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Background. Sediment concentration in the water of the loess Plateau region has
dramatically decreased during the past two decades. Plant litter is considered to be one of
the most important factors for this change. Existing remote sensing studies that focus on
plant litter mainly use extraction methods based on vegetation indices or changes in the
plant litter. Few studies have conducted time series analyses of plant litter or considered
the correlation between plant litter and soil erosion. In addition, social factors are not
given enough consideration in the remote sensing and soil community. Methods. This
study performs time series estimation of plant litter by integrating three-scale remotely
sensed data and a random forest (RF) modeling algorithm. Predictive models are used to
estimate the spatially explicit plant litter cover for the entire Loess Plateau over the last
two decades (2000–2018). Then, the sediment concentration in the water was classified
into 9 grades based on environmental and social-economic factors. Results. Our results
demonstrate the effectiveness of the proposed predictive models at the regional scale. The
areas with increased plant litter cover accounted for 67% of the total area, while the areas
with decreased plant litter cover accounted for 33% of the total area. In addition, plant
litter is demonstrated to be one of the top three factors contributing to the decrease in the
river sediment concentration. Social-economic factors were also important for the
decrease of the sediment concentration in the water, for example, the population of the
rural area.
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22 Abstract: 

23 Background. Sediment concentration in the water of the loess Plateau region has 

24 dramatically decreased during the past two decades. Plant litter is considered to be one of 

25 the most important factors for this change. Existing remote sensing studies that focus on 

26 plant litter mainly use extraction methods based on vegetation indices or changes in the plant 

27 litter. Few studies have conducted time series analyses of plant litter or considered the 

28 correlation between plant litter and soil erosion. In addition, social factors are not given 

29 enough consideration in the remote sensing and soil community.
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30 Methods. This study performs time series estimation of plant litter by integrating three-scale 

31 remotely sensed data and a random forest (RF) modeling algorithm. Predictive models are 

32 used to estimate the spatially explicit plant litter cover for the entire Loess Plateau over the 

33 last two decades (2000–2018). Then, the sediment concentration in the water was classified 

34 into 9 grades based on environmental and social-economic factors.

35 Results. Our results demonstrate the effectiveness of the proposed predictive models at the 

36 regional scale. The areas with increased plant litter cover accounted for 67% of the total 

37 area, while the areas with decreased plant litter cover accounted for 33% of the total area. In 

38 addition, plant litter is demonstrated to be one of the top three factors contributing to the 

39 decrease in the river sediment concentration. Social-economic factors were also important 

40 for the decrease of the sediment concentration in the water, for example, the population of 

41 the rural area. 

42 1 Introduction

43 The practice of farming is believed to significantly accelerate the rate of soil erosion relative to 

44 soil production, and soil is lost at rates that are several orders of magnitude greater than those of 

45 the soil replenishment mechanisms (Ronald Amundson 2015). The Loess Plateau in China has 

46 long suffered from soil erosion for the same reason (Hao Wang 2018; Zhi Li 2012). The 

47 sediment load of the Yellow River is approximately 6% of the global river sediment load 

48 (Baoxian Tao 2018). Soils were lost at annual rates between 5000 to 10,000 Mg km−2yr−1 in 

49 most areas of the Loess Plateau (Bing Wang 2015). Further, the middle reaches of the Yellow 

50 River catchment are estimated to account for 90% of the sediment (Yang Zhao 2019). However, 

51 the mean annual sediment yield decreased by approximately 94% in comparison with the yield 

52 during the period from 1919-1959. Particularly, various catchments of the loess plateau have 

53 seen great decreases (approximately 53.0%–88.2%) in sediment loads of the same grade in 

54 extreme rainfall events after 2000 compared with those in the 1960s–1990s. In addition, the 

55 maximum sediment concentration in floodwaters when extreme rainfall events occur is 

56 consistently decreasing. For example, the maximum sediment concentration of the Wuding River 

57 in flood events has decreased by over 47.2% in this century (Yang Zhao 2019). Therefore, the 

58 river water in most catchments of the plateau has become much clearer than it used to be due to 

59 the decrease of the sediment concentration (Yang Zhao 2019). Many factors have contributed to 

60 the drastic reduction in river sediment content, such as the restoration of farmland to forests and 

61 grasslands; the declining rural labor force (due to urbanization), which has reduced the land use 

62 intensity; and climate change. However, the effects of changes in the land use policy and labor 

63 force on soil erosion are usually neglected. 
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64 Restoring farmland to forests and grassland shall increase plant litter cover, thus enhance 

65 soil and water conservation. The mechanism of soil conservation is normally considered to be 

66 the mechanical binding effects of plant litter that mitigated soil detachment by overland 

67 flows(Hao Wang 2019; Long Sun 2016). In addition, plant litter (mainly in the form of 

68 herbaceous plants) can prevent soil erosion in the form of maintaining soil moisture and 

69 partitioning rainfall as interception, infiltration, and lateral flows(Du et al. 2019; Xiangyang SUN 

70 2013). However, the spatial pattern and change of plant litter in the entire Loess Plateau over the 

71 last 20 years, during which significant changes have occurred in the sediment concentration, 

72 remain unclear. 

73 Remote sensing technique has long been used to monitor grasslands(Jan de Leeuw 2019), 

74 investigate spatial variations(Boyan Li 2018), and conduct time series analyses of photosynthetic 

75 vegetation (Christopher J. Watson 2019). To achieve the quantitative estimation of the non-

76 photosynthetic vegetation coverage, most studies use vegetation indices, such as the NDI, NDTI, 

77 NDSVI, SACRI, MSACRI, DFI, STI, and SWIR32, that are derived from multispectral data 

78 (Wang Guangzhen 2018), and features that are derived from the gray-level cooccurrence matrix 

79 (GLCM)(Fernando Roberti de Siqueira 2013; Xun Zhou 2018). Indices that are derived from 

80 hyperspectral data are considered to be the most effective indices for the quantitative estimation 

81 of the non-photosynthetic vegetation coverage (XIE Xiao-yan 2016). In particular, the 

82 normalized difference lignin index (NDLI) and the cellulose absorption index (CAI) are 

83 considered to be the best indices for estimating the senescent grass biomass. However, the costs 

84 of hyperspectral data significantly increase with the amount of data. Moreover, the data are often 

85 unobtainable for grassland regions, unavailable for long-term research, and difficult to apply at 

86 large scales.

87 From the algorithm aspect, researchers usually use multivariate stepwise regressions (F.S. 

88 Peterson 2013; Sibel Taskinsu-Meydan 2010), convolutional neural networks (CNNs) (Xun 

89 Zhou 2018), and spectral mixture analysis (SMA)(Wang Guangzhen 2018). However, CNN-

90 based methods rarely provide consistently high accuracy. In addition, the potential accuracy of 

91 large-scale modeling based on traditional methods is usually pessimistic. Overall, previous 

92 studies (i) are small in scale, (ii) do not elucidate how the plant litter cover changes in the entire 

93 plateau, (iii) lack time series analysis, or (iv) do not provide sufficient accuracy. The 

94 implementation of multiscale remote sensing is expected to solve these problems. In particular, 

95 the potential of using unmanned aerial vehicles (UAVs) data for regional scale modeling need to 

96 be examined.

97 In summary, the main purposes of this study are (1) to integrate multiscale remote sensing 

98 data for time series analysis of the plant litter in the entire plateau in order to determine the 

99 temporal and spatial dynamic changes and (2) to explore the relationship between plant litter and 
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100 sediment concentration change in order to determine the contribution of plant litter to sediment 

101 reduction in the Loess Plateau.

102 2 Materials

103 2.1 Study area

104 The Yellow River catchment originates from the Bayankala Mountains in Qinghai Province and 

105 flows into the Bohai Sea. It extends from 96°E to 119°E and from 32°N to 42°N, spanning 1900 

106 km from east to west and 1100 km from north to south, covering a total area of 795,000 square 

107 kilometers. It flows through Qinghai, Sichuan, Gansu, Ningxia, Inner Mongolia, Shaanxi, 

108 Shanxi, Henan, Shandong, and nine other provinces. The entire river is divided into eight 

109 secondary watershed partitions: above Longyangxia, Longyangxia to Lanzhou, Lanzhou to 

110 Hekouzhen, Hekouzhen to Longmen, Longmen to Sanmenxia, Internal Flow Zone, Sanmenxia to 

111 Huayuankou, and below Huayuankou.

112 The terrain of the Yellow River catchment is high in the west and low in the east. The 

113 western headwater region has an average elevation of >4000 m. It consists of a series of high 

114 mountains. The central region has an elevation of 1000–2000 m, and it is characterized by 

115 yellow land and severe soil erosion. The eastern region has an elevation of no more than 100 m, 

116 and it mainly comprises an alluvial plain. The Yellow River catchment has a continental climate 

117 with a semi-humid climate in the southeast, a semiarid climate in the middle, and a dry climate in 

118 the northwest. The diverse landforms and complex habitats in the catchment create favorable 

119 conditions for the development of various vegetation types, and the main land use types are 

120 grassland, woodland, and agricultural land. The location of the study area is shown in Figure 1.

121 2.2 Dataset

122 2.2.1 Field data

123 Field data were collected by a Sony EXMOR 1/2.3 inch CMOS digital camera on board a 

124 Phantom 3 Professional Quad-Rotor intelligent UAV, which was manufactured by DJ-

125 Innovations (DJI) incorporation. The total number of effective pixels in one photograph is 12 

126 million with 4000 columns and 3000 rows. The field survey data of plant litter cover were 

127 collected from October 12–18, 2016 when the plants were in their mature period. We collected 

128 thirteen plots in this region, which were considered to be representative because of their diverse 

129 terrain and growth status. 

130 In this study, the UAV recorded aerial images (Figure 2) every 3 s in the nadir view, the 

131 flying height was approximately 40 m at which the ground resolution of each photograph was 

132 approximately 7 cm. Thus, a single aerial photograph can cover a ground area of approximately 

133 58800 m2 (280 m × 210 m). Approximately 10 photographs were taken of each sample plot (700 

134 m × 700 m). 
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135 Data clustering algorithms are crucial for unsupervised classification, and high-density data 

136 analysis is of importance for resource management(Md Saifuzzaman 2019). The true-color UAV 

137 images were first classified into 30 classes using the iterative self-organizing (ISO) data analysis 

138 and clustered into binary litter/non-litter images. Then, the plant litter binary images were 

139 aggregated into a pixel size of 30 m. The percentage of plant litter for the 30-m pixels is deemed 

140 to be the fraction of the 7 cm pixels that are labeled as “plant litter” within each 30-m cell. It was 

141 calculated as the total number of 7-cm UAV plant litter pixels divided by the 30-m cell. This 

142 plant litter cover has been demonstrated to be more accurate than the average cover based on the 

143 traditional method(Jing Ge 2018). The corresponding parameters of those images can be seen in 

144 Table 1. 

145 2.2.2 Landsat data

146 Landsat data were used in the first level of modeling. We download the Landsat data for the year 

147 2016 when the UAV data were collected. The Landsat-8 Operational Land Imager (OLI) data 

148 were derived from the Geospatial Data Cloud (www.gscloud.cn) with a spatial resolution of 30 

149 m. Scenes overlapping with the 13 UAV sample plots, path/row: 128/32, 127/32, 127/34, 128/34, 

150 129/34, 129/35, 130/35, and 131/35, were selected.  The reflectivity was calculated based on 

151 the Landsat DN value and then the tasseled cap transformation was conducted using six bands 

152 (red, green, blue, near infrared, shortwave infrared 1, and shortwave infrared. Finally, the green 

153 component and wetness component were selected as predictor variables.

154 2.2.3 Temperature data

155 Meteorological data were downloaded from the China Meteorological Science data sharing 

156 service network (Http://data.cma.cn/site/index.html). 

157 There are 64 standard meteorological sites within the Yellow River catchment and 

158 approximately 40 standard meteorological sites near and outside the Yellow River catchment. 

159 The time range of the data (years) is from 2000 to 2018. To obtain a more widely coverage of 

160 temperature distribution, we used the Kriging spatial interpolation method based on the 

161 abovementioned 64 and 40 standard meteorological sites. Then, the temperature grid data were 

162 resampled to a 500-m resolution and projected to a projection of UTM 48N.

163 2.2.4 SRTM data

164 The SRTM data were derived from the NASA Shuttle Radar Topography Mission. We used the 

165 SRTMGL1 Global 1 arc second V003 DEM product which was downloaded from the NASA 

166 data system (http://earthdata.nasa.gov/). The data are in hgt format with a 30-m spatial 

167 resolution. A total of 181 images, with orbit numbers from N32E101 to N43E111, were acquired 

168 to characterize the elevation across the Yellow River catchment.

169 The processing of the SRTM data includes the following steps: (1) mosaic the 181 images 

170 to one raster dataset; (2) extract the regions of interest from the 30-m mosaicked images based on 
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171 the 13 UAV sample plots, and they serve as topographical feature variables in the first-level 

172 upscaling; and (3) resample the 30-m images to a 500-m resolution. This topographical feature 

173 variable was used in the second-level upscaling. The 181 SRTM images with a 30-m spatial 

174 resolution are illustrated in Figure 3.

175 2.2.5 MODIS data

176 The MODIS data were downloaded from NASA EOSDIS’s data search portal 

177 (http://search.earthdata.nasa.gov), including the evapotranspiration (ET), the enhanced 

178 vegetation index (EVI), and the reflectance in the blue and green band. These data sources were 

179 used as variables in the second-level upscaling. Specifically, the following data were adopted: 

180 the MODIS/Terra Vegetation Indices 16-Day L3 Global 500 m SIN Grid V006 (MOD13A1), the 

181 MODIS/Terra Evapotranspiration 8-Day Level-4 Global 500 m SIN Grid (MOD16A2), and the 

182 MODIS/Terra Surface Reflectance 8-Day L3 Global 500 m SIN Grid (MOD09A1) in the blue 

183 and green bands.

184 We used the data for the 289th day of the year. Four scenes are required to cover the Yellow 

185 River catchment: h26v04, h25v05, h26v05, and h27v05. The time range (years) is from 2000 to 

186 2018. The four tiles were mosaicked and projected to the UTM 48N projection and WGS 84 

187 datum.

188 2.2.6 Sediment concentration and its explanatory variables

189 The factors affecting sediment concentration are typically classified into runoff, vegetation, soil, 

190 and topographical factors. In addition, human activities can also affect sediment concentrations. 

191 They include plant litter, vegetation type, population, and GDP. In this study, the population, soil 

192 type, vegetation type, and GDP data were downloaded from the Resource and Environment Data 

193 Cloud platform (http://www.resdc.cn/), while the runoff, sediment transport, and sediment 

194 concentration data were downloaded from the China River Sediment Bulletin 

195 (http://www.mwr.gov.cn/sj/tjgb/zghlnsgb/). As data on the GDP and population were available 

196 for only four years between 2000 and 2018 (2000, 2005, 2010, and 2015), they were analyzed 

197 only in this period.

198 3 Methods

199 We used the random forest (RF) regression models that are implemented in R to predict the 

200 fractional plant litter cover for the Yellow River catchment over the last two decades (2000–

201 2018). The two-level regression modeling are: (1) upscaling of the plant litter cover from the 

202 UAV 0.07-m pixel scale to the 30-m Landsat pixel scale, and (2) upscaling of the plant litter 

203 cover from the 30-m Landsat pixel scale to the 500-m MODIS pixel scale.

204 We used the decision tree (DT) classification algorithm that was implemented in C5.0 for 

205 examining the relationship between sediment concentration in the water and those explanatory 
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206 variables. Decision tree is a non-parametric algorithm and has no special requirements for the 

207 sample distribution (Tianjun Wu 2018).

208 3.1 Random forest regression

209 Originally proposed by Breiman (2001), the random forest is an ensemble learning algorithm, 

210 which belongs to the bagging (bootstrap aggregating) type (Andrew Mellor 2017). By combining 

211 multiple weak classifiers, the final result is voted or averaged (L. Collins 2018). In each round of 

212 random sampling in Bagging, the data that are not collected are called OOB, which can be used 

213 to determine the generalization ability of the model so that the results of the overall model have 

214 higher accuracy and generalization performance. This approach can achieve good results, mainly 

215 due to being "random" and the "forest", which makes this algorithm resistant to overfitting and, 

216 thus, more precise. There are two important parameters in the random forest model: “ntree”, 

217 which stands for the number of decision trees, and “mtry”, for the number of predictor variables 

218 at each splitting node. We conducted the random forest modeling in R using the randomForest 

219 4.6-14 package. The random forest can automatically find the optimal ntree and mtry based on 

220 the training dataset. In this study, ntree is set as 500, and mtry is set as 1. 

221 The upscaling of  plant litter cover from in situ measurements to the catchment scale was 

222 based on Random forest regression. Specifically, for the first-level upscaling, the plant litter 

223 cover from UAV images was the dependent variable, and DEM, wetness and the green 

224 component were the independent variables. For the second-level upscaling, the plant litter cover 

225 estimated from the first-level was the dependent variable, and temperature, DEM, EVI, ET, and 

226 the reflectance in the blue and green bands were the independent variables. The sample plots of 

227 second level upscaling are illustrated in Figure 2. 

228 Variable importance was acquired based on the average contribution rate of each feature on 

229 each tree in the random forest. There are two common calculation methods. One  is the mean 

230 decreased accuracy, which is measured by the change of the out of bag (OOB) error when adding 

231 random noise to the feature (Wayne S. Walker 2007). The other is the mean decreased impurity, 

232 which uses the gini/entropy/information gain indices. The “IncMSE” and “IncNodePurity” 

233 correspond to the above two methods, respectively. We used the IncMSE to measure the variable 

234 importance in this study. The variable importance (varImpPlot) analyses were conducted using 

235 the R package to assess the relative contributions of the predictor variables to the modeling 

236 process (Ranjeet John 2018).

237 The percentage of training and testing samples vary in the two- scale modeling. For the first 

238 scale, the percentage of training and testing were 80% and 20% respectively, while for the 

239 second scale, 50% and 50%. 

240 3.2 Decision tree classification
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241 The decision process of the decision tree is as follows: first, it starts from the root node and then 

242 tests the corresponding feature attributes in the item to be classified. Then, the output branch is 

243 selected according to its value until the leaf node is reached, and the category that is stored by 

244 the leaf node is used as the decision result.

245 Among the various DT platforms, C5.0 has been widely used in land cover classification 

246 and soil mapping. The See5.0/C5.0 machine learning rule software is a data mining tool that was 

247 developed by USGS for the National Land Cover Mapping (NLCD) project to automatically 

248 extract classification rules. The C5.0 model supports boosting, and the decreasing rate of the 

249 information entropy is used as the basis for determining the optimal branching variable and 

250 segmentation threshold(Tianjun Wu 2018). The C5.0 nonlinear model can handle multisource 

251 big data sets. For detailed principles of the C5.0 algorithm, the reader can refer to Quinlan (2001) 

252 and Jansson (2016). The website of the source code is http://www.rulequest.com/see5-info.html.

253 We established a classification model based on the grade of sediment concentration in the 

254 water and the social-environmental factors that affect the sediment. So, the following indices 

255 were calculated: plant litter coverage, total population, major vegetation type, major soil type, 

256 average elevation, and total GDP. The measured runoff and sediment concentration data from the 

257 six main hydrological control stations in the main streams are selected as the hydrological 

258 variables. Previous studies have demonstrated that sediment concentration can be classified into 

259 16 grades(LI Xungui 2010). In this study nine grades were considered.

260 3.3 Accuracy assessment

261 To determine the model performance of RF, we used four indices: the root-mean-square error 

262 (RMSE), mean absolute error (MAE), coefficient of the variation of the root mean square error 

263 , and the coe฀cient of determination (R2). The definition of the former three were as (CVRMSE)

264 follows: 

265 (1)RMSE =
∑n

i = 1
[E(yi) - yi]

2

n

266 (2)MAE =
1

n
∑n

i = 1
|(E(yi) - yi)|

267 (3)CVRMSE(%) =
∑n

i = 1
[E(yi) - yi]

2

n
×

100

y

268 where E(yi) and yi are the predicted and field measured values for sample point i, 

269 respectively, and n represents the sample size (n = 1353 for the first-level upscaling and n 

270 =110,916 for the second-level upscaling),  is the measured mean value;. Lower RMSE values  y

271 represent higher accuracy and are generally desirable in verification (Jing Ge 2018; Julian D. 

272 Olden 2000).

273 When CVRMSE > 30%, the predictive ability of the model is poor; when CVRMSE is 

274 20%–30%, the predictive ability is fair; when CVRMSE is 10%–20%, the predictive power is 
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275 good; and when CVRMSE < 10%, the predictive ability is excellent (Jie Pan 2006; Jing Ge 

276 2018).

277 To determine the model performance of DT, a confusion matrix was constructed and Kappa 

278 value was derived. The confusion matrix is a comparison array that indicates the number of 

279 samples that are classified into a certain category and its field-measured categories. Typically, 

280 the columns in the array represent the field-measured category and the rows represent the 

281 category resulting from the classification. The calculation of Kappa value is as below:

282 (4)Kappa =
N∑

n

i = 1
xii -

∑n

i = 1
(xi + x + i)

N
2
- ∑

n

i = 1
(xi + x + i)

283 where n is the total number of columns in the confusion matrix, i.e., the number of 

284 categories; xii is the number of samples in the i-th row and i-th column in the confusion matrix, 

285 i.e., the number of correct classifications; xi+ and x+i are the numbers of samples in the i-th row 

286 and i-th column, respectively; and N is the total number of samples.

287 3.4 Change detection

288 The plant litter coverage in the Yellow River catchment was estimated for the last 19 years (2000 

289 to 2018). The average of the 19-year plant litter coverage was used to imply the spatial 

290 distribution. 

291 The time-varying characteristics of the plant litter cover during 2000-2018 are represented 

292 by using a linear slope model (Jing Ge 2018; Rasmus Fensholt 2009). This model is simple and 

293 robust, and the dynamic of each pixel is calculated by using the slope function(Haidi Zhao 2015; 

294 Jing Ge 2018), as shown in function (5). When the slope is greater than 0, it indicates an upward 

295 trend, and when it is less than 0, it indicates a downward trend. 

296 (5)slope =  
𝑛 × ∑𝑛𝑖 = 1

𝑖 × 𝑐𝑜𝑣𝑒𝑟𝑖 ‒ ∑𝑛𝑖 = 1
𝑖∑𝑛𝑖 ‒ 1

𝑐𝑜𝑣𝑒𝑟𝑖𝑛 × ∑𝑛𝑖 = 1
𝑖2 ‒ (∑𝑛𝑖 = 1

𝑖)2

297 where n represents the total number of years; i ranges from 1-19, corresponding to the years 

298 from 2000 to 2018; and coveri represents the plant litter coverage of the i-th year.

299 Based on the F test, this study further analyzed the significance level of the change of plant 

300 litter coverage. When slope > 0%/yr and F > 3.03, it follows a significant upward trend. When 

301 slope > 0%/yr and F < 3.03, it follows a general upward trend. When slope < 0%/yr and F < 3.03, 

302 it follows a general downward trend. When slope < 0%/yr and F > 3.03, it follows a significant 

303 downward trend. The F test is defined as:

304 (6)F =
r
2
(n - 2)

1 - r
2
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305 (7)r =

∑n

i = 1
(i - i )(coveri - cover)

∑n

i = 1
(i - i )

2∑n

i = 1
(coveri - cover)

2

306 where n represents the total number of years; r is the correlation coefficient between the 

307 plant litter cover and the time series;  represents the average of 1-19, which is 10 in this study; i

308 coveri represents plant litter coverage of the i-th year; and  represents the average plant cover

309 litter coverage during 2000-2018. The 90% confidence value F0.1(1, n−2)= F0.1(1,17) = 3.03 

310 (Jing Ge 2018; Yi Song 2010).

311 4 Results

312 4.1 Model accuracy

313 For the first-level upscaling, the R2 was 0.37 and P-value was 4.35e-138. Though the R square is 

314 not high, the P-value indicate the significance of this model at 0.001 confidence level. What’s 

315 more, the RMSE for plant litter was 18.455% which is acceptable. For the second-level 

316 upscaling, the R2 for plant litter increased markedly to 0.891 while RMSE decreased markedly 

317 to 2.936% (Table 2). The second-level upscaling had higher model precision probably due to the 

318 much larger sample size used for training the model. The model was further evaluated using the 

319 scatterplots of the predicted and observed plant litter cover. As shown in Figure 4, the slope of 

320 the two model is 0.97 and 1.03, respectively, very close to 1:1 straight line. Compare the two 

321 model, it can be seen that the scatter agglomeration and quantity of the second-level model is 

322 better than that of the first-level model.

323 The VIPs for the two levels of upscaling are shown in Figure 5. In the first-level model, 

324 DEM is of the greatest importance, greenness and wetness were of equal importance, slightly 

325 lower than that of dem. This shows that among the three independent variables, the topography 

326 plays a decisive role in the distribution of plant litter. Similarly, in the second level of modeling, 

327 DEM also has the greatest importance, EVI is of second importance, and the importance of other 

328 independent variables is roughly equivalent, with lower importance. 

329 4.2 Spatial pattern of plant litter cover

330 From the spatial aspect, it can be seen that the plant litter coverin the upper reaches of the 

331 Yellow River catchment is higher than that in the downstream area which is coincide with the 

332 allocation of water (precipitation and runoff). Specifically, the high covering areas of plant litter 

333 are located in: above Longyangxia, Longyangxia to Lanzhou, south area of Lanzhou to 

334 Hekouzhen, west area of Longmen to Sanmenxia, and Internal Flow Zone. In contrast, the low 

335 covering areas of plant litter are located in: Hekouzhen to Longmen, east area of Longmen to 

336 Sanmenxia, and Sanmenxia to Huayuankou. The lowest plant litter cover is found in the north 

337 area of Lanzhou to Hekouzhen and below Huayuankou.
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338 4.3 Time series analysis of plant litter cover

339 The slope distribution map of the plant litter cover is illustrated in Figure 7. The plant litter 

340 coverin most areas is increasing, especially in the Qingshui River and Kushui River basins, 

341 Lanzhou to Xiahe Yan basin, Jinghe River basin. However, the plant litter cover is decreasing 

342 along the north bank of Shizuishan to Hekou Town. 

343 We calculated the spatial distribution of the F results, as shown in Figure 8, and then 

344 combined the slope and F results to make a significant division (see Figure 9) of the change of 

345 plat litter. It can be seen that the area where the plant litter covershowed a significant increasing 

346 trend accounts for 1.683% of the total area and is located in the middle of Lanzhou to 

347 Hekouzhen, Hekouzhen to Longmen, and Longmen to Sanmenxia regions. The plant litter cover 

348 in most regions shows an increasing trend, accounting for 65.466% of the total area. However, in 

349 the regions north of Longyangxia, north and south of Longyangxia to Lanzhou, north of Lanzhou 

350 to Hekouzhen, and east and south of Longmen to Sanmenxia, Sanmenxia to Huayuankou, and 

351 the Internal Flow Zone, the plant litter cover showed a decreasing trend, accounting for 32.765% 

352 of the Yellow River catchment. Further, the cover of dead branches and deciduous leaves 

353 showed a significant decreasing trend in only 0.086% of the area. Overall, the area with an 

354 increase in the plant litter cover accounted for 67% of the Yellow River catchment, while in the 

355 remaining 33% of the catchment, the plant litter coverdecreased.

356 From 2000 to 2018, the plant litter cover in the Yellow River catchment increased as a 

357 whole, which is consistent with the actual situation. In recent decades, considerable effort has 

358 been devoted toward restoring the vegetation to reduce the soil and water loss in the Loess 

359 Plateau. Plant litter increases as the green vegetation increases. With the implementation of the 

360 “Three North Protection Forest”, “Returning Farmland to Forests and Grasses” and other 

361 ecological civilization projects(Jing Ge 2018; Kenneth Michael Bauer 2011), more than 2 Mha 

362 of sloping arable land on the Loess Plateau had been converted into forestland or grassland by 

363 2012(Lei Deng 2014; Long Sun 2016). From 2000 to 2008, the main land use/cover change in 

364 the Loess Plateau was transformation from cultivated land to forest land and grassland(ZHOU 

365 Shugui 2016).

366 4.4 Response of plant litter to sediment concentration

367 The changes in runoff, sediment transport, and sediment concentration from 2000 to 2018 are 

368 shown in Figure 10. From 2000 to 2018, the runoff increased while the sediment transport and 

369 sediment concentration decreased. Previous studies have shown that from 2000 to 2015, the 

370 rainfall in the Yellow River catchment has increased (TIAN Zhihui 2019). This implies that the 

371 increase in the runoff is consistent with the growth trend of the precipitation.

372 The structure of DT model is illustrated in Figure 11. Seven decision rules were extracted in 

373 this study (as shown in the Supplementary Data). The classification results indicate that the 
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374 overall classification accuracy was 81.5%, and the kappa coefficient was 0.775 (see Table 3). 

375 The importance of the classification feature variable is illustrated in Figure 12. The soil type, 

376 vegetation type, and plant litter cover are the top three factors contributing to the reduction of 

377 sediment concentration. The importance of DEM was 0%, probably because the DEM is the 

378 topographical mean value of the secondary subcatchment and its contribution to the classification 

379 is not as significant as that of the other six variables. 

380 5 Discussion

381 5.1 Regression and classification consideration 

382 It should be noted that the core issue of this study is to examine the response of change of plant 

383 litter on sediment concentration in the water. Considering the shortage of large scale information 

384 of plant litter, it was estimated using RF regression model prior to response examining. In 

385 addition, we included UAV data and two-step upscaling method to improve prediction accuracy. 

386 Cubist model can be used to estimate soil organic carbon content assessment(Shangshi Liu 

387 2019), but over-fitting occurs when modeling plant litter cover.

388 For another aspect, the reduction of sediment concentration in the water can be attributed by 

389 many environmental and anthropogenic factors. The mechanism of their relationship is rather 

390 complex and in most cases non-linear. The classification of the degree of sediment concentration 

391 in the water by means of both environmental and anthropogenic factors is a preliminary trial for 

392 this task. The result is very optimistic indicated by accuracy indices of classification, though 

393 those sample regions still need to be expanded. 

394 As for those factors, anthropogenic factors (GDP and population) were demonstrated to be 

395 very important, but not as important as those of the top three. It can be hypothesized that 

396 environmental factors might be the control of the reduction of sediment concentration in the 

397 water in the entire plateau scale. While the urbanization process in this region could be the 

398 control of the reduction of sediment concentration in a relatively small scale and a specific sub-

399 catchment. The above hypothesis has been partly demonstrated by our further classification test 

400 in which the original nine classes were reclassified into six grades according to the histogram of 

401 the data. 

402 5.2 Accuracy comparison with other models

403 Through two-level regression modeling established by random forest, this paper derived plant 

404 litter cover at 30-m Landsat pixel scale and 500-m MODIS scale. For the first scale, the 

405 percentage of training and testing were 80% and 20% respectively according to the statistical 

406 significance and previous article (Jing Ge 2018), while for the second scale, 50% and 50% due to 

407 large size of sample. 
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408 Previous studies have shown that the maximum annual grassland coverage of the Yellow 

409 River headwater region increased from 2001 to 2016(Jing Ge 2018), and the Net Primary 

410 Productivity (NPP) of the Yellow River catchment showed a slightly fluctuating increasing trend 

411 overall from 2000 to 2015 (TIAN Zhihui 2019), which is consistent with the increasing trend of 

412 the plant litter coverage in this study. However, the accuracy is slightly lower than that of the 

413 two abovementioned cases because the study area is extremely large, and the UAV data are not 

414 abundant, which implies that the model accuracy was limited by the number of UAV sample and 

415 its size with respect to the entire Yellow River catchment. The UAV sample coverage is 

416 approximately 1-5 pixels at the MODIS scale (500 m). However, the prediction results are 

417 consistent with the relevant research, which further demonstrate the feasibility of the proposed 

418 method. With the improvement of the spatiotemporal and spectral resolutions of remote sensing 

419 images, using remote sensing images to infer the plant litter cover is a more efficient and 

420 accurate method for large-scale dynamic monitoring. The CAI that is derived from hyperspectral 

421 images is applicable to arid and semiarid areas with relatively uniform vegetation types and soil 

422 textures and low vegetation coverage (Wang Guangzhen 2018). In addition, synthetic aperture 

423 radar (SAR) and light detection and ranging (LiDAR) techniques can obtain vertical structural 

424 information with high precision, regardless of the weather conditions, and they can estimate the 

425 fractional non-photosynthetic vegetation with high accuracy (Baojuan Zheng 2014).

426 5.3 Potential drivers for plant litter cover trend

427 Increased greenness may partly be due to the effect of climate warming and humidification (Jing 

428 Ge 2018; Yurong Hu 2012). And partly due to  human activities. The major factor is different 

429 over different regions. 

430 From the previous article on the temporal and spatial variation of precipitation over the 

431 Yellow River Basin (Yanli  Liu & Wang 2019), it can be seen that during the period from 1961 

432 to 2015, the total annual precipitation in the south of Longyangxia-Lanzhou, the southwestern 

433 part of Longmen-Sanmenxia, and north of Sanmenxia-Huayuankou showed a decreasing trend, 

434 the same as the plant litter cover’s decreasing trend from 2000 to 2018, indicating that 

435 precipitation reduction plays a major role in the reduction of plant litter. However, the total 

436 annual precipitation in the north of Longyangxia-Lanzhou and above Longyangxia showed a 

437 increasing trend from 1961 to 2015, while in these areas, the plant litter cover has decreased 

438 from 2000 to 2018, indicating that the plant litter cover is mainly affected by human activities, 

439 returning farmland to forests and grasses is the major factor for plant litter reduction, the litter of 

440 forest and grassland is generally less than that of crops, the natural plants might be sparse, and 

441 the artificial planting can be more dense, so after returning farmland to forests and grass, the 

442 plant litter will be reduced. During the period from 1961 to 2015, in the central area of 

443 Hekouzhen-Longmen, the total annual precipitation showed an increasing trend, which was 
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444 consistent with the increasing trend of plant litter, indicating that climate change is the main 

445 factor for the increase of plant litter. 

446 6 Conclusions

447 Based on multiscale remote sensing and random forest, this paper analyzed the temporal-spatial 

448 distribution characteristics of the plant litter in the Yellow River catchment and analyzed the 

449 effects of the plant litter cover on the sediment concentration based on C5.0 classification. This 

450 paper confirms that multiscale remote sensing images used with the random forest algorithm 

451 present a feasible method to upscale the ground observations of plant litter cover up to the 

452 regional scale. The plant litter cover in the upper and middle reaches of the Yellow River 

453 catchment were higher than that in the downstream area from 2000 to 2018. The plant litter 

454 cover in most regions showed an increasing trend. Thus, the policy of restoring farmland to 

455 forests and grassland yielded positive results.

456 In the Yellow River catchment, the runoff increased while the sediment concentration and 

457 sediment transport decreased from 2000 to 2018. The increase in the runoff is consistent with the 

458 growth trend of the precipitation over the last two decades. In summary, the soil type, vegetation 

459 type, and plant litter cover are the top three factors contributing to the sediment concentration 

460 reduction. Our findings can serve as a reference for the department of water resource 

461 management in terms of reducing the sediment concentration and obtaining clearer water. 

462 Directions for future work include the evaluation plant litter cover by using hyperspectral, 

463 SAR, or LIDAR data. Moreover, besides the population and GDP, other human factors affecting 

464 the sediment concentration should be considered. Climate change is also one important 

465 environmental factor to be considered in the quantitative analysis of the sediment concentration. 

466 In addition, the study of basin-scale vegetation-hydrological models is also necessary for water 

467 resource utilization and ecological balance on the Loess Plateau. 
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Figure 1
Figure 1 . Digital elevation model (DEM) and locations of UAV sample plots of plant litter
cover in October 2016. The two denser sample areas are enlarged (red boxes) to clearly
show the sample plots. The sample plot range of the second-level upscaling
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Figure 2
Figure 2 . (a) RGB true color UAV image; (b) Classification result for 30 classes (23
categories were omitted in the legend due to the size of the image); (c) Plant litter
binarization result (1 stands for plant litter and 0 stands for not plant litter)
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Figure 3
Figure 3 . Total of 181 SRTM images with a 30-m spatial resolution.
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Figure 4
Figure 4 . Comparison of the plant litter covers that are estimated using the RF
approach with reference plant litter cover for the (a) first-level upscaling and (b)
second-level upscaling. Note: All models meet the condition of P < 0.001.
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Figure 5
Figure 5 . VIPs that are generated in the random forest for the (a) first-level upscaling
and (b) second-level upscaling (IncMSE stands for increasing MSE, B3ref stands for
band3 reflectance, and B4ref stands for band4 reflectance. Band3 is blue and band
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Figure 6
Figure 6 . Spatial distribution map of the average annual plant litter cover at the 500 m
pixel scale in the Yellow River catchment from 2000 to 2018.
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Figure 7
Figure 7 . Change trend of the annual plant litter cover at the 500 m pixel scale in the
Yellow River catchment from 2000 to 2018.
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Figure 8
Figure 8 . F test result of the annual plant litter cover at the 500 m pixel scale in the
Yellow River catchment from 2000 to 2018.
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Figure 9
Figure 9 . Change grade of the annual plant litter cover at the 500 m pixel scale in the
Yellow River catchment from 2000 to 2018.
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Figure 10
Figure 10 . Changes in the runoff, sediment transport, and sediment concentration from
2000 to 2018. The legends for the runoff and sediment transport are the same as those
for the sediment concentration.
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Figure 11
Figure 11 . C5.0 classification model diagram that is plotted with R studio.
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Figure 12
Figure 12 . Importance of variables affecting sediment concentration.
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Table 1(on next page)

Table 1 . Image parameters.
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FID Columns Rows
Cell size 

(m)

Column size 

(m)
Row size (m)

Number of valid cells 

after aggregation to 

30 m

0 10991 10644 0.06778 744.96998 721.45032 426

1 13661 15118 0.04784 653.54224 723.24512 487

2 14811 17007 0.04393 650.64723 747.11751 475

3 10729 11090 0.06228 668.20212 690.6852 507

4 10896 11717 0.05383 586.53168 630.72611 322

5 11164 9111 0.06183 690.27012 563.33313 422

6 9482 8684 0.0539 511.0798 468.0676 249

7 22990 13065 0.05466 1256.6334 714.1329 704

8 21060 13047 0.1188 2501.928 1549.9836 1264

9 12406 11098 0.05872 728.48032 651.67456 499

10 12166 12944 0.06925 842.4955 896.372 741

11 6988 14250 0.05819 406.63172 829.2075 370

12 7493 6770 0.07893 591.42249 534.3561 296

Total 164837 154545 —— 10832.8346 9720.35165 6762
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Table 2(on next page)

Table 2 . Summary of the prediction accuracy of plant litter cover (PLC) (%) from the
model development and validation using random forest regression trees for the first-
and second-levels of upscaling.
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Response variable

Plant litter cover 

(Test dataset n=1353)

First level

Plant litter cover 

(Test dataset n=110,916)

Second level

R2 0.370 0.891

RMSE (%) 18.455 2.936

CVRMSE (%) 53.187 10.300

MAE (%) 13.583 2.000

Var explained (%) 38.54 88.87

Mean of squared residuals 0.035 0.0009
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Table 3(on next page)

Table 3 . Confusion matrix for the sediment concentration classes. a-e stand for the
grades of the sediment concentration: a(<0.4),b(0.4-2.4), c(2.4-4.0), d(4.0-4.8),
e(4.8-8.0), f(8.0-9.6), g(13.6-16.0), h(16.0-19.2), i(32.8-40.0), unit:kg/m3.
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Classes a b c d e f g h i

a 4 0 0 0 0 0 0 0 0

b 0 7 0 0 0 0 0 0 0

c 0 1 5 0 0 0 0 0 0

d 0 0 0 3 1 0 0 0 0

e 0 0 0 0 2 1 1 0 0

f 0 0 0 0 0 0 0 0 0

g 0 0 0 0 0 0 0 0 0

h 0 0 0 0 0 0 0 0 0

i 0 0 0 0 0 0 0 1 1

1

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27891v1 | CC BY 4.0 Open Access | rec: 10 Aug 2019, publ: 10 Aug 2019


