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Abstract

The cerebellum plays a key role in the regulation of motor learning, coordination and timing, 
and has been implicated in sensory and cognitive processes as well. However, our current 
knowledge of its electrophysiological mechanisms comes primarily from direct recordings in 
animals, as investigations into cerebellar function in humans have instead predominantly 
relied on lesion, haemodynamic and metabolic imaging studies. While the latter provide 
fundamental insights into the contribution of the cerebellum to various cerebellar-cortical 
pathways mediating behaviour, they remain limited in terms of temporal and spectral 
resolution. In principle, this shortcoming could be overcome by monitoring the cerebellum’s 
electrophysiological signals. Non-invasive assessment of cerebellar electrophysiology in 
humans, however, is hampered by the limited spatial resolution of electroencephalography 
(EEG) and magnetoencephalography (MEG) in subcortical structures, i.e., deep sources. 
Furthermore, it has been argued that the anatomical configuration of the cerebellum leads 
to signal cancellation in MEG and EEG. Yet, claims that MEG and EEG are unable to detect 
cerebellar activity have been challenged by an increasing number of studies over the last 
decade. Here we address this controversy and survey reports in which neuromagnetic signals
were successfully recorded from the human cerebellum. We argue that the detection of 
cerebellum activity non-invasively with MEG and EEG is indeed possible and can be 
enhanced with appropriate methods, in particular using connectivity analysis in source 
space. We provide illustrative examples of cerebellar activity detected with MEG and EEG. 
Furthermore, we propose practical guidelines to optimize the detection of cerebellar activity 
with MEG and EEG. Finally, we discuss MEG and EEG signal contamination that may lead to 
localizing spurious sources in the cerebellum and suggest ways of handling such artefacts. 
This review is to be read as a perspective review that highlights that it is indeed possible to 
measure cerebellum with MEG and EEG and encourages MEG and EEG researchers to do so. 
Its added value beyond highlighting and encouraging is that it offers useful advice for 
researchers aspiring to investigate the cerebellum with MEG and EEG.
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1. Introduction

In addition to its well-established role in the control and coordination of motor behaviour, 
the cerebellum is involved in sensory processing (audition: Petacchi et al., 2005; retinotopy: 
van Es et al., 2019) and cognitive tasks ranging from learning and memory to higher order 
cognitive control processes (Ito, 1984; Thaut, 2003; Bellebaum and Daum, 2007; Strick et al. 
2009; Casabona et al. 2010; Stoodley et al., 2012; Buckner et al., 2013). King et al. (2019) 
recently showed that the cerebellum is involved in functions as diverse as hand movements, 
saccades, divided attention, verbal fluency, autobiographical recall, word comprehension, 
action observation, mental arithmetic, emotion processing and language processing, among 
other functions. This is further evidence, if any were needed, that we simply cannot afford to
ignore the cerebellum in studies of human brain processes. However, the utility of 
noninvasive electrophysiological techniques like electroencephalography (EEG) and 
magnetoencephalography (MEG) for measuring cerebellar responses has not been clearly 
established, and sometimes even explicitly discounted in textbooks (Tyner et al., 1989; Covey
& Carter, 2015). Meanwhile, studies employing EEG or MEG to delineate brain networks 
often do not consider the cerebellum as a potential source of the measured responses. In 
this review, we argue for a more optimistic view on MEG’s ability to detect cerebellar activity.
We furthermore offer advice for how to improve cerebellar recordings with MEG, hopefully 
providing a valuable tool that other researchers aspiring to record the electrophysiological 
signals of the cerebellum can rely on.

Our current knowledge of the electrophysiological mechanisms that mediate cerebellar 
activity comes mainly from direct recordings in animals. Investigations of the human 
cerebellum consist predominantly of studies in patients with cerebellar lesions or studies 
tracking metabolic or haemodynamic processes such as positron emission tomography (PET) 
and functional magnetic resonance imaging (fMRI). In contrast to electrophysiological 
recordings, these neuroimaging techniques only provide an indirect measure of neural 
activity by monitoring local metabolic or haemodynamic responses. This notwithstanding, 
neuroimaging studies using these modalities play a pivotal role in elucidating the functional 
role of the cerebellum by unraveling its contribution to numerous tasks such as motor 
control, visually guided behavior and many cognitive tasks (Buckner, 2013). Because they 
monitor the activity of the whole brain simultaneously, these imaging techniques are also 
used to examine the involvement of the cerebellum in potential large-scale cerebral 
networks and to assess the functional-role of cerebellar-thalamo-cortical pathways 
(Diedrichsen et al. 2019).
Nevertheless, the relatively sluggish nature of haemodynamic and metabolic responses 
remains a severe limitation when it comes to investigating the precise temporal properties of
cerebellar activity. Recording signals from the cerebellum with temporal resolution 
comparable to that obtained in electrophysiology (i.e., millisecond range) is crucial in order 
to correlate the measured activity with behavioural parameters (such as reaction times or 
time-varying movement parameters) but also in order to compare activation latencies 
between cerebellum and other brain structures and finally to assess putative fine-grained 
synchronization properties between the cerebellum and various nodes of the involved 
cerebral network. To achieve the above, one would require a non-invasive technique that 
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provides millisecond temporal resolution combined with whole-head coverage. EEG and 
MEG fulfil these requirements. While the former measures the electrical potentials on the 
scalp, the latter detects the minute magnetic signals generated on the surface by the same 
underlying cerebral generators (Hämäläinen et al. 1993). Both EEG and MEG record brain 
signals with millisecond resolution and currently available systems provide dense channel 
arrays with up to approximately 300 recording sites yielding an unprecedented spatial 
coverage of the head.

But do these methods provide the optimal spatiotemporal resolution at which to study the 
physiology of the human cerebellum? Unfortunately, the answer to this question is not 
straightforward. One problem lies with the poor spatial resolution of these techniques in 
deep structures, i.e., structures located far from the sensors. The distance from the sensor 
array and signal diffusion issues yield a low signal-to-noise ratio (SNR) and linear mixing at 
the individual recording sites. As a result, from a source estimation perspective, superficial 
sources (e.g., sources in primary auditory or somatosensory cortices) are easier to localize 
non-invasively with MEG or EEG than sources located in deeper brain structures (e.g., 
hippocampus or deeper substructures of the cerebellum). Furthermore, it has been 
speculated that the neuronal architecture of the cerebellar cortex may also be a specific 
limiting factor preventing detection of cerebellar sources with non-invasive methods due to 
signal cancellation. These potential difficulties, together with the attenuation of MEG and 
EEG signal strength with depth, has led to the prevailing view that MEG and EEG are not 
suitable for the detection of cerebellar activity. As a result, sources that appear to be 
localized in cerebellum are often suspected of being of artefactual in origin or simply 
resulting from noisy data. Nonetheless, a small but increasing number of MEG and EEG 
studies report activations in the cerebellum in a range of tasks. So can MEG detect cerebellar 
activity after all? And if so, how can we optimize its detection and how can we rule out false 
positives? We believe that there is now sufficient evidence in the literature to address these 
questions. 

2. Why is the detection of cerebellar activity with EEG and MEG a controversial issue?

It has been suggested that it has been difficult to record cerebellar activity with noninvasive 
EEG (and by extension, MEG) since the neurons of the cerebellum are arranged in a “closed 
field” configuration (Bantli, 1972). However, the arrangement of Purkinje cells in cerebellar 
cortex (Ramón y Cajal, 1904) is very analogous to pyramidal cells in cerebral cortex (see Fig. 
1) and likely contribute to the scalp EEG/MEG signal. Studies on the turtle cerebellum have 
demonstrated that an external magnetic field can be detected at a distance; a field of 1 pT 
was detected at a distance of 17 mm when a cerebellar patch of 10 mm3 was activated 
(Okada et al., 1987). The structure of the turtle cerebellar cortex is very similar to that of 
higher species, including humans (Eccles, 2013). Further evidence of the cerebellum having 
an open field configuration comes from the application of transcranial magnetic stimulation 
(TMS) to the cerebellum. This has been done in several studies (e.g.: Schutter & van Honk 
2006; Koch et al., 2007; Harrington & Hammond-Tooke, 2015; Ferrari et al., 2018). The 
important insight is that magnetic stimulation is the converse of MEG, following the so-called
reciprocity theorem (Heller & van Hulsteyn, 1992; Ruohonen & Ilmoniemi 1998). Thus, it 
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follows from TMS coils being capable of inducing an electromagnetic current in the 
cerebellum that MEG coils are also theoretically capable of detecting electromagnetic 
currents arising from the cerebellum. Finally, Buzsáki et al. (2012) highlight the cerebellum 
has an ordered structure, which would result in an open field configuration, but they note 
that cerebellar activation is mainly local, meaning that corresponding external magnetic 
fields are weak. However, in cases where synchronous activity is imposed on the cerebellum 
from outside itself, magnetic fields strong enough to be detected by MEG can be generated, 
as for example is the case in epilepsy (Kandel & Buzsáki 1993). As synchronous activity may 
also be imposed on the cerebellum by stimulation methods routinely used in neuroscience, 
all these considerations together make it the case that it, at least in principle, should not be 
impossible to detect cerebellum with MEG or EEG. MEG may be a more appropriate modality
than EEG, however, due to the relative simplicity of MEG head models compared to EEG head
models, which in turn makes source localization with MEG more precise and accurate than 
with EEG (Hämäläinen et. al 1993). Also, specifically for high-frequency oscillations, MEG  
appears to capture them with higher fidelity than EEG does (Muthukumaraswamy & Singh, 
2013).

Fig. 1: Similarities between Purkinje cells (cerebellum) and pyramidal cells 
(cerebral cortex) A) a sketch of a Purkinje cell from the human cerebellum by 
Ramón y Cajal. B) a sketch of the pyramidal cells, showcasing different cortical 
layers (I-V). 
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One reason that the cerebellum may not be visible to EEG or MEG may arise from some 
historical methodological limitations that have since been overcome. EEG/MEG studies 
employing event-related averaging, inherently optimized to distinguish phase-locked evoked 
activity, have rarely suggested cerebellum activation. Even experiments employing invasive 
recordings in animal cerebellum only occasionally report event-related potentials (ERPs) 
(e.g., Rowland & Jaeger, 2008); the vast majority of such studies instead report modulations 
of oscillatory activity (see de Zeeuw et al. 2008 for a review).

This suggests that the cerebellum may primarily exhibit oscillatory modulations that may not 
necessarily be phase-locked. Indeed, the classic experiments of Adrian (1935) [cat, 40-300 
Hz], Dow (1938) [cat, 150-250 Hz], Ten Cate and Wiggers (1942) [cat, 50-230 Hz] , and Pellet 
(1967) [guinea pig, 200-400 Hz] all demonstrated high-frequency oscillatory activity in the 
cerebellum. Niedermeyer & Uematsu (1974) observed low-frequency oscillations (1.5-6 Hz) 
in three human Lennox-Gastaut syndrome patients implanted with cerebellar electrodes in 
an experimental attempt at stimulation treatment. de Solages et al. (2008) showed that the 
Purkinje cell layer produces 200 Hz oscillations in Wistar rats, which seem to entrain unit 
firing; high-frequency LFPs in the molecular and granule cell layers were far less pronounced. 
More recently, Cheron & Cheron (2018) found that stimulation of the inferior olive in mice 
induced high-frequency oscillations (350 Hz) in the cerebellum. Intracranial recordings from 
the human cerebellum are exceedingly rare, but Dalal et al. (2013) reviewed the sparse 
literature describing them, and re-analysed some key historical intracranial recordings of the 
human cerebellum, three published in Russian (Irger et al. 1949a; 1949b; 1951) and one in 
French (Rétif 1964). In the studies by Irger et al.,  the human cerebellum exhibited 
spontaneous oscillations in the beta band range (15-30 Hz) and in both the low-gamma (35-
50 Hz) and high-gamma (80-100 Hz) ranges, The recordings from Rétif (1964) furthermore 
revealed evidence of 250 Hz oscillations. The few intracranial recordings from the human 
cerebellum thus seem to correspond to the animal literature.

Perhaps the neuronal mechanisms or morphology of the cerebellum preclude robust 
production of phase-locked evoked responses, which would have given the impression that 
the cerebellum is silent to scalp EEG/MEG for several years until the revival of non-phase-
locked analyses using time-frequency techniques. Indeed, more compelling MEG findings of 
cerebellar activity came about after techniques to perform time-frequency analysis in source 
space became more widely available (e.g., Gross et al., 2002; Dalal et al., 2008; Pollok et al., 
2008; Schnitzler et al., 2009; Kennedy et al., 2011).

Sensor coverage may also be a factor. The traditional 10/20 EEG system and even state-of-
the-art high-density electrode caps as well as most whole-head MEG systems may simply not
provide sufficient spatial sampling over the regions where cerebellar signals may project, 
e.g., the top of the neck. This problem can be partially overcome using low-tech solutions, 
such as thoughtful placement of subjects in traditional MEG sensor arrays (perhaps with the 
head tilted more forward than usual for better cerebellar coverage at the expense of frontal 
coverage as in Hashimoto et al. (2003), or the use of additional free electrodes further down 
the neck to supplement an EEG cap. With the advent of on-scalp MEG techniques such as 
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optically pumped magnetometers (OPMs) (Boto et al. 2017) and high critical temperature 
(high-Tc) SQUIDs (Pfeiffer et al. 2019), it is also becoming possible to place sensors freely, and
thus place them as close as possible to the cerebellum, on the back of the head or or 
possibly even into the mouth to approach it from the other side.

Finally, source localization attempts have traditionally assumed a spherical head model fit to 
cerebral cortex, perhaps resulting in a poor fit with cerebellar cortex. Implementations of 
realistic head models usually neglect the cerebellum, either removing it completely or 
including it within the same compartment as cerebral cortex. Additionally, techniques that 
assume sources to be oriented orthogonally to the cortical surface may need refinement for 
the cerebellum, as the cerebellum is less easily segmented. The cerebellum, due to its 
different morphology as well as its separation of cerebral cortex by thick dura mater (the 
cerebellar tentorium), may ultimately profit from realistic models that specifically take into 
account its electrical properties.

3. Previous reports and illustrative examples

As mentioned earlier, the introduction of time-frequency analyses greatly increased the 
number of published findings on cerebellar activity stemming from mainly MEG recordings 
and some EEG recordings. Here, we will go through some of them in greater detail. We do 
not intend this to be a systematic review that includes all EEG and MEG papers that have 
been published on cerebellar activation, but rather a set of illustrative examples showcasing 
that MEG and EEG are not blind to the cerebellum.

3.1 Motor tasks

Gross et al. (2002), based on the application of the newly developed method of Dynamic 
Imaging of Coherent Sources (DICS; Gross et al., 2001), found coherence between 
electromyography (EMG) resulting from a sinusoidal movement and MEG activity in the 
contralateral sensorimotor cortex, i.e., corticomuscular coherence. They then localized the 
brain areas coherently oscillating with sensorimotor cortex, among which they found 
ipsilateral cerebellum, thalamus and premotor cortex (PMC) engaged in a feedback loop 
oscillating at a rhythm of 8-10 Hz, corresponding to natural discontinuities in movement 
(Vallbo & Wessberg, 1993).

Pollok et al. (2005) extended the network to also include supplementary motor area (SMA) 
and posterior parietal cortex (PPC), while Pollok et al. (2008) showed that anticipated 
movements were related to an increase in coupling directed from cerebellar to thalamic to 
parietal areas, i.e., cerebellum to cerebrum, whereas non-anticipated movements were 
related to an increase in coupling direction from parietal areas to cerebellar areas, i.e., 
cerebrum to cerebellum. Pollok et al. interpreted these two differentially directed couplings 
as anticipatory motor control and mismatch detection, respectively. Jerbi et al. (2007) (Fig. 2)
found that these cerebellar couplings to motor cortex also encode the speed with which 
hand movements are made. More recently, Marty et al. (2018) found that cerebellar activity 
entrains to the speed and kinematics of finger movements. Wilson et al. (2010) (Fig. 3) found
cerebellar activity in the beta band (15-30 Hz) before and after movements. Finally, Dalal et 
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al. (2008) furthermore found cerebellar activity in high gamma frequencies (> 65 Hz) when 
subjects performed finger movements. Taken together, these studies provide consistent 
evidence that induced cerebellar activity can be found in MEG when simple motor 
movements are performed. Finally, a recent EEG study has used distributed models to 
reconstruct phase-locked activity (Torres & Beardsley 2019) related to simple flexions of the 
wrists. It remains to be seen whether the same could be done with MEG.

Fig. 2: Strength of task-based coherence with primary cortex as a reference: 
subjects were to counteract the unpredictable movements of a cube rotating around 
its centre by moving a trackball. The kinematics of the trackball movement were 
registered and its coupling to the neural time series were estimated, using task-
related Z-transformed coherence with M1 activity (white dot) as an outcome measure
(ΔZcoh). Figure from Jerbi et al. (2007).

In addition to detection of cerebellar activity in healthy participants, cerebellar activity has 
also been detected in patients with dysfunctional networks or motor pathologies.
Using DICS, Timmermann et al. (2003) found oscillatory coherence between the EMG of the 
hand tremor of six Parkinson patients and their contralateral M1. Similar to Gross et al. 
(2002), they found evidence of coherence between contralateral M1 and ipsilateral 
cerebellum. Schnitzler et al. (2009) similarly found oscillatory coherence between the EMG 
of the hand and the contralateral M1 in eight patients with Essential Tremor. Again using 
DICS, they also found coherence between M1 and ipsilateral cerebellum. Similar results have 
been found for the tremor related to Wilson’s disease (Südmeyer et al. 2006).

3.2 Audition

Using MEG, Herrojo Ruiz et al. (2017), investigated auditory feedback related to motor 
movements (playing the piano). They provided feedback that was either expected (related to 
the movement) or unexpected (unrelated to the movement). When unexpected feedback 
was received, cerebellum activated more strongly in the theta (3-7 Hz) and beta bands (15-30
Hz) than when expected feedback was received. Also using MEG, Cao et al. (2017), found 
that attenuation of self-generated tones, as indicated by the decrease of the auditory fields, 
was decreased when cerebellar activity was disrupted with TMS. They found that the 
cerebellar vermis was more active during actual  attenuation, i.e. during the sham condition 
of the TMS. The source reconstruction was based on event-related fields (ERFs) using the 
eLORETA algorithm.

Fig. 3: Pre-movement beta activation in cerebellar cortices. Beta activation in 
ipsilateral cerebellar cortices following a flexion-extension movement. The maximum 
is in the inferior portions of ipsilateral cerebellum crus II. This figure is adapted from 
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Wilson et al. 2010 with permission.

Using EEG, Reyes et al. (2005), found evidence of cerebellar involvement in the so-called 40 
Hz auditory steady-state response (ASSR). The 40 Hz ASSR is an oscillation arising when tones
are amplitude-modulated at a frequency of 40 Hz. Using the LORETA algorithm, they 
localized activity in the left cerebellum both when reconstructing the activity weighted and 
unweighted by an independent PET scan.

3.3 Somatosensation

MEG-based evidence for the cerebellum’s involvement in pure somatosensation was 
reported earlier than the evidence for its involvement in motor control. Tesche and Karhu 
(1997) found that median nerve stimulation elicited cerebellar event-related responses, 
contrary to the motor studies above where only induced responses were reported. 
Furthermore, they found (2000) that omissions of otherwise expected somatosensory 
stimulations elicited oscillatory activity following the time point when the stimulation should 
have happened, and that cerebellar oscillatory activity increased again before the following 
anticipated stimulation. Note that activity was not strictly speaking localized to the 
cerebellum in these studies, rather they estimated time courses for cerebellar sources given 
the assumption that there were sources there in the first place. As they also acknowledge, 
when time courses are estimated like this, it is possible that sources include activity 
generated at sources adjacent to the assumed source. Hashimoto et al. (2003), however, 
used a beamformer technique to localize median nerve stimulation evoked responses to the 
cerebellum. This study will be discussed more in-depth in a later section (Section 4) due to 
the importance of sensor coverage that it highlights.

In a more recent study, however, Andersen & Lundqvist (2019) (Fig. 4), using DICS, localized 
cerebellar oscillatory activity related to updating and maintaining expectations about 
somatosensation, ipsilateral to the stimulated hand in the theta and beta bands similar to 
the study of Herrojo Ruiz (2017) discussed above. These two studies indicate that low-
frequency cerebellar oscillations may be related to updating and maintaining expectations. 
An important difference between the study of Andersen & Lundqvist (2019) and the motor 
studies discussed above is that they are indirectly dependent on a peripheral reference signal
usually EMG or kinematics of hand movement. In most of the motor studies cited, first 
coherence between an external reference, e.g. EMG, and M1 activity is established, and 
second the coherence between M1 and other areas are investigated. Andersen & Lundqvist 
(2019), although also using DICS, instead investigated the whole brain using the power maps 
output by DICS.

3.4 Visuomotor

Jousmäki et al. (1996) had subjects perform horizontal saccades every 3 s. Using a non-linear 
least squares fit, they fitted a two-dipole model in eight subjects, each with one dipole 
localized to cerebellum and one localized to the posterior parietal cortex. These revealed 
evoked responses ~170 ms after the onset of the saccade (Fig. 5). In contrast to the studies of
Tesche & Karhu (1997, 2000), these dipole fits represent a source localization and not 
estimates of time courses. Bourguignon et al. (2013) had subjects observe an experimenter 
moving his finger rhythmically. Using methods similar to Gross et al. (2001), DICS, they found 
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that the motor cortices of subjects were coherently oscillating with the oscillating movement
of the experimenter. Furthermore, they found that the motor cortex was coherently 
oscillating with cerebellum and V3.

Using EEG in a visuomotor task, Cebolla et al. (2016) compared the alpha-mu (~8-12 Hz) 
oscillations in astronauts when they were either in a weightless state (in space) or on Earth. 
They found greater desynchronization of the mu rhythms when the astronauts were visually 
attending to target stimuli when the astronauts were in space compared to when they were 
on Earth.  Using a LORETA-style algorithm, cerebellum was revealed to contribute to this 
difference, possibly reflecting activation necessary for postural stabilization.

Fig. 4: Differences in cerebellar activation between expected and unexpected 
stimulations. Subjects had their right index finger stimulated rhythmically (every 3 s).
Every now and then a stimulation was omitted. The contrasts shown here indicate 
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brain regions exhibiting significantly more power for repeated stimulations (a 
stimulation following another stimulation) than for first stimulations (a stimulation 
following an omission), where 0 ms refers to stimulation onset. This figure is adapted 
from Andersen & Lundqvist (2019) under the CC BY 4.0 licence.

3.5 Cognition

High-gamma oscillations (~60-180 Hz) in the cerebellum have also been implicated in 
decision making and introspection about decisions, perception and movement. Guggisberg 
et al. (2008) found high-gamma oscillations in the cerebellum when participants make 
decisions related to numerical representation, explicit memory and self-representation. They 
specifically found that the left cerebellar hemisphere, together with the inferior parietal 
lobule, were the key structures involved with internally cued decisions. Guggisberg et al. 
(2011) found that the cerebellum was part of a network activated when participants were 
asked to introspect the timing of three kinds of events: phoneme perception, their own 
response decision, or the movement manifesting that decision. Both of these studies made 
use of the time-frequency beamformer technique introduced by Dalal et al. (2008), together 
with group statistics based on statistical non-parametric mapping (SnPM; Singh et al., 2003).

Fig. 5: Dipole position projected onto MRI. Dipoles are localized to cerebellum and
posterior parietal cortex

3.6 Epilepsy

A few reports of cerebellar activation in epilepsy patients also exist. Mohamed et al. (2011) 
found, using MEG, cerebellar activity 14 s after ictal onset in the motor cortex in a four-year 
old boy. They discuss the possibility that the delayed cerebellar activity may play a 
modulatory role in seizure termination. Lascano et al. (2013), however, found evidence of a 
cerebellar lesion as the primary seizure generator in a 14-month old girl from high-density 
scalp EEG, which was subsequently confirmed by intracranial EEG performed immediately 
prior to surgical resection as well as freedom from seizures post-operatively. Finally, Elshoff 
et al. (2013) tested sources underlying the frequency spectrum in EEG epochs of 10 s 
recorded during seizures. Using DICS, they found cerebellar activity in 5 out of 11 patients. 
The patients were between 1 and 19 years old (mean age: 9.6 years).

3.7 Summary

Taken together, these studies show that cerebellar activity can, under certain circumstances, 
be detected with MEG and EEG. Many of the studies rely on an external reference, e.g., 
movement and observed movement, for establishing coherence between areas, and it is the 
coherence between oscillations that is detected rather than a standard task-related source 
activation. The studies of Jousmäki et al. (1996), Hashimoto et al. (2003),  Cao et al. (2017) 
and Torres & Beardsley (2019) are also noteworthy for their detection of event-related fields 
in the cerebellum, where most other studies detect oscillatory responses.
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4. How can we enhance our ability to monitor cerebellum with MEG?

In this section, we will cover methodological approaches that can enhance the chances of 
detecting cerebellar activity with MEG. We describe approaches that have successfully been 
used to detect cerebellar activity and discuss further promising strategies.

4.1 Optimizing design (superficial targets and initial localization)

The signal of more anterior parts of the cerebellum is going to be comparatively small, purely
due to the distance to the MEG sensors. If possible, one could aim to target cerebellar areas 
that are superficial, relatively speaking. This would of course require that studies based on 
other modalities had implicated the specific cerebellar region. For inspiration, one could look
at the detailed functional mapping of King et al. (2019). A related strategy would be to use a 
paradigm that robustly elicits a cerebellar response that can also be robustly localized. Using 
such a paradigm, a cerebellar source could be initially localized and thereafter its time course
could be estimated for more subtle manipulations and variations of the localization 
paradigm. The question is though whether such a paradigm exists. A possible candidate 
might be the eye-blink conditioning paradigm. In eye-blink conditioning, performing an eye-
blink is conditioned to the onset of tone (Conditioned Stimulus) which is followed by an air-
puff to the eye (Unconditioned Stimulus). This conditioned response is dependent on an 
intact cerebellum (McCormick & Thompson 1984). Kirsch et al. (2003) found evidence of 
cerebellum’s involvement in this response using MEG. Note however that their strategy is 
similar to that of Tesche and Karhu (1997, 2000) where they estimate the time course of 
assumed cerebellar sources.

4.2 Coverage of MEG sensor array or EEG coverage

A recent study of Todd et al. (2018) extended the 10-20 layout with extra electrodes below 
electrode Oz. They very interestingly found that these “cerebellar” electrodes picked up high-
frequency oscillations (> 100 Hz) that were unique to these electrodes and not found on the 
occipital electrodes above nor the splenius muscle electrodes below. This highlights the 
importance of actually covering the cerebellum such that signal can be picked up in the first 
place.

Hashimoto et al. (2003) investigated somatosensory fields evoked by median nerve 
stimulation using the Yokogawa MEGVISION with 160 axial gradiometers. Using a 
beamformer method (Sekihara et al. 2001), they were able to reconstruct fields as arising 
from the medial part of the cerebellum. As can be seen in Fig. 6, sensor coverage extended 
below the cerebellum, including the upper cervical spine. This seems to have been done by 
having subjects tilting their heads forwards relative to the helmet. This meant that some 
frontal coverage was sacrificed at the expense of being able to sample the cerebellum. This is
a simple strategy that may be highly beneficial.
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Fig. 6: Tilting the head to obtain better sensor coverage of the cerebellum. 160-
channel Yokogawa System. Notice that the subject has tilted his head, such that the 
cerebellum was more fully covered. Figure from Hashimoto et al., 2003 with 
permission. (A=Anterior, P=Posterior, L=Left, R=Right).

4.3 Careful artefact removal

Cerebellar responses are susceptible to masking by or confounding with neck muscle EMG. It 
is therefore recommendable to record EMG from the major neck muscles. Especially, 
Minimum-Norm-Estimate-like source reconstructions (Hämäläinen & Ilmoniemi, 1994) would
benefit from this, since these will allocate all magnetic fields recorded by the sensors to the 
assumed source space. If the source space includes cerebellum, and neck muscle activity is 
not removed before source reconstruction, the neck muscle activity is likely to be source 
reconstructed as spuriously arising from the cerebellum. Even in the presence of artefacts, 
beamformer methods will be useful since these reconstruct source activity independently at 
each assumed source location. This is done by creating a spatial filter that minimises 
contributions from other sources, brain and noise alike.

4.4 Long-range coupling

A successful strategy for localizing cerebellar activity has been to localize it based on its 
coherence with a “far-away” signal such as the EMG of the foot or the hand as discussed in 
Section 3. Using long-range coupling adds a level of trustworthiness to the connectivity 
assessments, since short-range connectivity assessments have many interpretational pitfalls 
(Bastos and Schoffelen 2016; Schoffelen and Gross 2009). The paradigms of Gross’s and 
Jerbi’s groups have been very successful in applying this strategy (see Section 3). The kinds of
paradigms that can be run with these kinds of strategies might be limited to sensory and 
motor paradigms, however.

4.5 Reducing neocortical activity using Cortical Signal Suppression

Samuelsson and Hämäläinen (2019) have developed the method of Cortical Signal 
Suppression (CSS). The overall idea of this method is based on using unique features 
respectively of planar gradiometers and of magnetometers, as in the Neuromag system. 
Colloquially said, planar gradiometers are “near-sighted”, being maximally sensitive to signals
arising from the cerebral cortex, whereas magnetometers are also sensitive to signals from 
beyond the cerebral cortex. By projecting out the signal shared between the magnetometers 
and planar gradiometers from the signal of the magnetometers alone, one can obtain a 
magnetometer signal that uniquely represents non-cerebral cortex. Applying this method to 
the Auditory Steady State Response (ASSR), they were able to decrease the ASSR signal 
arising from cerebral cortex by 97%, while in turn increasing the ASSR signal arising 
subcortically by 10%. The method has not been applied to investigate cerebellar activity yet. 
Another interesting aspect about this method is that it does not require any special data 
acquisition procedures. Thus, already acquired data sets are likely to benefit from re-analysis 
using CSS if cerebellum or sub-cortical sources are expected.

4.6 Improving anatomical models of cerebellum

In beamformer applications, the orientations of the sources are normally not included in the 
source model. Instead, the direction that maximizes the beamformer’s output SNR is 
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typically chosen as the source orientation, determined through an optimization based on 
singular value decomposition (Sekihara et al., 2004). However, Hillebrand and Barnes (2003) 
found that the signal of the beamformer could be improved if anatomical constraints were 
introduced, such that sources were correctly oriented in the source model. The improvement
in signal, however, is critically dependent on the co-registration error between MEG and MRI 
and the precision of the estimate of the orientation of the sources. Hillebrand and Barnes 
(2003) conclude that these errors need to be smaller than 2 mm and 10° respectively for 
these anatomical constraints. Regarding the co-registration error, several different strategies 
have been developed to reduce the error to less than 2 mm, e.g., photogrammetry (Clausner 
et al. 2017), structured-light scanner (Zetter et al. 2019; Homölle & Oostenveld, 2019), and 
head casts (Meyer et al. 2017). 

Regarding the estimation of source orientations, the typical anatomical constraint for MEG is 
to assume sources are orthogonal to the cortical surface extracted from anatomical T1 MRI 
scans. However, high-quality cortical surface extraction from 1.5T or 3T MRI is less tractable 
for the cerebellar cortex due to its thinness, leading to the unfortunate consequence that 
most available source analysis pipelines that depend on cortical surface information simply 
drop the cerebellum from the source space entirely. 7T MRI can yield sufficient resolution for
reasonable extraction of the cerebellar cortical surface (Boillat et al., 2018). Alternatively, it 
has been suggested that neural fiber orientations may be derived from customized diffusion-
weighted MRI (DWI) sequences at 3T; preliminary investigations suggest that this method 
can help distinguish activations of the visual cortex from the cerebellum (Dalal et al., 2018).

4.7 Speculation for the future

Several technologies are being developed where the ambition is to create whole-head arrays 
of on-scalp, or nearly on-scalp, of MEG sensors. One alternative is to use high-Tc SQUIDs 
(Pfeiffer et al. 2019; Öisjöen et al. 2012). Successful recordings of somatosensory and 
auditory fields have been made using these (Andersen et al. 2017; Andersen et al. 2019; 
Pfeiffer et al. 2019). At present, arrays of up to 7 high-Tc SQUID magnetometers have been 
created. These can virtually be placed on the scalp (<1 mm). Another alternative, optically 
pumped magnetometers (OPMs), are already commercially available for assembly into small-
scale systems suitable for MEG. Recordings with 20 OPMs have been conducted and can also 
be placed close to the scalp  ~6.5 mm (Borna et al. 2017; Boto et al. 2017). Since the pickup 
coil size of the magnetometers can be made smaller when moving towards the scalp, the 
spatial resolution will increase. This allows for sampling magnetic fields related to more focal 
brain activity than could be obtained with state-of-the-art MEG. As discussed earlier, one oft-
mentioned reason that the cerebellum is purportedly not visible to MEG is that it is more 
finely folded than the cerebral cortex, resulting in signal cancellation. With finer spatial 
resolution, the problem of signal cancellation may be mitigated. Interestingly, the 
aforementioned Yokogawa system (Hashimoto et al. 2003) had a smaller pickup area 189 
mm2 than current CTF-systems (254 mm2) and Neuromag systems (441 mm2). In comparison, 
the size of the pickup coils in high-Tc SQUIDs is 81 mm2 (Andersen et al. 2017; Andersen et al.
2019; Pfeiffer et al. 2019). These new technologies are likely to usher in a new exciting age 
for recordings of cerebellar MEG. In fact, a report already exists of OPMs being used to 
record evoked fields arising from the cerebellum (Lin et al., 2019). It furthermore seems likely
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that on-scalp technologies may be used to recover evoked responses from the cerebellum 
when doing classical median nerve stimulation as Hashimoto et al. (2003) did. On-scalp MEG 
may also improve SNR for high-frequency oscillations (Krishnaswamy et al. 2017) since it 
samples brain activity more sparsely than conventional MEG that samples the brain from a 
distance.

4.8 Summary and general recommendations

There are thus several strategies to employ to detect cerebellar activity. For any paradigm, 
however, one should increase the signal-to-noise ratio by acquiring as many trials as feasible.
This necessitates a relatively simple paradigm without too many conditions. The results can 
be validated by ascertaining that any motor- or somatosensation-related responses arise 
from ipsilateral cerebellum. However, this requires both sides (e.g. left and right hands) to be
tested – running counter to the idea of reducing the number of conditions. Experimental 
designs must therefore be optimized between these competing considerations.

4.9 MEG’s sensitivity to other structures outside neocortex

In this section, we briefly consider evidence for MEG’s sensitivity to structures outside of 
neocortex. Our intention with this is to dispel the notion that MEG and EEG are exclusively 
generated by pyramidal cells near the surface of the cerebral cortex.

The auditory brainstem response is perhaps the most well-known evidence that sensors on 
the scalp are capable of measuring subcortical activity (Jewett et al., 1970). The auditory 
brainstem responses consists of responses to brief auditory stimuli, generated sequentially 
by the cochlea, auditory nerve, superior olivary complex, lateral lemniscus, and inferior 
colliculus. It is routinely measured in the clinic with scalp electrodes, as a hearing test or 
measure of neural integrity. MEG sensors have also been able to capture the auditory 
brainstem response in experimental settings (Erné & Hoke, 1990; Parkkonen et al., 2009).

Ruzich et al. in their recent review (2019) found 37 MEG studies between the years 2005 to 
2018 that revealed robust hippocampal activity. Similarly, Pizzo et al. (2019) found evidence 
that using independent component analysis (ICA) hippocampal and amygdala activations 
could be found with MEG (6 out of 14 patients). Data from some patients (4 out of 14) even 
revealed evidence of a thalamic signal. These activations were independently verified using 
simultaneous intracranial EEG recordings. Even though less than half had detectable signal, 
this demonstrates the possibility to record from otherwise deep regions. Supporting this 
Attal & Schwartz (2013), using a combination of simulations and real data, showed that MEG 
is sensitive to signal arising from hippocampus, amygdala and thalamus. They emphasize the 
need to have anatomically precise source spaces, precisely orientation-constrained dipoles 
and a realistic estimate of dipole moment densities in different regions. We echo them in our
advice to use anatomically precise models of the cerebellum. Thus, there is nothing about 
the depth per se that leaves cerebellum outside MEG’s sensitivity range.

5. Conclusion 

We conclude that it is indeed possible to detect MEG signals from the human cerebellum. 

Page 15 of 25

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27901v1 | CC BY 4.0 Open Access | rec: 14 Aug 2019, publ: 14 Aug 2019



Many studies using diverse methodologies have showcased MEG signals in different sensory 
domains such as audition, vision and somatosensation and during movements. There is also 
MEG-based evidence of the cerebellum being involved in more cognitive operations such as 
updating and maintaining sensory expectations, and in decision making.
Some limitations do exist at the moment however. The prime one is that the signal-to-noise 
ratio is low due to the larger distance between much of the cerebellum and the sensors 
(compared to the cerebrum). This means that we are likely to miss true activations of the 
cerebellum if the signal-to-noise ratio is low. Under favourable circumstances, e.g. high 
number of trials, optimized paradigms, facilitating coupling approaches, suppression of 
cortical activity, etc., this review indicates that cerebellar activation can be detected, just as 
many other deeper brain structures can, e.g. hippocampus, amygdala and thalamus. Even 
when we robustly detect cerebellar activation, however, we still face the limitation of spatial 
resolution - with MEG it is hard to detect where exactly within the cerebellum we are. More 
precise anatomical models of the cerebellum may be useful for constraining the source 
reconstructions possible with MEG. 
MEG studies of the cerebellum however have the immense utility of being able to resolve 
brain activity as it unfolds in real time compared to the sluggish responses of fMRI. This may 
be paramount in understanding the complexities and details of cerebellar function and 
dysfunction.
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