-extractable phosphorus test for
454	manures and biosolids as an indicator of runoff loss potential. J. Environ. Qual. 36,
455	13571367 (2007). doi:10.2134/jeq2006.0450

456	39. Sparks, D.L., Helmke, P.A. and Page, A.L.: Methods of soil analysis: Chemical methods.
457	SSSA. (1996).
458	40. Chapman and Pratt. 1961. Methods of Analysis for Soils, Plants, & Waters. University of
459	California, Div. of Ag. p. 60.
460	41. Lajtha, K., C. T. Driscoll, W. M. Jarrell, and E. T. Elliott. 1999. Soil phosphorus:
461	characterization and total element analysis. Pages 115-142 in G. P. Robertson, D. C.
462	Coleman, C. S. Bledsoe, and P. Sollins, editors. Standard Soil Methods for Long-
463	TermEcological Research. Oxford University Press, New York.
464	42. Neher, D.A., Fang, L., Weicht, T.R.: Ecoenzymes as Indicators of Compost to Suppress
465	Rhizoctonia Solani. Compost Sci. Util. 25, 251–261 (2017).
466	doi:10.1080/1065657X.2017.1300548
467	43. Neher, D.A., Weicht, T.R.: A Plate Competition Assay As a Quick Preliminary
468	Assessment of Disease Suppression. J. Vis. Exp. 1-6 (2018). doi:10.3791/58767
469	44. Brinton, W. F.; Compost Quality Standards and Grades. Prepared for New York State
470	Association of Recyclers (2000).
471	45. Slavov, A.: Performance of complete-mix and plug-flow systems during treatment of low
472	loaded nitrogen deficient waste water-simulation with ASAL1 model. Food and
473	Environment Safety Journal, 15, no. 2 (2017).
474	46. Rose, T. J., Schefe, C., Weng, Z. H., Rose, M. T., van Zwieten, L., Liu, L., Rose, A. L.:
475	Phosphorus speciation and bioavailability in diverse biochars. Plant Soil, 1-12 (2019).
476	

485

Figure 2. Plate competition assay measuring hyphal growth of *Rhizoctonia solani* on solid
digestate (SD) water extract agar from farms B, C, D, & F (fresh and cured SD). Illustrated are
means ± 1 standard error of the change from autoclaved control. Both controls and treatment
comparisons were inoculated with virulent *Rhizoctonia solani*.

	Table 1.	Feedstocks	for six	full-scale	mesophilic	anaerobic	digesters i	in New	England	as reported	by farmer	-operators
--	----------	------------	---------	------------	------------	-----------	-------------	--------	---------	-------------	-----------	------------

Digester	Туре	Co-digestion feedstocks	% food waste*	% dairy
		(% annual total)		manure
٨	Mixed Plug	100% dairy manura	0	100
A	Flow		0	100
р	Mixed Plug	00% dairy manura 1% when waste water	1	00
D	Flow	3376 dan'y manure, 176 whey waste water	1	<u>, , , , , , , , , , , , , , , , , , , </u>
C	Mixed Plug	00% doing manura 1% when wests water	1	00
C	Flow	9976 dairy manure, 176 whey waste water	1	77
Л	Complete	18% dairy manure, 33% source separated organics, 20% FOG, 21% DAF, 6%	30	18
D	Mix	dairy process waste, 2% glycerin	59	10
Б	Complete	53% dairy manure, 35% source separated organics, 6% FOG, 4% DAF, 1%	25	52
E	Mix	glycerin, <1% other	55	55
F	Complete	54% dairy manure, 23% brewery waste, 13% dairy process waste, 3%	20	54
F	Mix	glycerin, 3% effluent, 2% FOG, 2% source separated organics, <1% other	30	34

FOG = Fats, Oils, Grease; DAF = Dissolved Air-Flotation sludge

* "food waste" includes source separated organics, dairy process waste, brewery waste, and whey waste water

Table 2. Physicochemical characteristics of liquid digestates (LD) and solid digestates (SD). SD characteristics for Digesters A and E

 were initially reported in [18].

					Cured SD			Cured SD
	LD TS	Fresh SD	Cured SD	Cured SD	total C	Cured SD	Cured	conductivity
Digester	(%)	TS (%)	TS (%)	TVS (%)	(% dry matter)	C:N ratio	SD pH	(mmhos cm ⁻¹)
А	3.2	27.5	34.0	30.3	44.7	17.7	8.4	2.5
В	4.1	33.2	40.8	35.5	42.7	20.5	8.5	2.8
С	4.1	31.2	38.1	32.8	42.4	18.0	8.4	4.3
D	2.2	24.1	32.9	30.6	46.5	23.6	7.3	2.7
Е	5.1	21.5	28.4	23.7	41.1	16.6	7.9	7.0
F	3.0	27.9	37.4	33.3	44.6	19.4	7.4	3.1
Mean ±								
standard	3.6 ± 1.0	27.6 ± 4.3	35.3 ± 4.4	31.0 ± 4.1	43.7 ± 2.0	19.3 ± 2.5	8.0 ± 0.5	3.7 ± 1.7
deviation								

Table 3. Nutrient composition of liquid digestates (LD).

Devenator	Mean ± standard
rarameter	deviation
Total N (g N kg ⁻¹ LD)	3.3 ± 1.0
NH ₄ -N (g N kg ⁻¹ LD)	1.4 ± 0.4
Organic-N (g N kg ⁻¹ LD)	1.9 ± 0.6
Total P (g P kg ⁻¹ LD)	0.47 ± 1.6
Water-extractable P (SRP) (g P kg ⁻¹ LD)	0.05 ± 0.02
Water-extractable P (other forms) (g P kg ⁻¹ LD)	0.04 ± 0.03
Olsen P of fine solids (g P kg ⁻¹ LD)	0.05 ± 0.02
[2% citric acid P – Olsen P] for fine solids (g P kg ⁻¹ LD)	0.24 ± 0.09
P in fine solids not extracted by 2% citric acid (g P kg ⁻¹ LD)	0.09 ± 0.03
[2% citric acid P in fine solids – Water-extractable P (all forms)] (g P kg ⁻¹ LD)	0.20 ± 0.10

Parameter	Mean ± standard deviation
Fresh solids (dry basis)	
Total N (g N kg ⁻¹ fresh SD)	31.6 ± 13.2
NH ₄ -N (g N kg ⁻¹ fresh SD)	3.8 ± 1.1
NO ₃ -N (g N kg ⁻¹ fresh SD)	0.0 ± 0.0
Organic-N (g N kg ⁻¹ fresh SD)	27.8 ± 13.0
Cured solids (dry basis)	
Total N (g N kg ⁻¹ cured SD)	26.1 ± 2.7
NH ₄ -N (g N kg ⁻¹ cured SD)	0.6 ± 0.8
NO ₃ -N (g N kg ⁻¹ cured SD)	1.2 ± 1.7
Organic-N (g N kg ⁻¹ cured SD)	24.3 ± 2.7
Total P (g P kg ⁻¹ cured SD)	8.1 ± 3.4
Water-extractable P (g P kg ⁻¹ cured SD)	1.3 ± 0.7
Olsen P (g P kg ⁻¹ cured SD)	1.5 ± 0.6
2% citric acid P (g P kg ⁻¹ cured SD)	6.5 ± 4.2
[2% citric acid P – water-extractable P] (g P kg ⁻¹ cured SD)	5.2 ± 3.8

Table 4. Nutrient composition of solid digestates (SD). Units are on a dry matter basis.

SUPPLEMENTARY MATERIALS

Table S1. Digestates from cow manure and food waste feedstocks with parameters reported in literature. DS = Digester Scale: F = Full-scale biogas plant, L = Laboratory, pilot, or sub-commercial scale; For temperature, M = Mesophilic, T = Thermophilic; For form, D = Digestate (not separated), Lq = Liquid fraction, S = Solid fraction; TS = Total Solids, VS = Volatile Solids; OFMSW = organic fraction of municipal solid waste, NS = Not specified; Total N as TKN unless specified otherwise.

Study	Feedstock	DS	Temp	Phase	рН	TS	VS	Total C	Total N	NH ₄ -N	Org-N	Р
						g DM kg ⁻¹ FW	g kg ⁻¹ dry matter					
Albuquerque et al. (2012)	cattle slurry + 4% glycerine	L	М	D	5.6	-	-	465 [†]	50*	26	-	13
	cattle slurry + 6% glycerine	L	М	D	7.3	-	-	587†	32*	12	-	5
	cattle slurry + 6% glycerine	L	М	D	6.4	-	-	472 [†]	34*	23	-	6
	cattle slurry + 5% orange peel residues	L	М	D	7.9	-	-	385†	57*	33	-	8
	cattle slurry + 10% orange peel residues	L	М	D	7.9	-	-	330 [†]	85*	51	-	11
Brod et al. (2015a; 2015b)	source- separated household waste	F	NS	Lq	7.0	24	646	412	95	-	25	12
				S	7.7	250	662	400	56	-	49	15
Coehlo et al. (2018)	food waste (dairy industry)	F	М	D	8.5	28	642	374†	165	-	-	12
	food waste (farm and food)	F	М	D	8.1	33	538	313†	75	-	-	33
	food waste, garden waste	F	М	D	8.2	36	475	232 [†]	104	-	-	21
	whole cattle slurry	F	М	D	7.9	17	628	358†	101	-	-	10
	whole cattle slurry	F	М	D	8.3	48	721	419†	66	-	-	8
	food waste (kitchen), garden waste	F	М	D	8.1	49	707	411†	84	-	-	12

Table S1 continued. Digestates from cow manure and food waste feedstocks with parameters reported in literature. DS = Digester Scale: F = Full-scale biogas plant, L = Laboratory, pilot, or sub-commercial scale; For temperature, M = Mesophilic, T = Thermophilic; For form, D = Digestate (not separated), Lq = Liquid fraction, S = Solid fraction; TS = Total Solids, VS = Volatile Solids; OFMSW = organic fraction of municipal solid waste, NS = Not specified; Total N as TKN unless specified otherwise.

Study	Feedstock	DS	Temp	Phase	pН	TS	VS	Total C	Total N	NH4-N	Org-N	Р
						g DM kg ⁻¹ FW			g kg ⁻¹ dry n	natter		
Haraldsen et al. (2011)	source- separated household waste	F	NS	D	8.0	15	-	-	152	104	48	16
Kirchmann & Witter (1992)	cattle slurry	L	М	D	8.5	19	-	500 [†]	42	21	21	9
Lukehurst et al. (2010)	dairy cow slurry	NS	NS	D	7.9	-	-	-	61*	40	-	-
Möller et al. (2008)	cattle slurry	L	М	D	7.8	92	638	355†	43	21	22	7
Pognani et al. (2009)	22% energetic crops, 33% cow manure slurry, 45% agro-industrial waste	F	Т	D	8.7	35	753	414 [†]	105*	71	33	11
	2% energetic crops, 22% cow manure slurry, 18% agro-industrial waste, 59% OFMSW: NS	F	Т	D	8.3	36	684	377 [†]	110*	68	42	12
Risberg et al. (2017)	100% cow manure	F	М	D	-	74	-	459	46*	30	16	-
	45% waste from food processing industries, 50% source- separated organic waste, 5% garden waste	F	Τ	D	-	22	-	364	209*	164	45	-

Table S1 continued. Digestates from cow manure and food waste feedstocks with parameters reported in literature. DS = Digester Scale: F = Full-scale biogas plant, L = Laboratory, pilot, or sub-commercial scale; For temperature, M = Mesophilic, T = Thermophilic; For form, D = Digestate (not separated), Lq = Liquid fraction, S = Solid fraction; TS = Total Solids, VS = Volatile Solids; OFMSW = organic fraction of municipal solid waste, NS = Not specified; Total N as TKN unless specified otherwise.

Study	Feedstock	DS	Temp.	Phase	pН	TS ^a	VS	Total C	Total N	NH4-N	Org-N	Р
						g DM kg ⁻¹ FW	g kg ⁻¹ dry matter					
Risberg et al. (2017) continued	90% cow manure, 10% waste from food processing industries	F	Т	D	-	43	-	393	81*	56	26	-
Tambone et al. (2017)	cow slurry + cow manure + energetic crops + molasses	F	NS	D	-	72	-	-	93	64	29	21
				Lq	-	45	-	-	119	86	33	24
				S	-	202	-	-	30	16	15	10
Tampio et al. (2016)	source- separated domestic food waste	L	М	D	8.0	68	737	395	128	66	62	-
	source- separated domestic food waste	L	М	D	7.6	79	935	329	99	22	77	-
	source- separated domestic food waste	L	М	D	8.3	20	181	342	236	196	40	-
	OFMSW: NS	F	Т	D	8.3	32	278	320	140	99	40	-
Tampio et al. (2015)	source- separated food waste	L	М	D	8.0	67	677	386	116	60	55	20
	autoclaved source- separated food waste	L	М	D	7.7	79	898	415	93	28	80	16

Table S1 continued. Digestates from cow manure and food waste feedstocks with parameters reported in literature. DS = Digester Scale: F = Full-scale biogas plant, L = Laboratory, pilot, or sub-commercial scale; For temperature, M = Mesophilic, T = Thermophilic; For form, D = Digestate (not separated), Lq = Liquid fraction, S = Solid fraction; TS = Total Solids, VS = Volatile Solids; OFMSW = organic fraction of municipal solid waste, NS = Not specified; Total N as TKN unless specified otherwise.

Author	Feedstock	DS	Temp.	Form	pН	TS ^a	VS	Total C	Total N	NH ₄ -N	Org-N	Р
						g DM kg ⁻¹ FW			natter			
Teglia et al. (2011)	70% bovine manure + 7% rabbit manure + 3% garden wastes + 17% fruits and vegetables	F	Т	D	-	240	688	363	20	6	14	8
	OFMSW: 15% kitchen wastes, 75% garden wastes, 10% paper and cardboard	F	Τ	D	-	425	386	200	13	4	9	2
	OFMSW: 60% biowastes, 20% green wastes, 20% residual MSW	F	Т	D	-	457	741	347	14	4	10	9
Walsh et al. (2012)	cow slurry	F	М	D	8.6	52	-	274	22*	20	-	1
Zhang et al. (2012)	source- separated domestic food waste	L	М	S	-	15	826	-	55	24	31	11
				Lq	-	6	712	-	112	65	47	12
	OFMSW: NS	L	М	S	-	35	605	-	16	5	11	3
				La	-	7	499	-	48	22	26	5

Table S1 References

- Alburquerque, J.A., de la Fuente, C., Ferrer-Costa, A., Carrasco, L., Cegarra, J., Abad, M., Bernal, M.P.: Assessment of the fertiliser potential of digestates from farm and agroindustrial residues. Biomass and Bioenergy. 40, 181–189 (2012). doi:10.1016/j.biombioe.2012.02.018
- Brod, E., Øgaard, A.F., Hansen, E., Wragg, D., Haraldsen, T.K., Krogstad, T.: Waste products as alternative phosphorus fertilisers part I: inorganic P species affect fertilisation effects depending on soil pH. Nutr. Cycl. Agroecosystems. 103, 167–185 (2015a). doi:10.1007/s10705-015-9734-1
- Brod, E., Øgaard, A.F., Haraldsen, T.K., Krogstad, T.: Waste products as alternative phosphorus fertilisers part II: predicting P fertilisation effects by chemical extraction. Nutr. Cycl. Agroecosystems. 103, 187–199 (2015b). doi:10.1007/s10705-015-9731-4
- Coelho, J.J., Prieto, M.L., Dowling, S., Hennessy, A., Casey, I., Woodcock, T., Kennedy, N.: Physical-chemical traits, phytotoxicity and pathogen detection in liquid anaerobic digestates. Waste Manag. 78, 8–15 (2018). doi:10.1016/j.wasman.2018.05.017
- Haraldsen, T.K., Andersen, U., Krogstad, T., Sørheim, R.: Liquid digestate from anaerobic treatment of sourceseparated household waste as fertilizer to barley. Waste Manag. Res. 29, 1271–1276 (2011). doi:10.1177/0734242X11411975
- Kirchmann, H., Witter, E.: Composition of fresh, aerobic and anaerobic farm animal dungs. Bioresour. Technol. 40, 137–142 (1992). doi:10.1016/0960-8524(92)90199-8
- Lukehurst, C., Frost, P., Seadi, T. Al: Utilisation of digestate from biogas plants as biofertiliser. IEA Bioenergy. 1– 36 (2010)
- Möller, K., Stinner, W., Deuker, A., Leithold, G.: Effects of different manuring systems with and without biogas digestion on nitrogen cycle and crop yield in mixed organic dairy farming systems. Nutr. Cycl. Agroecosystems. 82, 209–232 (2008). doi:10.1007/s10705-008-9196-9
- Pognani, M., Imporzano, G.D., Scaglia, B., Adani, F., Celoria, V.: Substituting energy crops with organic fraction of municipal solid waste for biogas production at farm level : A full-scale plant study. 44, 817–821 (2009). doi:10.1016/j.procbio.2009.03.014
- Risberg, K., Cederlund, H., Pell, M., Arthurson, V., Schnürer, A.: Comparative characterization of digestate versus pig slurry and cow manure – Chemical composition and effects on soil microbial activity. Waste Manag. 61, (2017). doi:10.1016/j.wasman.2016.12.016
- Tambone, F., Orzi, V., D'Imporzano, G., Adani, F.: Solid and liquid fractionation of digestate: Mass balance, chemical characterization, and agronomic and environmental value. Bioresour. Technol. 243, 1251–1256 (2017). doi:10.1016/j.biortech.2017.07.130
- Tampio, E., Ervasti, S., Rintala, J.: Characteristics and agronomic usability of digestates from laboratory digesters treating food waste and autoclaved food waste. J. Clean. Prod. 94, 86–92 (2015). doi:10.1016/j.jclepro.2015.01.086
- Tampio, E., Salo, T., Rintala, J.: Agronomic characteristics of five different urban waste digestates. J. Environ. Manage. 169, 293–302 (2016). doi:10.1016/j.jenvman.2016.01.001
- Teglia, C., Tremier, A., Martel, J.L.: Characterization of solid digestates: Part 2, assessment of the quality and suitability for composting of six digested products. Waste and Biomass Valorization. 2, 113–126 (2011). doi:10.1007/s12649-010-9059-x
- Walsh, J.J., Jones, D.L., Edwards-Jones, G., Williams, A.P.: Replacing inorganic fertilizer with anaerobic digestate may maintain agricultural productivity at less environmental cost. J. Plant Nutr. Soil Sci. 175, 840–845 (2012). doi:10.1002/jpln.201200214
- Zhang, Y., Banks, C.J., Heaven, S.: Anaerobic digestion of two biodegradable municipal waste streams. J. Environ. Manage. 104, 166–174 (2012). doi:10.1016/j.jenvman.2012.03.043

			Mean ± standard				
Parameter	А	В	С	D	Е	F	deviation
Liquids							
Total N (g N kg ⁻¹ LD)	3.2	3.1	3.1	2.2	5.2	2.9	3.3 ± 1.0
NH ₄ -N (g N kg ⁻¹ LD)	1.6	1.3	1.4	1.1	2.2	1.0	1.4 ± 0.4
Organic-N (g N kg ⁻¹ LD)	1.6	1.8	1.7	1.1	3.0	1.9	1.9 ± 0.6
Total P (g P kg ⁻¹ LD)	0.47	0.50	0.57	0.22	0.66	0.37	0.47 ± 1.6
Water-extractable P (SRP) (g P kg ⁻¹ LD)	0.03	0.03	0.05	0.03	0.07	0.08	0.05 ± 0.02
Water-extractable P (other forms) (g P kg ⁻¹ LD)	0.03	0.04	0.04	0.02	0.10	0.02	0.04 ± 0.03
Olsen P of fine solids (g P kg ⁻¹ LD)	0.05	0.05	0.07	0.02	0.06	0.04	0.05 ± 0.02
[2% citric acid P - Olsen P] for fine solids	0.26	0.29	0.33	0.10	0.29	0.15	0.24 ± 0.09
P in fine solids not extracted by 2% citric acid (g P kg ⁻¹ LD)	0.09	0.10	0.08	0.05	0.14	0.08	0.09 ± 0.03
[2% citric acid P in fine solids – Water- extractable P (all forms)] (g P kg ⁻¹ LD)	0.25	0.27	0.31	0.07	0.18	0.09	0.20 ± 0.10
Total Potassium (g K kg ⁻¹ LD)	2.3	2.0	2.7	0.7	2.1	1.5	1.9 ± 0.7
Total Calcium (g Ca kg ⁻¹ LD)	0.90	1.1	1.3	0.40	1.3	0.70	0.95 ± 0.36
Total Magnesium (g Mg kg ⁻¹ LD)	0.50	0.80	0.50	0.20	0.30	0.20	0.42 ± 0.23
Boron (g B kg ⁻¹ LD)	0.00	0.00	0.00	0.00	0.00	0.00	0.0 ± 0.0
Copper (g Cu kg ⁻¹ LD)	0.03	0.09	0.03	0.00	0.00	0.01	0.03 ± 0.03
Iron (g Fe kg ⁻¹ LD)	0.04	0.04	0.03	0.09	0.11	0.30	0.10 ± 0.10
Manganese (g Mn kg ⁻¹ LD)	0.01	0.02	0.01	0.00	0.01	0.01	0.01 ± 0.00
Sodium (g Na kg ⁻¹ LD)	0.82	1.5	1.4	0.68	1.8	0.46	1.1 ± 0.52
Zinc (g Zn kg ⁻¹ LD)	0.01	0.02	0.01	0.01	0.01	0.01	0.01 ± 0.00
Fresh solids (dry)							
Total N (g N kg ⁻¹ fresh SD)	23.2	19.6	25.6	56.2	34.7	30.4	31.6 ± 13.2
NH ₄ -N (g N kg ⁻¹ fresh SD)	4.4	2.6	3.3	3.7	5.8	3.2	3.8 ± 1.1
NO ₃ -N (g N kg ⁻¹ fresh SD)	0.0	0.0	0.0	0.0	0.0	0.0	0.0 ± 0.0
Organic-N (g N kg ⁻¹ fresh SD)	18.8	17.0	22.3	52.5	29.0	27.1	27.8 ± 13.0
Cured solids (dry)							
Total N (g N kg ⁻¹ cured SD)	29.2	24.4	23.8	23.0	28.3	28.0	26.1 ± 2.7
NH ₄ -N (g N kg ⁻¹ cured SD)	0.2	0.2	0.1	1.2	0.1	1.9	0.6 ± 0.8
NO ₃ -N (g N kg ⁻¹ cured SD)	0.4	0.0	1.5	0.8	4.4	0.1	1.2 ± 1.7
Organic-N (g N kg ⁻¹ cured SD)	28.6	24.2	22.3	21.0	23.7	26.0	24.3 ± 2.7

Table S2. Nutrients in liquid digestates (LD) and cured solid digestates (SD). Units for SD are on a dry matter basis.

Table S2 continued. Nutrients in liquid digestates (LD) and cured solid digestates (SD). Units for SD are on a dry matter basis.

D			Mean ± standard				
Parameter	А	В	С	D	Е	F	deviation
Cured solids (dry)							
Total P (g P kg ⁻¹ cured SD)	4.9	6.8	6.7	5.7	13.7	10.5	8.1 ± 3.4
Water-extractable P (g P kg ⁻¹ cured SD)	1.7	0.7	0.7	0.5	1.9	2.0	1.3 ± 0.7
Olsen P (g P kg ⁻¹ cured SD)	1.0	1.9	2.0	0.5	2.1	1.4	1.5 ± 0.6
2% citric acid P (g P kg ⁻¹ cured SD)	2.4	5.3	5.1	3.6	13.9	8.5	6.5 ± 4.2
[2% citric acid P – water-extractable P] (g P kg ⁻¹ cured SD)	0.7	4.6	4.4	3.1	12	6.5	5.2 ± 3.8
Total Potassium (g K kg ⁻¹ cured SD)	0.01	0.01	0.01	0.00	0.01	0.01	0.10 ± 0.00
Sodium (g Na kg ⁻¹ cured SD)	0.04	0.02	0.03	0.01	0.03	0.04	0.30 ± 0.01
Total Magnesium (g Mg kg ⁻¹ cured SD)	0.02	0.00	0.00	0.00	0.00	0.00	0.00 ± 0.01
Boron (g B kg ⁻¹ cured SD)	0.41	1.20	0.49	0.05	0.09	0.09	0.39 ± 0.44
Copper (g Cu kg ⁻¹ cured SD)	0.69	0.59	0.56	1.86	2.24	8.88	2.5 ± 3.2
Iron (g Fe kg ⁻¹ cured SD)	0.01	0.01	0.01	0.00	0.01	0.01	0.01 ± 0.00
Manganese (g Mn kg ⁻¹ cured SD)	0.12	0.24	0.10	0.06	0.18	0.14	0.14 ± 0.06
Sodium (g Na kg ⁻¹ cured SD)	0.00	0.00	0.00	0.00	0.00	0.00	0.00 ± 0.00
Zinc (g Zn kg ⁻¹ cured SD)	0.14	0.20	0.17	0.11	0.13	0.12	0.14 ± 0.03