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Background

Microbiomes are extremely important for their host organisms, providing many vital functions and
extending their hosts9 phenotypes. Natural studies of host-associated microbiomes can be diûcult to
interpret due to the high complexity of microbial communities, which hinders our ability to track and
identify individual members along with the many factors that structure or perturb those communities. For
this reason, researchers have turned to synthetic or constructed communities in which the identities of
all members are known. However, due to the lack of tracking methods and the diûculty of creating a
more diverse and identiûable community that can be distinguished through next-generation sequencing,
most such in vivo studies have used only a few strains.

Results

To address this issue, we developed DISCo-microbe, a program for the design of an identiûable synthetic
community of microbes for use in in vivo experimentation. The program is composed of two modules; (1)
create, which allows the user to generate a highly diverse community list from an input DNA sequence
alignment using a custom nucleotide distance algorithm, and (2) subsample, which subsamples the
community list to either represent a number of grouping variables, including taxonomic proportions, or to
reach a user-speciûed maximum number of community members. As an example, we demonstrate the
generation of a synthetic microbial community that can be distinguished through amplicon sequencing.
The synthetic microbial community in this example consisted of 2340 members from a starting DNA
sequence alignment of 10,000 16S rRNA sequences from the Ribosomal Database Project. We then
subsampled the community list using taxonomic proportions to mimic a natural plant host3associated
microbiome, ultimately yielding a diverse community of 853 members.

Conclusions

DISCo-microbe can create a highly diverse community list of microbes that can be distinguished through
16S rRNA gene sequencing, and has the ability to subsample (i.e., design) the community for the desired
number of members and taxonomic proportions. Although developed for bacteria, the program allows for
any alignment input from any taxonomic group, making it broadly applicable. The software and data are
freely available from GitHub (https://github.com/dlcarper/DISCo-microbe) and Python Package Index
(PYPI).
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25 Abstract

26

27 Background

28 Microbiomes are extremely important for their host organisms, providing many vital functions 

29 and extending their hosts9 phenotypes. Natural studies of host-associated microbiomes can be 

30 difficult to interpret due to the high complexity of microbial communities, which hinders our 

31 ability to track and identify individual members along with the many factors that structure or 

32 perturb those communities. For this reason, researchers have turned to synthetic or constructed 

33 communities in which the identities of all members are known. However, due to the lack of 

34 tracking methods and the difficulty of creating a more diverse and identifiable community that 

35 can be distinguished through next-generation sequencing, most such in vivo studies have used 

36 only a few strains. 

37

38 Results

39 To address this issue, we developed DISCo-microbe, a program for the design of an identifiable 

40 synthetic community of microbes for use in in vivo experimentation. The program is composed 

41 of two modules; (1) create, which allows the user to generate a highly diverse community list 

42 from an input DNA sequence alignment using a custom nucleotide distance algorithm, and (2) 

43 subsample, which subsamples the community list to either represent a number of grouping 

44 variables, including taxonomic proportions, or to reach a user-specified maximum number of 

45 community members. As an example, we demonstrate the generation of a synthetic microbial 

46 community that can be distinguished through amplicon sequencing. The synthetic microbial 

47 community in this example consisted of 2340 members from a starting DNA sequence alignment 
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48 of 10,000 16S rRNA sequences from the Ribosomal Database Project. We then subsampled the 

49 community list using taxonomic proportions to mimic a natural plant host3associated 

50 microbiome, ultimately yielding a diverse community of 853 members.

51

52 Conclusions

53 DISCo-microbe can create a highly diverse community list of microbes that can be distinguished 

54 through 16S rRNA gene sequencing, and has the ability to subsample (i.e., design) the 

55 community for the desired number of members and taxonomic proportions. Although developed 

56 for bacteria, the program allows for any alignment input from any taxonomic group, making it 

57 broadly applicable. The software and data are freely available from GitHub 

58 (https://github.com/dlcarper/DISCo-microbe) and Python Package Index (PYPI).

59

60
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61 Background

62

63 Multicellular eukaryotes live in association with complex communities of microorganisms 

64 (Zilber-Rosenberg & Rosenberg, 2008; Bordenstein & Theis, 2015; Rosenberg & Zilber-

65 Rosenberg, 2016) that play important roles in host health and function (Huttenhower et al., 2012; 

66 Schlaeppi & Bulgarelli, 2015; Engel et al., 2016). Given the complexity of these systems and our 

67 inability to track and identify all members, it is often difficult to disentangle the factors 

68 influencing the structure and interactions among host-associated microbiomes. The development 

69 of synthetic model communities is a key strategy for addressing this issue (Busby et al., 2017). 

70 Next-generation sequencing of marker genes has demonstrated that both abiotic and biotic 

71 factors structure host-associated microbiomes (Spor, Koren & Ley, 2011; Huttenhower et al., 

72 2012; Ofek-Lalzar et al., 2014; Adair & Douglas, 2017); however, the marker genes commonly 

73 used in these studies provide low taxonomic resolution, making it difficult to identify all 

74 microbes present in the community (Caporaso et al., 2011). Metagenomics studies provide 

75 insight into potential microbial function, but are not feasible for microbiomes within host tissues 

76 due to the presence of excess host DNA (Jiao et al., 2006; Feehery et al., 2013; Thoendel et al., 

77 2016; Marotz et al., 2018). Accordingly, recent studies have utilized synthetic or simplified 

78 microbiome approaches to examine the drivers of host-associated microbiome assembly, 

79 interactions, and function (Bodenhausen et al., 2014; Lebeis et al., 2015; Niu et al., 2017). This 

80 approach involves adding previously characterized microbial strains to an axenic host organism, 

81 allowing for the investigation of colonization, shifts in community structure (Bodenhausen et al., 

82 2014), microbe3microbe interactions, and host3microbe interactions. When such data are paired 

83 with genomic information, it becomes feasible to infer microbial strain metabolic potential. 
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84 Despite the increased use and prioritization of synthetic systems by the research community 

85 (Busby et al., 2017), we currently lack adequate methods for systematically designing a 

86 microbial community that is identifiable by common sequencing techniques. 

87

88 Until now, synthetic communities have been constructed from a functional perspective or with 

89 limited strains. For example, some researchers have focused on functional assets (characteristics) 

90 of microbes to create a specific metabolic output, often by combining a few bacterial (Shong, 

91 Jimenez Diaz & Collins, 2012; Mee et al., 2014; Shi et al., 2017) or fungal strains (Minty et al., 

92 2013; Hu et al., 2017). Although useful for bio-engineering purposes, this approach is not as 

93 applicable to studies of microbiomes, in which diversity is much greater. Host-associated 

94 synthetic communities have also been restricted to a few strains, with confirmation through re-

95 isolation, limiting researchers9 ability to extrapolate to more diverse communities (Bodenhausen 

96 et al., 2014; Niu et al., 2017; Herrera Paredes et al., 2018). Recent studies have linked host-

97 associated microbiome function to microbial diversity (Turnbaugh et al., 2008; Laforest-

98 Lapointe et al., 2017), requiring the incorporation of phylogenetic distance into synthetic 

99 community design.  The design of phylogenetically diverse communities is associated with at 

100 least two major challenges: (1) creating a diverse community that can easily be distinguished 

101 through common high-throughput sequencing technologies, and (2) ensuring that community 

102 members possess the desired attributes (e.g., taxonomic composition and metabolic potential). 

103 Without advanced computational abilities, overcoming these challenges is formidable and time-

104 consuming. Furthermore, manual bioinformatic workflows are difficult to document and error-

105 prone, costing additional time and decreasing reproducibility.   

106
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107 In this paper, we describe an easy-to-use command-line program, Design of an Identifiable 

108 Synthetic Community of Microbes (DISCo-microbe), for creation of diverse communities of 

109 organisms that can be distinguished through next-generation sequencing technology for use in in 

110 vivo experiments. DISCo-microbe consists of two modules, create and subsample. The create 

111 module constructs a highly diverse community at a specified sequence difference from an input 

112 of aligned DNA/RNA sequences, e.g., 16S sequence. The module can either design a de novo 

113 community or design a community that includes targeted organisms. create solves problem (1) by 

114 easily generating a diverse community of members through an easily documentable method, 

115 ensuring reproducibility. The subsample module provides options for dividing the community into 

116 subsets, according to either the number of members or the proportions of a grouping variable, 

117 both of which can be specified by the user. subsample module solves problem (2) by allowing the 

118 user to subsample an already distinguishable community of members based on attributes of 

119 interest. Although this software was designed for construction of microbial communities, any 

120 DNA/RNA alignment can be used as input; consequently, users are not restricted to any 

121 particular organismal group or marker gene. This program is implemented in Python and is 

122 available through GitHub and PYPI. 

123

124 Implementation

125

126 DISCo-microbe is a command-line program written in Python and requires Biopython (Cock et 

127 al., 2009), which is automatically installed along with the program. DISCo-microbe consists of 

128 two modules, create and subsample. The program has extensive documentation following the 

129 principles outlined in (Seemann, 2013; Karimzadeh & Hoffman, 2018). We included a quick 
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130 tutorial that walks users through all commands, illustrating the ease of use and reproducibility of 

131 DISCo-microbe. 

132

133 Workflow

134 create module

135 The create module has two required arguments, an alignment of DNA or RNA sequences in 

136 FASTA format (--i-alignment) and a user-specified minimum sequence distance between 

137 community members (--p-editdistance). The module uses a greedy algorithm to construct a 

138 community with the maximum number of members at the user-specified sequence distance. The 

139 optional arguments for the create module include: i) a community starter list (--p-include-strains), 

140 containing members the user would like to be included in the community; ii) a seed number (--p-

141 seed), for reproducibility; iii) a metadata file (--i-metadata) for combination with the final 

142 community; iv) an option to output the FASTA file (--o-fasta) of the final community and; v) an 

143 option to import a sequence distance database (--i-distance-dictionary; described below). Because 

144 alignment gaps are counted in the distance calculation, we recommend that the user perform a 

145 reference-based alignment (if available) to ensure reproducibility of the gapped sites. 

146

147 The create module operates in two distinct phases. The first phase creates a database of all 

148 pairwise sequence distances from the input alignment, calculated using a modified Hamming 

149 distance. The Hamming distance is a coding theory metric that measures the number of positions 

150 at which two sequences of equal length differ. Because the Hamming distance does not consider 

151 the nature of the differences, it can be problematic to determine the distance between molecular 

152 sequences, in which nucleotide ambiguities can be common; such ambiguities artificially inflate 
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153 the number of differences between sequences, possibly causing the final community to be less 

154 distinguishable than expected (Fig 1). To deal with IUPAC nucleotide ambiguities, we created a 

155 custom Hamming distance, termed the nucleotide Hamming distance, which accommodates 

156 nucleotide ambiguities and adjusts the distance value accordingly (Fig 1). Furthermore, this 

157 metric can mitigate sequence errors introduced by PCR and sequencing technologies (Pfeiffer et 

158 al., 2018; Filges et al., 2019), allowing the identification of sequences containing up to  ý 2 1

159 errors, where  is the user-specified minimum sequence distance. Lastly, due to the potentially ý
160 long running time of the nucleotide Hamming distance calculation, we included an export option 

161 for the distance database. This option saves time when a user wishes to construct a new 

162 community with a few more sequences added; in those circumstances, the user can load the 

163 database of already calculated differences, so that only new comparisons must be calculated. 

164 Furthermore, the distance database is updated in real-time as distances are calculated, acting as a 

165 checkpoint to resume calculations with minimal lost time in the event that DISCo-microbe quits 

166 unexpectedly.

167

168 The second phase of the create module runs a greedy algorithm to construct a community. To 

169 initiate the community-building algorithm, the user can specify a starting community, which will 

170 be validated to determine that all pairwise distances meet the minimum requirement indicated by 

171 --p-editdistance. If the starting community is not valid at the indicated sequence distance, an error 

172 message with the conflicting sequence identifiers will be displayed. If a starting community is 

173 not specified, the individual with the fewest connections at the user-specified sequence distance 

174 (--p-editdistance) will be used to initiate the community (Fig 2). If there is tie for the fewest 

175 connections, one individual is selected at random. Once an initial community is established, the 
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176 algorithm will iteratively add new members to the community by creating a list of possible 

177 members that meet two requirements. First, the individual must not already be in the community. 

178 Second, the individual must meet the minimum sequence distance to any of the existing 

179 members; for example, if the user has specified a distance of 2, the module will check if the 

180 individual is at a distance of 0,1 or 2 from any existing members. If these two requirements are 

181 met, the individual is added to the list of potential community members. Next, the individual in 

182 the list with the fewest connections at the specified sequence distance (Fig 2 inset) will be added 

183 to the community. Ties for the fewest connections are broken by randomly selecting an 

184 individual. The module will continue the process as described until there are no more individuals 

185 that meet the requirements for addition to the potential community member list. Once the 

186 community list is complete, the program will output a tab-delimited text file of community 

187 members. The community list can be combined with metadata information (optional), such as 

188 taxonomic information, which is recommended if the user will be using the 8subsample by 

189 proportions9 option later. A FASTA file of the community list can also be created if desired.

190

191 subsample module

192

193 The subsample module is designed to take the final output community from the create module and 

194 provide a subsample of the community. The module has multiple subsampling procedures. The 

195 first method is a random sampling (option: --p-num-taxa) of the indicated number of members, 

196 . The second method (option: --p-proportion) is for subsampling the specific proportions of a ÿÿÿÿÿý
197 grouping variable. To illustrate the use of this option, we will refer to taxonomic information as 

198 the grouping variable; however, the user may provide any grouping variable for subsampling. 
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199 For this option, the user will input two files: the community file from the create module with 

200 taxonomic information combined, and a file of the taxonomic groupings with desired 

201 proportions. DISCo-microbe will then generate a subsampling of the original community that is 

202 optimized to reflect the desired proportions. The optimization is accomplished through a greedy 

203 minimization of the sum of differences, , for the set  of taxonomic 3ý * ÿÿÿýÿÿÿÿÿýý 2 ÿýýÿýÿÿÿÿýý ÿÿ
204 groups specified in file 2 (taxonomic proportions file). Here,  and ÿýÿÿÿÿÿý

= ïÿýÿÿÿÿÿý
1 �,&, �ÿýÿÿÿÿÿýÿ ï

205 are vectors of taxonomic group frequencies for the current and ÿýýÿýÿÿÿÿý
= ïÿýýÿýÿÿÿÿý

1 �,&, �ÿýýÿýÿÿÿÿýÿ ï 

206 desired community, respectively, with  and . The algorithm 3ý * ÿÿÿýÿÿÿÿÿýý = 1 3ý * ÿÿÿýýÿýÿÿÿÿýý = 1

207 initializes  as the vector  of taxonomic group frequencies of the community provided ÿýÿÿÿÿÿý ÿÿÿýÿý
208 in file 1 (from create module) with members belonging to taxonomic groups in the set , where ÿ
209 groups not specified in file 2 are removed ( ), and  renormalized such that ÿ c {ý * ÿ | ý + ÿÿ} ÿÿÿýÿý
210 . Next, the algorithm will continuously iterate the following three steps: 3ý * ÿÿÿýÿÿÿÿÿýý = 1

211 (1) Determine the taxonomic group with largest difference in taxonomic group frequencies, 

212 . ýÿÿý = maxý * ÿÿ ({ÿýÿÿÿÿÿýý
1

2 ÿýýÿýÿÿÿÿýý
1

},&,{ÿýÿÿÿÿÿýýÿ 2 ÿýýÿýÿÿÿÿýýÿ })

213 (2) If the number of members in the taxonomic group identified in step 1 is less than 2 (ÿýÿÿý
214  break and output the current community; otherwise, randomly remove a member from < 2)

215 resulting in . ýÿÿý, ÿýÿÿÿÿÿý'

216 (3) If , set otherwise stop the 3ý * ÿÿÿýÿÿÿÿÿý'ý 2 ÿýýÿýÿÿÿÿýý < 3ý * ÿÿÿýÿÿÿÿÿýý 2 ÿýýÿýÿÿÿÿýý ÿýÿÿÿÿÿý
= ÿýÿÿÿÿÿý'ý , 

217 module and output the current community. 

218 The user can modify the behavior of the algorithm by specifying both the number of members 

219 and the taxonomic proportions (--p-num-taxa and --p-proportion). Providing both options will force 

220 the algorithm to continue until the total number of members in the community, , is  ÿýýýÿý f ÿÿÿÿÿý
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221 (user-specified final number of members). Further, when both options are specified, step 2 of the 

222 greedy minimization is modified to not break iteration when  and instead removes a ÿýÿÿý < 2,

223 member from the taxonomic group with the next-largest difference in frequencies, , where ýÿÿýý
224 . Additionally, if the force number option (option: --p-taxa-num-enforce) is used along with ÿýÿÿýý g 2

225 --p-num-taxa and --p-proportion, the algorithm will stop iteration when  regardless of ÿýýýÿý = ÿÿÿÿÿý
226 whether the sum of frequency differences could be further minimized.

227

228 Benchmarking

229 The custom nucleotide Hamming distance calculation can be the most computationally intensive 

230 step of DISCo-microbe. Therefore, we focused on benchmarking the distance calculation using 

231 hyperfine (https://github.com/sharkdp/hyperfine). Benchmarking was performed on a MacBook 

232 Air with 1.3 GHz Intel Core i5 with 10 runs per benchmark. To accomplish the benchmarking, 

233 we wrote a Python script to generate datasets containing 50, 500, or 5000 random sequences with 

234 lengths of 100, 500, 1000, or 1500 bp and an average pairwise sequence distance of 72.1% 

235 (±2.4%) (Fig 3A). We benchmarked the time saved by importing a precalculated distance 

236 database by comparing the runtime of two 6,000 sequence (1,000 bp) data sets (Fig. 3B). In one 

237 of 6,000 sequences data sets, we imported a pre-calculated distance database of 5,000 sequences. 

238 We calculated statistical significance using the Wilcoxon rank3sum test implemented in the 

239 package ggpubr (Kassambara, 2017).

240

241 Test data set

242
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243 The Ribosomal Database Project (Cole et al., 2014) file of 16S rRNA genes was downloaded 

244 (release 11.5, May 2019), and uncultured strains were filtered using fasgrep (Lawrence et al., 

245 2015). The alignment was trimmed to the V4 region, which is commonly used region for next-

246 generation sequencing of bacterial communities (Thompson et al., 2017). The initial file 

247 contained 239,244 sequences and was randomly subsampled to 10,000 sequences due to the 

248 computational intensity of building the community. A reference-based alignment against the 

249 SILVA database (v. 132 (Pruesse et al., 2007)) was created using the program SINA (Pruesse, 

250 Peplies & Glöckner, 2012). Alignment sites containing only gaps were removed using alncut 

251 (Lawrence et al., 2015). An additional 13 sequences were removed due to the failure to align 

252 properly, resulting in 9,987 sequences at a length of 502 bp. The 9,987-sequence alignment was 

253 used to create a highly diverse community at a minimum sequence distance of 3, with the seed 

254 set to 10 for reproducibility. Following construction, the subsample module was used to subsample 

255 the community list to mimic the taxonomic composition a plant-associated microbiome. The 

256 final alignment, with 9,987 sequences at a length of 502 bp, taxonomic proportion file, and 

257 commands used to create the community are available on GitHub for users to reproduce. 

258

259 Results and Discussion

260

261 Microbial diversity is linked to function (Turnbaugh et al., 2008; Laforest-Lapointe et al., 2017), 

262 but understanding that diversity can be difficult due to the low resolution of taxonomic marker 

263 genes and the complexity of the microbial community, limiting our ability to identify and track 

264 individual community members. To tease apart the complex interactions within communities, 

265 there has been an increased demand for synthetic community systems (Busby et al., 2017).  
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266 However, the generation of complex communities of organisms that can be easily distinguished 

267 through high-throughput methods can be difficult without strong computational skills. In general, 

268 two challenges are associated with the design of a synthetic community: (1) creation of a 

269 distinguishable community through common sequencing methods and (2) development of a 

270 community with the desired traits. Additionally, manual creation can lead to a lack of 

271 reproducibility due to the difficulty of documenting the workflow. In this paper, we describe an 

272 easy to use command-line program, Design of an Identifiable Synthetic Community of Microbes 

273 (DISCo-microbe), for the creation of diverse communities of organisms that can be distinguished 

274 through next-generation sequencing technology during in vivo experiments. DISCo-microbe 

275 solves the two previously mentioned problems using two modules, create and subsample. 

276

277 The create module allows the user to construct a diverse community that is identifiable using 

278 common sequencing methods, thus solving the first problem. The ability to specify a minimum 

279 sequence distance allows flexibility in the construction of the community due to its robustness to 

280 sequencing errors introduced through PCR and sequencing (Pfeiffer et al., 2018). For example, if 

281 the user sets the minimum sequence distance to 5, sequences containing up to 2 sequencing 

282 errors ([ ) can be confidently assigned to the correct community member, sequences ý 2 1] 2

283 containing up to 4 errors ( ) can be identified, and it would take a minimum of 5 errors to ý 2 1

284 assign a sequence to the incorrect community member. Usually, the smaller the minimum 

285 sequence distance, the more members will be included in the constructed community, potentially 

286 motivating users to set the minimum sequence distance to lowest setting of 1. However, at a 

287 minimum sequence distance of l, it only requires a single sequencing error to assign a sequence 

288 to the wrong community member. In order to implement the create module, we developed a 
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289 custom nucleotide Hamming distance that accommodates nucleotide ambiguities. This is the first 

290 application of the Hamming distance algorithm incorporating IUPAC nucleotide ambiguity 

291 codes to measure distance between pairs of aligned sequences implemented in Python (see (aoai� 

292 & aiki�, 2017) for an implementation in C). Initially, we assumed that the most time-consuming 

293 step would be the creation of the distance database due to the number of calculations required [

294 , motivating us to focus our benchmarking efforts on this function and implementing ÿ!/2(ÿ 2 2)!]

295 an export function for the distance database as a time-saving measure for adding new individuals 

296 to the community, re-running community construction at different minimum sequence distances, 

297 and restarting in the event DISCo-microbe crashes. As anticipated, runtime increased with 

298 sequence number and length, and importing a precomputed sequence database significantly 

299 decreased running time (Fig 3). However, during benchmarking of the example dataset (RDP), it 

300 became clear that average pairwise sequence distance (72.1±2.4% for benchmark datasets vs. 

301 10.6 ± 3.6% for the RDP dataset),was a major determinant of the time required to calculate the 

302 distance database, with the community creation step being the most time-consuming step for the 

303 RDP dataset (Fig 3A).

304

305 The subsample module allows flexibility in the final constructed community. Specifically, it 

306 allows users to adapt the community to their experimental specifications, either by limiting the 

307 number of strains, specifying proportions of a grouping variable, or both.  The subsample module 

308 eliminates major problem (2) by allowing users to tailor the already distinguishable community 

309 to include desired traits or proportions of members. 

310
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311 To demonstrate the applicability, usability, and ease of documenting workflows when using 

312 DISCo-microbe to construct identifiable diverse communities, we created and subsampled a 

313 community with a minimum sequence distance of 3 using 16S rRNA sequences from the RDP 

314 database. The initial sequence alignment contained the V4 region from 9,987 sequences with an 

315 average pairwise sequence distance of 10.6 ± 3.6%). Using the following create module 

316 command: 

317

318 disco create --i-alignment RDP_aligned_sequences.fasta --p-editdistance 3 --p-seed 10 --i-metadata 

319 RDP_Metadata_Taxonomy.txt --o-community-list RDP_Community_ED3_seed10.txt

320

321 we constructed a community of 2,340 members that could be distinguished through next-

322 generation sequencing. The resultant community took 5.12 hours to construct. Using the 

323 following subsample module command:

324

325 disco subsample --i-input-community RDP_Community_ED3_seed10.txt --p-seed 10 --p-group-by Class --p-

326 proportion RDP_Class_Proportions_file.txt

327

328 the community was reduced to 853 community members with the approximate proportions of a 

329 plant3associated microbiome (Table 1; (Cregger et al., 2018)). The options for each module used 

330 above, along with the version of DISCo-microbe and Python, are the only documentation 

331 required to reliably reproduce the design of this extremely complex community. 

332

333 Conclusions

334
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335 DISCo-microbe is the first software designed for the construction of a diverse community of 

336 organisms that can be distinguished through low-cost, high-throughput amplicon sequencing for 

337 use in in vivo experiments. DISCo-microbe allows non-programmers to easily and reproducibly 

338 construct communities in which the members are identifiable through amplicon sequencing and 

339 the communities conform to user-specified attributes or numbers of members. DISCo-microbe is 

340 also the first software to implement a nucleotide specific Hamming distance in Python that takes 

341 into account nucleotide ambiguities in sequencing data. Although initially designed for 

342 construction of bacterial community construction, the input of a nucleotide sequence alignment 

343 from any region allows the software to be used with any group of organisms. DISCo-microbe is 

344 designed for easy expansion of utilities; planned future versions will include new algorithms for 

345 community construction as well as new modules for creating a suite of tools for the design of 

346 constructed communities and processing of the resulting data. 

347

348 Availability and requirements

349

350 Project name: DISCo-microbe

351 Project home page: https://github.com/dlcarper/DISCo-microbe

352 Operating system(s): platform-independent

353 Programming language: Python g 3.4

354 Other requirements: BioPython

355 License: GNU General Public License v3.0

356   

357 Abbreviations
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358

359 DNA: Deoxyribonucleic acid

360 RNA: Ribonucleic acid

361 rRNA: Ribosomal ribonucleic acid 

362 FASTA: Fast-all (file format)

363 PYPI: Python Package Index

364 PCR: polymerase chain reaction

365
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Figure 1
Demonstration of custom nucleotide Hamming distance

Demonstration of Python Hamming distance and custom nucleotide Hamming distance,
which takes into account nucleotide ambiguities
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Figure 2
Workûow schematic of the loop that adds new members to the community, starting with
the pairwise distance dictionary

Inset: Schematic of adding members with fewest connections at a speciûed DNA distance.
Circles represent individuals, and lines indicate that the connected individuals are at a
sequence distance of 3. Green indicates the user of ûle.
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Figure 3
Benchmarking of test data sets

A) Benchmarking of custom nucleotide Hamming distance function for DNA at various
sequence lengths and numbers of sequences. The point in green shows Ribosomal Database
Project sequences. B) T-test comparison of benchmark times of custom nucleotide Hamming
distance with dictionary import function in use vs. no input dictionary. ns = not signiûcant, *
p<=0.05, ** p<=0.01, ***p<=0.001.
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Table 1(on next page)

Subsampled bacterial class proportions

Bacterial class proportions used to subsample the community generated from the Ribosomal
Database Project database and the actualized proportions of the resultant community
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1

Bacterial class

Input 

Proportions

Actualized 

Proportions

Actinobacteria 0.0885 0.0903

Alphaproteobacteria 0.1857 0.1876

Anaerolineae 0.004 0.0012

Aquificae 0.0003 0.0012

Bacteroidia 0.1 0.0996

Betaproteobacteria 0.1286 0.1301

Chitinivibrionia 0.004 0.0012

Chloroflexia 0.005 0.0047

Deferribacteres 0.0003 0.0023

Deinococci 0.0003 0.0023

Deltaproteobacteria 0.0418 0.0434

Fibrobacteria 0.0004 0.0023

Fusobacteriia 0.0003 0.0023

Gammaproteobacteria 0.4112 0.4127

Gemmatimonadetes 0.0073 0.0023

Ktedonobacteria 0.0097 0.0012

Nitrospira 0.0036 0.0047

Planctomycetia 0.009 0.0106

2

3

4

5
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