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The recent upswing of microfluidics and
combinatorial indexing strategies, further en-
hanced by very low sequencing costs, have
turned single cell sequencing into an em-
powering technology; analyzing thousands—
or even millions—of cells per experimental
run is becoming a routine assignment in lab-
oratories worldwide. As a consequence, we
are witnessing a data revolution in single cell
biology. Although some issues are similar in
spirit to those experienced in bulk sequencing,
many of the emerging data science problems
are unique to single cell analysis; together,
they give rise to the new realm of "Single Cell
Data Science’.

Here, we outline twelve challenges that will
be central in bringing this new field forward.
For each challenge, the current state of the art
in terms of prior work is reviewed, and open
problems are formulated, with an emphasis
on the research goals that motivate them.

This compendium is meant to serve as a
guideline for established researchers, newcom-
ers and students alike, highlighting interesting
and rewarding problems in ’Single Cell Data
Science’ for the coming years.
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1 Introduction

Since being elevated to “Method of the Year”
in 2013 [Nature Methods, 2013], sequencing
of the genetic material of individual cells has
become routine when investigating cell-to-cell
heterogeneity. Single-cell measurements of
both RNA and DNA, and more recently also
of epigenetic marks and protein levels, can
stratify cells at the finest resolution possible.

Single-cell RNA sequencing (scRNA-seq)
facilitates to distinguish cell states within
coarser cell type clusters [for an early exam-
ple, see Anchang et al., 2016|, thereby ar-
ranging populations of cells according to novel
types of hierarchies. It is also possible to
identify cells in transition between states, so
we get a much clearer view on the dynamics
of tissue and organism development, and on
structures within cell populations that had so
far been perceived as homogeneous. Along
a similar vein, analyses based on single-cell
DNA sequencing (scDNA-seq) can highlight
somatic clonal structures |e.g. in cancer, see
Francis et al., 2014, Lawson et al., 2018] and
are thus helpful for tracking the formation
of certain cell lineages and to provide insight
into evolutionary processes acting on somatic
mutations.

The opportunities arising from single-cell
sequencing (sc-seq) are enormous: only now
is it possible to re-evaluate hypotheses about

3

differences between pre-defined sample groups
at the single-cell level—mo matter if such
sample groups are disease subtypes, treat-
ment groups or simply morphologically dif-
ferent cell types. It is therefore no surprise
that the enthusiasm about the possibility to
screen the genetic material of the basic units
of life has been continuing to grow: a promi-
nent example is the Human Cell Atlas [Regev
et al., 2017|, an initiative aiming to map the
different types and states of cells that a hu-
man being is composed of, or Zhang and Liu
[2019], as a most recent example of a list of
single-cell analysis based opportunities in par-
ticular domains such as the blood, the brain
and the lung.

Encouraged by the great potential of in-
vestigating DNA and RNA at the single-
cell level, the development of the corre-
sponding experimental technologies has expe-
rienced massive boosts. This upswing of high-
throughput sc-seq technologies—most impor-
tantly in microfluidics techniques and com-
binatorial indexing strategies |Zilionis et al.,
2017, Vitak et al., 2017, Svensson et al.,
2018b, Luo et al., 2019, Gao et al., 2019]—
means that tens or hundreds of thousands
of cells, instead of just tens or hundreds,
are routinely sequenced in one experiment; a
development—further fueled by in the mean-
time low sequencing costs—that has recently
even led to a publication on millions of cells in
one experiment [Cao et al., 2019a]. As a con-
sequence, primary and secondary sc-seq re-
sults of very large numbers of single cells are
becoming available worldwide, constituting a
data revolution for the field of single-cell anal-
ysis.

These vast amounts of data and the re-
search hypotheses that motivate them, need
to be handled in a computationally efficient
and statistically sound manner. As these
aspects clearly match a recent definition of
“Data Science” [Hicks and Peng, 2019], we
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posit that we have entered the era of Single
Cell Data Science (SCDS).

While SCDS faces many of the data sci-
ence issues arising in bulk sequencing, it also
substantially adds to them and further com-
pounds existing scientific challenges. Namely,
limited amounts of material available per cell
lead to exceptionally high levels of uncer-
tainty about (possibly missed) observations,
and where amplification is used to generate
more material, technical noise is added to the
resulting data. Further, a new level of resolu-
tion also means another—rapidly growing—
dimension in data matrices, thus requiring
scalable models and methods for data anal-
ysis. While the particular challenges can vary
greatly by research goal, tissue analyzed, ex-
perimental setup or—Ilast but not least—just
by whether DNA or RNA is sequenced, fur-
ther factoring into various protocols, assaying
for example also the epigenome (bisulfite pro-
tocols), chromatin accessibility (e.g. ATAC-
seq) or protein levels (CITE-seq), the com-
mon denominator is that the challenges are
all rooted in data science, hence are compu-
tational or statistical in nature. Here, we pro-
pose the dozen data science challenges that we
believe to be most relevant for bringing SCDS
forward. We summarize and categorize them,
providing a thorough review of the status of
each challenge relative to existing approaches.
From this foundation, we point to possible di-
rections of research to tackle them. This cata-
logue of SCDS challenges aims at focusing the
development of data analysis methods and the
directions of research in this rapidly evolving
field—as a guideline for researchers looking
for rewarding problems that match their per-
sonal expertise and interests.

4

2 Single Cell Data Science:
Themes and Categories

A number of challenging themes are common
to all single-cell analyses, regardless of the
particular assay or data modality generated.
We will start our review by broadly categoriz-
ing these aspects. Later, when discussing the
specific 12 challenges, we will refer to these
broader categories wherever appropriate and,
if this is sensible, lay out what these broader
theme issues mean in the particular context.
If challenges covered in later sections are par-
ticularly entangled with the broader themes
listed here, we will also refer to them from
within this section.

These elementary themes may reflect issues
one also experiences when analyzing bulk se-
quencing data. However, even if not unique
to single-cell experiments, these issues may
become particularly dominant in the analysis
of sc-seq data and therefore require particu-
lar attention. The most driving of such el-
ementary themes, not necessarily unique to
sc-seq, are: (i) The need to quantify mea-
surement uncertainty (see challenges in sec-
tion 2.2) (ii) The need to benchmark methods
systematically, in a way that highlights the
metrics that are particularly critical in sc-seq
(section 6.2). The most driving themes spe-
cific to sc-seq, exacerbated by the rapid ad-
vances in terms of experimental technologies
supporting single-cell analyses, are: (i) The
need to scale to higher dimensional data, be
it more cells measured or more data mea-
sured per cell (section 2.3); this often arises
in combination with: (ii) The need to inte-
grate data across different types of single—
cell measurements (e.g. RNA, DNA, proteins,
methylation and so on) and across samples,
be they from different time points, treatment
groups or even organisms (section 6.1). Fi-
nally, the possibility to operate on the finest
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levels of resolution casts an important, over-
arching question: (iii) Which exact level of
resolution is appropriate relative to the par-
ticular research question one has in mind (sec-
tion 2.1)? We will start by qualifying this last
one.

2.1 Varying levels of resolution

Sc-seq allows for a fine-grained definition of
cell types and states. Hence it allows for
characterizations of cell populations that are
significantly more detailed than characteriza-
tions supported by bulk sequencing experi-
ments. However, even though sc-seq operates
at the most basic level, mapping cell types
and states at a particular level of resolution
of interest may be challenging: Depending on
whether the research question allows for a cer-
tain freedom in terms of resolution, and de-
pending on the limits imposed by the particu-
lar experimental setup, achieving the targeted
level of resolution or granularity for the in-
tended map of cells may require substantial
methodological efforts.

When drawing maps of cell types and
states, it is important that they: (i) have a
structure that recapitulates both tissue devel-
opment and tissue organization; (ii) account
for continuous cell states in addition to dis-
crete cell types (i.e. reflecting cell state tra-
jectories within cell types and smooth tran-
sitions between cell types, as observed in tis-
sue generation); (iii) allow for choosing the
level of resolution flexibly (i.e. the map should
possibly support zoom type operations, to
let the researcher choose the desired level
of granularity with respect to cell types and
states conveniently, ranging from whole or-
ganisms via tissues to cell populations and
cellular subtypes); (iv) include biological and
functional annotation wherever available and
helpful in the intended functional context.

An exemplary illustration of how maps of

5

cell types and states can support different lev-
els of resolution are the structure-rich topolo-
gies generated by PAGA based on scRNA-
seq |Wolf et al., 2019|, see Figure 1 for an
illustration!. At the highest levels of resolu-
tion, these topologies also reflect intermedi-
ate cell states and the developmental trajec-
tories passing through them. A similar ap-
proach that also allows for consistently zoom-
ing into more detailed levels of resolution is
provided by hierarchical stochastic neighbor
embedding (HSNE, Pezzotti et al. [2016]), a
method pioneered on mass cytometry data
sets |Unen et al., 2017, Hollt et al., 2018].
In addition, manifold learning [Welch et al.,
2017, Moon et al., 2018] and metric learning
|[Hoffer and Ailon, 2015, Bromley et al., 1993|
may provide further theoretical support for
even more accurate maps, because they pro-
vide sound theories about reasonable, contin-
uous distance metrics, instead of just distinct,
discrete clusters.

2.2 Quantifying uncertainty of
measurements and analysis
results

The amount of material sampled from single
cells is considerably less in comparison with
the amounts of material raised in bulk exper-
iments, because the latter are based on ex-
amining the DNA or RNA of larger pools of
cells together. Signals become more stable
when individual signals are summarized (such
as in a bulk experiment), thus the increase in
resolution due to sc-seq also means a reduc-
tion of the stability of the supporting signals.
The reduction in signal stability, in turn, im-
plies that data becomes substantially more

Figure 1 was adapted from Wolf et al. [2019)],
Fig. 3, provided under Creative Commons
Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/).
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Figure 1: Different levels of resolution are of interest, depending on the research question and
the data available. Thus, analysis tools and reference systems (such as cell atlases) will have
to accommodate for multiple levels of resolution from whole organs and tissues over discrete
cell types to continuously mappable intermediate cell states, indistinguishable even at the
microscopic level. A graph abstraction that enables such multiple levels of focus is provided
by PAGA [Wolf et al., 2019], a structure that allows for discretely grouping cells, as well as
inferring trajectories as paths through a graph.

uncertain and tasks hitherto considered rou-
tine, such as single nucleotide variation (SNV)
calling in bulk sequencing, require consider-
able methodological care to be resolved also
for sc-seq.

These issues with data quality and in par-
ticular missing data pose challenges that are
novel and unique to sc-seq, and are thus
at the core of several challenges: regarding
scDNA-seq data quality (see challenges in
section 4.1) and especially regarding missing
data in scDNA-seq (section 4.2) and scRNA-
seq (section 3.1). In contrast, the non-
negligible batch effects that scRNA-seq can
suffer from reflect a common problem in high-
throughput data analysis [Leek et al., 2010],
and thus are not discussed here (although in
certain protocols such effects can be allevi-
ated by careful use of negative control data
in the form of spike-in RNA of known con-
tent and concentration [Severson et al., 2018,
BEARscc]).

Optimally, sc-seq analysis tools would accu-

6

rately quantify all uncertainties arising from
experimental errors and biases. Thereby,
these tools would prevent the uncertainties
from propagating to the intended downstream
analyses in an uncontrolled manner, and
rather translate them into statistically sound
and accurately quantified qualifiers of final re-
sults.

2.3 Scaling to higher
dimensionalities: more cells,
more features, broader
coverage

The current blossoming of experimental
methods poses considerable statistical chal-
lenges, and would do even if measurements
were not affected by errors and biases.

The increase in the number of single cells
analyzed per experiment translates into more
data points being generated, requiring meth-
ods to scale rapidly. With scRNA-seq already
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scaling to millions of cells, some of the respec-
tive methodology has picked up the thread
[Sengupta et al., 2016, Sinha et al., 2018, Wolf
et al., 2018, Tacono et al., 2018]. Of course,
the respective issues have not yet been fully
resolved; further improvements are conceiv-
able. For scDNA-seq, experimental method-
ology has just been scaling up to more cells re-
cently (see section 4.1 and section 5.1), mak-
ing this a pressing challenge in the develop-
ment of data analysis methods.

Beyond basic scRNA-seq and scDNA-seq
experiments, various assays have been pro-
posed to measure chromatin accessibility
[Buenrostro et al., 2015, Cusanovich et al.,
2015], DNA methylation [Karemaker and Ver-
meulen, 2018|, protein levels [Virant-Klun
et al., 2016, protein binding, and also for per-
forming multiple simultaneous measurements
[Clark et al., 2018, Cao et al., 2018] in sin-
gle cells. The corresponding increase in exper-
imental choices means another possible infla-
tion of feature spaces.

In parallel to the increase in the number
of cells queried and the number of different
assays possible, the increase of the resolu-
tion per cell of specific measurement types
causes a steady increase of the dimension-
ality of corresponding data spaces. For the
field of SCDS this amounts to a severe and
recurring case of the “curse of dimensional-
ity” for all types of measurements. Here
again, scRNA-seq based methods are in the
lead when trying to deal with feature dimen-
sionality, while scDNA-seq based methodol-
ogy (which includes epigenome assays) has yet
to catch up.

Finally, there are efforts to measure multi-
ple feature types in parallel, e.g. from scDNA-
seq (see section 5.2). Also, with spatial and
temporal sampling becoming available (see
section 3.5 and section 5.3), data integration
methods need to scale to more and new types
of context information for individual cells (see
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section 6.1 for a comprehensive discussion of
data integration approaches).

2.4 Challenge categories

All challenges we identified fall into at least
one of three greater categories: transcrip-
tomics (section 3), genomics (section 4) and
phylogenomics (section 5). Here, the separa-
tion of phylogenomics from genomics is due to
the distinct research goals the respective chal-
lenges address. Last but not least, two chal-
lenges are relevant to all of these categories,
and are thus discussed as recapitulatory chal-
lenges at the end: the data integration chal-
lenge (section 6.1) draws on the types of mea-
surements and experiments described in the
category-specific challenges. The benchmark-
ing challenge (presented in section 6.2), al-
though being essential in many areas of data
science, is worth highlighting here in partic-
ular, because benchmarking for SCDS is still
in its infancy.

3 Challenges in single-cell
transcriptomics

3.1 Challenge I: Handling
sparsity in single-cell RNA
sequencing

A comprehensive characterization of the tran-
scriptional status of individual cells enables us
to gain full insight into the interplay of tran-
scripts within single cells. However, scRNA-
seq measurements typically suffer from large
fractions of observed zeros, where a given gene
in a given cell has no unique molecule identi-
fiers or reads mapping to it. These observed
zero values can represent either missing data
(i.e. a gene is expressed but not detected by
the sequencing technology) or true absence of
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expression. The proportion of zeros, or degree
of sparsity, is thought to be due to imper-
fect reverse transcription and amplification,
and other technical limitations (Hicks et al.
[2018], Bacher and Kendziorski [2016]), and
depends on the scRNA-seq platform used, the
sequencing depth and the underlying expres-
sion level of the gene. The term “dropout” is
often used to denote observed zero values in
scRNA-seq data, but this term conflates zero
values attributable to methodological noise
and biologically-true zero expression, so we
recommend against its use as a catch-all term
for observed zeros.

Sparsity in scRNA-seq data can hinder
downstream analyses, but it is challenging to
model or handle it appropriately, and thus,
there remains an ongoing need for improved
methods. Sparsity pervades all aspects of
scRNA-seq data analysis, but here we fo-
cus on the linked problems of learning la-
tent spaces and “imputing” expression values
from scRNA-seq data (Figure 2). Imputation,
“data smoothing” and “data reconstruction”
approaches are closely linked to the challenges
of normalisation. But whereas normalisation
generally aims to make expression values be-
tween cells more comparable to each other,
imputation and data smoothing approaches
aim to achieve adjusted data values that—it
is hoped—Dbetter represent the true expression
values. Imputation methods could therefore
be used for normalisation, but do not entail
all possible or useful approaches to normali-
sation.

3.1.1 Status

The imputation of missing values has been
very successful for genotype data. Crucially,
when imputing genotypes we often know
which data are missing (e.g. when no geno-
type call is possible due to no coverage of
a locus, although see section section 4.2 for

8

the challenges with scDNA-seq data) and rich
sources of external information are available
(e.g. haplotype reference panels). Thus, geno-
type imputation is now highly accurate and
a commonly-used step in data processing for
genetic association studies [Das et al., 2018].

The situation is somewhat different for
scRNA-seq data, as we do not routinely have
external reference information to apply (see
section 3.3). In addition, we can never be sure
which observed zeros represent “missing data”
and which accurately represent a true gene ex-
pression level in the cell [Hicks et al., 2018].
Observed zeros can either represent “biologi-
cal” zeros, i.e. those present because the true
expression level of a gene in a cell was zero.
Or they they are the result of methodological
noise, which can arise when a gene has true
non-zero expression in a cell, but no counts
are observed due to failures at any point in
the complicated process of processing mRNA
transcripts in cells into mapped reads. Such
noise can lead to artefactual zero that are ei-
ther more systematic (e.g. sequence-specific
mRNA degradation during cell lysis) or that
occur by chance (e.g. barely expressed tran-
scripts that at the same expression level will
sometimes be detected and sometimes not,
due to sampling variation, e.g in the sequenc-
ing). The high degree of sparsity in scRNA-
seq data therefore arises from technical zeros
and true biological zeros, which are difficult
to distinguish from one another.

In general, two broad approaches can be ap-
plied to tackle this problem of sparsity: (i) use
statistical models that inherently model the
sparsity, sampling variation and noise modes
of scRNA-seq data with an appropriate data
generative model; or (ii) attempt to “impute”
values for observed zeros (ideally the tech-
nical zeros; sometimes also non-zero values)
that better approximate the true gene expres-
sion levels. We prefer to use the first option
where possible, and for many single-cell data
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a4

analysis problems, statistical models appro-
priate for sparse count data exist and should
be used (e.g. for differential expression anal-
ysis). However, there are many cases where
the appropriate models are not available and
accurate imputation of technical zeros would
allow better results from downstream meth-
ods and algorithms that cannot handle sparse
count data. For example, imputation could
be particularly useful for many dimension re-
duction, visualisation and clustering applica-
tions. It is therefore desirable to improve both
statistical methods that work on sparse count
data directly and approaches for data impu-
tation for scRNA-seq data, whether by re-
fining existing techniques or developing new
ones (see also section 2.2).

We define three broad (and sometimes over-
lapping) categories of methods that can be
used to “impute” scRNA-seq data in the ab-
sence of an external reference: (i) Model-based
imputation methods of technical zeros use
probabilistic models to identify which ob-
served zeros represent technical rather than
biological zeros and aim to impute expression
levels just for these technical zeros, leaving
other observed expression levels untouched;
or (ii) Data-smoothing methods define sets
of “similar” cells (e.g. cells that are neigh-
bours in a graph or occupy a small region
in a latent space) and adjust expression val-
ues for each cell based on expression values
in similar cells. These methods adjust all
expression values, including technical zeros,
biological zeros and observed non-zero val-
ues. (iil) Data-reconstruction methods typ-
ically aim to define a latent space repre-
sentation of the cells. This is often done
through matrix factorization (e.g. principal
component analysis) or, increasingly, through
machine learning approaches (e.g. variational
autoencoders that exploit deep neural net-
works to capture non-linear relationships).
Although a broad class of methods, both ma-
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trix factorization methods and autoencoders
(among others) are able to “reconstruct” the
observed data matrix from low-rank or sim-
plified representations. The reconstructed
data matrix will typically no longer be sparse
(with many zeros) and the implicitly “im-
puted” data can be used for downstream ap-
plications that cannot handle sparse count
data.

The first category of methods generally
seeks to infer a probabilistic model that cap-
tures the data generation mechanism. Such
generative models can be used to identify,
probabilistically, which observed zeros cor-
respond to technical zeros (to be imputed)
and which correspond to biological zeros (to
be left alone). There are many model-based
imputation methods already available that
use ideas from clustering (e.g. k-means), di-
mension reduction, regression and other tech-
niques to impute technical zeros, oftentimes
combining ideas from several of these ap-
proaches.  These include SAVER [Huang
et al., 2018|, ScImpute [Li and Li, 2018|,
bayNorm |[Tang et al., 2018], scRecover [Miao
et al., 2019], and VIPER [Chen and Zhou,
2018|. Clustering methods that implicitly im-
pute values, such as CIDR |[Lin et al., 2017b]
and BISCUIT [Azizi et al., 2017], are closely
related to this class of imputation methods.

Data-smoothing methods, which adjust all
gene expression levels based on expression
levels in “similar” cells, have also been pro-
posed to handle imputation problems. We
might regard these approaches as “denois-
ing” methods. To take a simplified exam-
ple (Figure 2), we might imagine that sin-
gle cells originally refer to points in two-
dimensional space, but are likely to describe a
one-dimensional curve; projecting data points
onto that curve eventually allows imputation
of the “missing” values (but all points are
adjusted, or smoothed, not just true tech-
nical zeros). Prominent data-smoothing ap-
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Figure 2: Measurement error requires denoising methods or approaches that quantify uncer-
tainty and propagate it down analysis pipelines. Also, whenever methods cannot deal with
the abundant missing values, imputation approaches are necessary. Whereas the true popu-
lation manifold that generated data is never known, one can usually obtain some estimation
of it that can be used for both denoising and impuation.

proaches to handling sparse counts include:

o diffusion-based MAGIC [Dijk et al.,
2018]

e k-nearest neighbor-based knn-smooth
[Wagner et al., 2018b|

e network  diffusion-based  netSmooth

[Jonathan Ronen, 2018|

e clustering-based Drlmpute [Gong et al.,
2018|

e locality sensitive imputation in LSIm-
pute [Moussa and Mandoiu, 2019|

A major task in the analysis of high-
dimensional single-cell data is to find low-
dimensional representations of the data that
capture the salient biological signals and ren-
der the data more interpretable and amenable
to further analyses. As it happens, the ma-
trix factorization and latent-space learning
methods used for that task also provide an-
other route for imputation through their abil-
ity to reconstruct the observed data matrix
from simplified representations of it. Prin-
cipal component analysis (PCA) is one such
standard matrix factorization method that
can be applied to scRNA-seq data (preferably
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after suitable data normalisation) as are other
widely-used general statistical methods like
independent component analysis (ICA) and
non-negative matrix factorization (NMF). As
(linear) matrix factorization methods, PCA,
ICA and NMF decompose the observed data
matrix into a “small” number of factors in two
low-rank matrices, one representing cell-by-
factor weights and one gene-by-factor load-
ings. Many matrix factorization methods
with tweaks for single-cell data have been pro-
posed in recent years, including:

e ZIFA, a zero-inflated factor analysis
[Pierson and Yau, 2015|

o f-scLVM, a sparse Bayesian latent vari-
able model [Buettner et al., 2017]

e GPLVM, a Gaussian process latent vari-
able model [Verma and Engelhardt, 2018]

e ZINB-WaVE;, a zero-inflated negative bi-
nomial factor model [Risso et al., 2018|

e scCoGAPS, an extension of NMF [Stein-
O’Brien et al., 2019|

e consensus NMF, a meta-analysis ap-
proach to NMF [Kotliar et al., 2019|
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e pCMF, probabilistic count matrix factor-
ization with a Poisson model [Durif et al.,
2019]

e SDA, sparse decomposition of arrays;
another sparse Bayesian method [Jung
et al., 2019].

Some data reconstruction approaches have
been specifically proposed for imputation, in-
cluding;:

e ENHANCE;, denoising PCA with an ag-
gregation step [Wagner et al., 2019|

e ALRA, SVD with adaptive thresholding
[Linderman et al., 2018

e scRMD, robust matrix decomposition
[Chen et al., 2018|

Recently, machine learning methods have
emerged that apply autoencoders [Autolm-
pute, Talwar et al., 2018] and deep neu-
ral networks [Deeplmpute, Arisdakessian
et al., 2018|) or ensemble learning [Enlmpute,
Zhang et al., 2019c¢]) to impute expression val-
ues.

Additionally, many deep learning methods
have been proposed for single-cell data anal-
ysis that can, but need not, use probabilis-
tic data generative processes to capture low-
dimensional or latent space representations of
a dataset. Even if imputation is not a main
focus, such methods can generate “imputed”
expression values as an upshot of a model pri-
marily focused on other tasks like learning la-
tent spaces, clustering, batch correction, or
visualization (and often several of these tasks
simultaneously). The latter set includes tools
such as:

e DCA, an autoencoder with a zero-
inflated negative binomial distribution
[Eraslan et al., 2019]
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e scVI, a variational autoencoder with a
zero-inflated negative binomial model
[Lopez et al., 2018]

e LATE [Badsha et al., 2018]

e VASC [Wang and Gu, 2018|

e compscVAE [Grgnbech et al., 2018]
e scScope [Deng et al., 2019]

e Tybalt [Way and Greene, 2018]

e SAUCIE [Amodio et al., 2019]

e scvis |Ding et al., 2018|

e net-SNE [Cho et al., 2018]

e BERMUDA, focused on batch correction
[Wang et al., 2019

e DUSC |[Srinivasan et al., 2019|

e Expression Saliency [Kinalis et al., 2019]

others [Lin et al., 2017a, Zhang, 2019]

Besides the three categories described
above, a small number of scRNA-seq impu-
tation methods have been developed to in-
corporate information external to the cur-
rent dataset for imputation. These include:
ADImpute |Leote et al., 2019], which uses
gene regulatory network information from
external sources; SAVER-X [Wang et al.,
2018|, a transfer learning method for denois-
ing and imputation that can use informa-
tion from atlas-type resources; and methods
that borrow information from matched bulk
RNAseq data like URSM [Zhu et al., 2018§]
and SCRABBLE |Peng et al., 2019].
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3.1.2 Open problems

A major challenge in this context is the circu-
larity that arises when imputation solely relies
on information that is internal to the imputed
dataset. This circularity can artificially am-
plify the signal contained in the data, leading
to inflated correlations between genes and/or
cells. In turn, this can introduce false pos-
itives in downstream analyses such as differ-
ential expression testing and gene network in-
ference [Andrews and Hemberg, 2019|. Han-
dling batch effects and potential confounders
requires further work to ensure that imputa-
tion methods do not mistake unwanted varia-
tion from technical sources for biological sig-
nal. In a similar vein, single-cell experiments
are affected by various uncertainties (see sec-
tion 2.2). Approaches that allow quantifica-
tion and propagation of the uncertainties as-
sociated with expression measurements (sec-
tion 2.2), may help to avoid problems associ-
ated with ‘overimputation’ and the introduc-
tion of spurious signals noted by Andrews and
Hemberg [2019].

To avoid this circularity, it is important
to identify reliable external sources of infor-
mation that can inform the imputation pro-
One possibility is to exploit external
reference panels (like in the context of ge-
netic association studies). Such panels are
not generally available for scRNA-seq data,
but ongoing efforts to develop large scale cell
atlases [e.g. Regev et al., 2017, see also sec-
tion 3.3] could provide a valuable resource
for this purpose. Systematic integration of
known biological network structures is de-
sirable and may also help to avoid circular-
ity. A possible approach is to encode net-
work structure knowledge as prior informa-
tion, as attempted in netSmooth and ADIm-
pute. Another alternative solution is to ex-
plore complementary types of data that can
inform scRNA-seq imputation. This idea was

CESS.
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adopted in SCRABBLE and URSM, where an
external reference is defined by bulk expres-
sion measurements from the same population
of cells for which imputation is performed.
Yet another possibility could be to incorpo-
rate orthogonal information provided by dif-
ferent types of molecular measurements (see
section 6.1). Methods designed to integrate
multi-omics data could then be extended to
enable scRNA-seq imputation, e.g. through
generative models that explicitly link scRNA-
seq with other data types [e.g. clonealign,
Campbell et al., 2019] or by inferring a shared
low-dimensional latent structure [e.g. MOFA,
Argelaguet et al., 2018| that could be used
within a data-reconstruction framework.
With the proliferation of alternative meth-
ods, comprehensive benchmarking is urgently
required as for all areas of single-cell data
analysis section 6.2. Early attempts by Zhang
and Zhang [2018] and Andrews and Hemberg
[2019] provide valuable insights into the per-
formance of methods available at the time.
But many more methods have since been pro-
posed and even more comprehensive bench-
marking platforms are needed. Many meth-
ods, especially those using deep learning, de-
pend strongly on choice of hyperparameters
[Hu and Greene, 2019]. There, more de-
tailed comparisons that explore parameter
spaces would be helpful, extending work like
that from Sun et al. [2019] comparing di-
mensionality reduction methods. Learning
from exemplary bechmarking studies [Sone-
son and Robinson, 2018, Saelens et al., 2019],
it would be immensely beneficial to develop
a community-supported benchmarking plat-
form with a wide-range of synthetic and ex-
periment ground-truth datasets (or as close
as possible, in the case of experimental data)
and a variety of thoughtful metrics for eval-
uating performance. Ideally, such a bench-
marking platform would remain dynamic be-
yond an initial publication to allow ongoing
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comparison of methods as new approaches are
proposed. Detailed benchmarking would also
help to establish when normalisation methods
derived from explicit count models |e.g. Hafe-
meister and Satija, 2019, Townes et al., 2019
may be preferable to imputation.

Finally, scalability for large numbers of
cells remains an ongoing concern for imputa-
tion, data smoothing and data reconstruction
methods, as for all high-throughput single-cell
methods and software (see section 2.3).

3.2 Challenge 1I: Defining
flexible statistical
frameworks for discovering
complex differential patterns
in gene expression

Beyond simple changes in average gene ex-
pression between cell types (or across bulk-
collected libraries), scRNA-seq enables a
high granularity of changes in expression to
be unraveled. Interesting and informative
changes in expression patterns can be re-
vealed, as well as cell-type-specific changes
in cell state across samples (Figure 6, Ap-
proach 1). Further understanding of gene
expression changes will enable deeper knowl-
edge across a myriad of applications, such as
immune responses |[Kang et al., 2018b, Stub-
bington et al., 2017], development [Karaiskos
et al., 2017a| and drug response [Kim et al.,
2015].

3.2.1 Status

Currently, the vast majority of differential ex-
pression detection methods assume that the
groups of cells to be compared are known
in advance (e.g., experimental conditions or
cell types). However, most current analy-
sis pipelines rely on clustering or cell type
assignment to identify such groups, before
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downstream differential analysis is performed,
without propagating the uncertainty in these
assignments or accounting for the double use
of data (clustering, differential testing be-
tween clusters).

In this context, most methods have fo-
cused on comparing average expression be-
tween groups [Kharchenko et al., 2014, Fi-
nak et al., 2015], but it appears that single-
cell-specific methods do not uniformly out-
perform the state-of-the-art bulk methods
[Soneson and Robinson, 2018|. Instead, lit-
tle attention has been given to more gen-
eral patterns of differential expression (Fig-
ure 3), such as changes in variability that ac-
count for mean expression confounding [Eling
et al., 2018, changes in trajectory along pseu-
dotime [Campbell and Yau, 2018, van den
Berge et al., 2019], or more generally, changes
in distributions [Korthauer et al., 2016b].
Furthermore, methods for cross-sample com-
parisons of gene expression (e.g., cell-type-
specific changes in cell state across samples,
compare section 6.1, Figure 6 and Table 2)
are now emerging, such as pseudo-bulk com-
parisons [Kang et al., 2018a|, where expres-
sion is aggregated over multiple cells within
each sample. With the expanding capacity
of experimental techniques to generate multi-
sample scRNA-seq datasets, further general
and flexible statistical frameworks will be re-
quired to identify complex differential pat-
terns across samples. This will be particularly
critical in clinical applications, where cells are
collected from multiple patients.

3.2.2 Open problems

Accounting for uncertainty in cell type as-
signment and for double use of data will
require, first of all, a systematic study of
their impact. Integrative approaches in which
clustering and differential testing are simul-
taneously performed [Vavoulis et al., 2015]
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Figure 3: Differential expression of a gene or transcript between cell populations. The top row
labels the specific gene or transcript, as is also done in Figure 6. A difference in mean gene
expression manifests in a consistent difference of gene expression across all cells of a popu-
lation (e.g. high vs. low). A difference in variability of gene expression means that in one
population, all cells have a very similar expression level, whereas in another population some
cells have a much higher expression and some a much lower expression. The resulting average
expression level may be the same and in such cases, only single-cell measurements can find
the difference between populations. A difference across pseudotime is a change of expres-
sion within a population, e.g. along a developmental trajectory (compare Figure 1). This
also constitutes a difference between cell populations that is not apparent from population
averages, but requires a pseudo-temporal ordering of measurements on single cells.

can address both issues. However, integra-
tive methods typically require bespoke imple-
mentations, precluding a direct combination
between arbitrary clustering and differential
testing tools. In such cases, the adaptation of
selective inference methods |Reid et al., 2018,
Zhang et al., 2019b| could provide an alterna-
tive solution.

While some methods exist to identify more
general patterns of gene expression changes
(e.g. variability, distributions), these meth-
ods could be further improved by integrat-
ing with existing approaches that account for
confounding effects such as cell cycle [Ste-
gle et al., 2015 and complex batch effects
[Butler et al., 2018a, Haghverdi et al., 2018].
Moreover, our capability to discover interest-
ing gene expression patterns will be vastly
expanded by connecting with other aspects
of single-cell expression dynamics, such as
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cell type composition, RNA velocity [Manno
et al., 2018|, splicing and allele-specificity.
This will allow us to fully exploit the granu-
larity contained in single-cell level expression
measurements.

In the multi-donor setting, several promis-
ing methods have been applied to discover
state transitions in high-dimensional cytome-
try datasets [Lun et al., 2017, Bruggner et al.,
2014, Weber et al., 2018, Nowicka et al., 2017].
These approaches could be expanded to the
higher dimensions and characteristic aspects
of scRNA-seq data. Alternatively, there is a
large space to explore other general and flex-
ible approaches, such as hierarchical models
where information is borrowed across sam-
ples, while allowing for sample-specific pat-
terns.
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3.3 Challenge III: Mapping
single cells to a reference
atlas

Classifying cells into cell types or states is
essential for many secondary analyses. As
an example, consider studying and classify-
ing how expression varies across different cells
and different biological conditions (for differ-
ential expression analyses, see section 3.2 and
data integration Approach 1 in section 6.1,
Figure 6 and Table 2). To put the results of
such studies on a map, reliable reference sys-
tems are required.

The lack of appropriate, available refer-
ences has so far implied that only reference-
free approaches were conceivable, where unsu-
pervised clustering approaches were the pre-
dominant option (see data integration Ap-
proach 0 in section 6.1, Figure 6 and Table 2).
Method development for such unsupervised
clustering of cells has already reached a cer-
tain level of maturity; see Duo et al. [2018],
Freytag et al. [2018], Kiselev et al. [2019] for
a systematic identification of available tech-
niques.

However, unsupervised approaches involve
manual cluster annotation. There are two
major caveats: (i) manual annotation is a
time-consuming process, which also (ii) puts
certain limits to the reproducibility of the re-
sults. Cell atlases, as reference systems that
systematically capture cell types and states,
either tissue-specific or across different tis-
sues, remedy this issue (see data integration
Approach 2 in section 6.1, Figure 6 and Ta-
ble 2; see also Figure 1 for an idea of what cell
atlas type reference systems preferably could
look like).

3.3.1 Status

See Table 1 for a list of cell atlas type refer-
ences that have recently been published. For
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human, similar endeavours as for the mouse
are under way, with the intention to raise a
Human Cell Atlas [Regev et al., 2017]. To-
wards this end, initial consortia focus on spe-
cific organs, for example the lung [Schiller
et al., 2019].

The availability of these reference atlases
has led to the active development of methods
that make use of them in the context of su-
pervised classification of cell types and states
[Lieberman et al., 2018, Srivastava et al.,
2018, Cao et al., 2019b, DePasquale et al.,
2019, Kanter et al., 2019, Sato et al., 2019,
Zhang et al., 2019a]. A field that serves as
a source of inspiration is flow/mass cytom-
etry, where several methods have addressed
the classification of high-dimensional cell type
data [Chester and Maecker, 2015, Weber and
Robinson, 2016, Saeys et al., 2016, Guilliams
et al.,, 2016]. Finally, as for benchmarking
methods that map cells of unknown type or
state onto reference atlases (see Section sec-
tion 6.2 for benchmarking in general), atlases
of model organisms where full lineages of cells
have been integrated can form the basis for
further developments [Spanjaard et al., 2018,
Plass et al., 2018, Fincher et al., 2018, Farrell
et al., 2018, Briggs et al., 2018|.Importantly,
additional information available from lineage
tracing can provide a cross-check with respect
to the transcriptome-profile-based classifica-
tion |Briggs et al., 2018, Kester and van Oude-
naarden, 2018].

3.3.2 Open problems

Cell atlases can still be considered under
active development, with several computa-
tional challenges still open, in particular re-
ferring to the fundamental themes from above
|[Regev et al., 2017, Schiller et al., 2019, Hon
et al., 2018|. Here, we focus on the map-
ping of cells or rather their molecular profiles
onto stable existing reference atlases to fur-
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10

11

12

13

14

15

16

17

18

19

20

organism scale of cell atlas citation

nematode whole organism at larval stage [Cao et al., 2017]

Caenorhabditis  ele- 1.2

gans

planaria whole organism of the adult an- [Fincher et al., 2018, Plass et al.,

Schmidtea  mediter- imal 2018|

ranea

fruit fly whole organism at embryonic |[Karaiskos et al., 2017b]

Drosophila stage

melanogaster

Zebrafish whole organism at embryonic |[Farrell et al., 2018, Wagner
stage et al., 2018a

frog whole organism at embryonic [Briggs et al., 2018|

Xenopus tropicalis

stage

Mouse

whole adult brain

[Rosenberg et al., 2018, Saunders
et al., 2018, Zeisel et al., 2018|

Mouse

whole adult organism

[Tabula Muris Consortium, 2018,
Han et al., 2018]

Table 1: Published cell atlases of whole tissues or whole organisms.

ther highlight the importance of these fun-
damental themes. A computationally and
statistically sound method for mapping cells
onto atlases for a range of conceivable re-
search questions will need to: (i) enable op-
eration at various levels of resolution of inter-
est, and also cover continuous, transient cell
states (see section 2.1); (ii) quantify the un-
certainty of a particular mapping of cells of
unknown type/state (see section 2.2); (iii) to
scale to ever more cells and broader cover-
age of types and states (see section 2.3), and
(iv) to eventually integrate information gen-
erated not only through scRNA-seq experi-
ments, but also through other types of mea-
surements, for example scDNA-seq or protein
expression data (see below in section 6.1 for a
discussion of data integration, especially data

integration Approaches 4 and 5 in section 6.1,
Figure 6 and Table 2).
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3.4 Challenge I'V: Generalizing
trajectory inference

Several biological processes, such as differen-
tiation, immune response or cancer expansion
can be described and represented as continu-
ous dynamic changes in cell type/state space
using tree, graphical or probabilistic mod-
els. A potential path that a cell can undergo
in this continuous space is often referred to
as a trajectory (Trapnell et al. [2014] and
Figure 1), and the ordering induced by this
path is referred to as pseudotime. Several
models have been proposed to describe cell
state dynamics, starting from transcriptomic
data [Saelens et al., 2019|. Trajectory infer-
ence is in principle not limited to transcrip-
tomics. Nevertheless, modeling of other mea-
surements, such as proteomic, metabolomic,
and epigenomic, or even integrating multiple
types of data (see section 6.1), is still at its
infancy. We believe the study of complex tra-
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jectories integrating different data-types es-
pecially epigenetics and proteomics informa-
tion in addition to transcriptomics data will
lead to a more systematic understanding of
the processes determining cell fate.

3.4.1 Status

More than sixty trajectory methods have
been proposed for trajectory inference from
transcriptomic data using snapshot data at
single or multiple time points [Saelens et al.,
2019]. Briefly, those methods start from a
count matrix where genes are rows and cells
are columns. First, a feature selection or di-
mensionality reduction step is used to explore
a subspace where distances between cells are
more reliable. Next, clustering and minimum
spanning trees [Trapnell et al., 2014, Ji and
Ji, 2016], principal curve or graph fitting [Qiu
et al., 2017, Chen et al., 2019, Rizvi et al.,
2017|, or random walks and diffusion opera-
tions on graphs (Haghverdi et al. [2016], Setty
et al. [2016] among others) are used to in-
fer pseudotime and/or branching trajectories.
Alternative probabilistic descriptions can be
obtained using optimal transport analysis
[Schiebinger et al., 2017| or approximation of
the Fokker-Planck equations [Weinreb et al.,
2018| or by estimating pseudotime through di-
mensionality reduction with a Gaussian pro-
cess latent variable model [Campbell and Yau,
2016, Reid and Wernisch, 2016, Ahmed et al.,
2019].

3.4.2 Open problems

Potentially, many of the above-mentioned
methods for trajectory inference can be
extended to data obtained with non-
transcriptomic assays. Thereby, the follow-
ing aspects are crucial. First, it is necessary
to define the features to use; while for tran-
scriptomic data the features are well anno-
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tated and correspond to expression levels of
genes, clear-cut features are harder to deter-
mine for data such as methylation profiles and
chromatin accessibility where signals can re-
fer to individual genomic sites, but also be
pooled over sequence features or sequence re-
gions. Second, many of those recent technolo-
gies only allow measurement of a quite lim-
ited number of cells compared to transcrip-
tomic assays where millions of cells can be
profiled using droplet-based platforms [Ma-
cosko et al., 2015, Klein et al., 2015, Zheng
et al., 2017]. Third, some of those measure-
ments are technically challenging since the in-
put material for each cell is limited (for exam-
ple two copies of each chromosome for methy-
lation or chromatin accessibility), giving rise
to more sparsity than scRNA-seq. In the
latter case it is necessary to define distance
or similarity metrics that take this problem
into account. An alternative approach con-
sists of pooling/combining information from
several cells or data imputation. For ex-
ample, imputation has been used for single-
cell DNA methylation [Angermueller et al.,
2017|, aggregation over chromatin accessibil-
ity peaks from bulk or pseudo-bulk sample
[Cusanovich et al., 2018|, and k-mer-based
approaches have been proposed [Buenrostro
et al., 2018, de Boer and Regev, 2018, Chen
et al., 2019]. However, so far, no systematic
evaluation (see section 6.2) of those choices
has been performed and it is not clear how
many cells are necessary to reliably define
those features.

A pressing challenge is to assess how the
different trajectory inference methods per-
form on different data types and importantly
to define metrics that are suitable. Also, it
is necessary to reason on the ground truth or
propose reasonable surrogates (e.g. previous
knowledge about developmental processes).
Some recent papers explore this idea using
scATAC-seq data, an assay to measure chro-
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matin accessibility [Buenrostro et al., 2018,
Chen et al., 2019, Pliner et al., 2018].

Having defined robust methods to recon-
struct trajectories from each data type, an-
other future challenge is related to their com-
parison or alignment. Here, some ideas from
recent methods used to align transcriptomic
datasets may be extended [Butler et al.,
2018b, Haghverdi et al., 2018, Welch et al.,
2018]. A related unsolved problem is that
of comparing different trajectories obtained
from the same data type but across individu-
als or conditions to highlight unique and com-
mon aspects.

3.5 Challenge V: Finding
patterns in spatially resolved
measurements

Single-cell spatial transcriptomics or pro-
teomics [Crosetto et al., 2015, Strell et al.,
2018, Moffitt et al., 2018] technologies can
obtain transcript abundance measurements
while retaining spatial coordinates of cells or
even transcripts within a tissue (this can be
seen as an additional feature space to inte-
grate, see Approach 3 in section 6.1, Figure 6
and Table 2). With such data, the question
arises of how spatial information can best be
leveraged to find patterns, infer cell types or
functions and classify cells in a given tissue
[Tanay and Regev, 2017].

3.5.1 Status

Experimental approaches have been tailored
to either systematically extract foci of cells
and analyze them with scRNA-seq, or to mea-
sure RNA and proteins in-situ. Histological
sections can be projected in two dimensions
while preserving spatial information using se-
quencing arrays [Stahl et al., 2016]. Whole
tissues can be decomposed using the Niche-
seq approach |[Medaglia et al., 2017]: here
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a group of cells are specifically labeled with
a fluorescent signal, sorted and subjected to
scRNA-seq. The Slide-seq approach uses an
array of Drop-seq drops with known barcodes
to dissolve corresponding slide sites and se-
quence them with the respective barcodes
[Rodriques et al., 2019]. Ultimately, one
would like to sequence inside a tissue with-
out dissociating the cells and without compro-
mising on the unbiased nature of scRNA-seq.
A preliminary approach has been proposed
by Lee et al. [2015] coined FISSEQ (Fluo-
rescent in-situ sequencing). Lubeck et al.
[2014] have shown a first approach to itera-
tively apply fluorescence in-situ hybridization
to measure hundreds of RNA species simulta-
neously, called seqFISH. SeqFISH-+ scales the
FISH barcoding strategy to 10,000 genes by
splitting each of four barcode locations to be
scanned into 20 separate readings to avoid sig-
nal crowding [Eng et al., 2019]. Based on a
related principle, MERFISH was proposed by
Chen et al. [2015], which enables to measure
hundreds to thousands of transcripts in sin-
gle cells simultaneously while retaining spa-
tial coordinates [Moffitt et al., 2016|. Here,
even the subcellular coordinates of each in-
dividual transcript are retained. In addition
to the methods that provide in-situ measure-
ments of RNA, Giesen et al. [2014] and An-
gelo et al. [2014] use mass cytometry tech-
nology to quantify the abundance of proteins
while preserving subcellular resolution. Fi-
nally, the recently described Digital Spatial
Profiling [DSP, Merritt et al., 2019, Van and
Blank, 2019| promises to provide both RNA
and protein measurements with spatial reso-
lution.

For determining cell types, or clustering
cells into groups that conduct a common func-
tion, several methods are available [Zhang
et al., 2019a, Kiselev et al., 2018, Butler et al.,
2018b|. None of these currently directly use
spatial information. In contrast, spatial cor-
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relation methods have been used to detect
aggregation of proteins [Shivanandan et al.,
2016]. Shah et al. [2016] use seqFISH to mea-
sure transcript abundance of a set of marker
genes while retaining the spatial coordinates
of the cells. Cells are clustered by gene ex-
pression profiles and then assigned to regions
in the brain based on their coordinates in the
sample. Recently, Edsgérd et al. [2018| pre-
sented a method to detect spatial differential
expression patterns per gene based on marked
point processes [Jacobsen, 2005|. Svensson
et al. [2018a] provided a method to perform a
spatially resolved differential expression anal-
ysis. Here, spatial dependence for each gene
is learned by nonparametric regression, en-
abling the testing of the statistical signifi-
cance for a gene to be differentially expressed
in space.

3.5.2 Open problems

The central problem is to consider gene or
transcript expression and spatial coordinates
of cells, and derive an assignment of cells
to classes, functional groups or cell types.
While methods for both assigning cell types
or functional groups and spatially resolved
gene expression analysis are present, there is
currently no method available that combines
the two by leveraging information from spa-
tial localization to determine the cell type or
find groups of cells that conduct a common
function. Depending on the studied biolog-
ical question, it can be useful to constrain
assignments with expectations on the homo-
geneity of the tissue. For example, a set of
cells grouped together might be required to
appear in one or multiple clusters where lit-
tle to no other cells are present. Such con-
straints might depend on the investigated cell
types or tissues. For example, in cancer, spa-
tial patterns can occur on multiple scales,
ranging from single infiltrating immune cells

19

[Fridman et al., 2011] and minor subclones
[Swanton, 2012]| to larger subclonal structures
or the embedding in surrounding normal tis-
sue and the tumor microenvironment |Cretu
and Brooks, 2007]. Currently, to the best of
our knowledge, there is no method available
that would allow the encoding of such prior
knowledge while inferring cell types by inte-
grating spatial information with transcript or
gene expression. Another important aspect
when modeling the relation between space
and expression is whether uncertainty in the
measurements can be propagated to down-
stream analyses. For example, it is desir-
able to rely on transcript quantification meth-
ods that provide the posterior distribution
of transcript expression [Kharchenko et al.,
2014, Koster et al., 2017| and propagate this
information to the spatial analysis. Finally,
in light of issues with sparsity in single-cell
measurements (section 3.1), it appears desir-
able to integrate spatial information into the
quantification itself, and e.g. use neighboring
cells within the same tissue for imputation
or the inference of a posterior distribution of
transcript expression.

4 Challenges in single-cell
genomics

With every cell division in an organism, the
genome can be altered through mutational
events ranging from point mutations, over
short insertions and deletions, to large scale
copy number variation and complex struc-
tural variants. In cancer, the entire reper-
toire of these genetic events can occur during
disease progression (Figure 4). The resulting
tumor cell populations are highly heteroge-
neous. As tumor heterogeneity can predict
patient survival and response to therapy, in-
cluding immunotherapy, quantifying this het-
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erogeneity and understanding its dynamics
are crucial for improving diagnosis and ther-
apeutic choices (Figure 4).

(Classic bulk sequencing data of tumor sam-
ples taken during surgery are always a mix-
ture of tumor and normal cells (including
e.g. invading immune cells). This means
that disentangling mutational profiles of tu-
mour subclones will always be challenging,
which especially holds for rare subclones that
could nevertheless be the ones e.g. bearing
resistance mutation combinations prior to a
treatment (Figure 4). Here, the sequencing
of (sufficient) single cells holds the exciting
promise of directly identifying and character-
izing those subclone profiles (Figure 4).

4.1 Challenge VI: Improving
single-cell DNA sequencing
data quality and scaling to
more cells

Despite accumulating technological advances
in the field, the task of characterizing tumor
heterogeneity and inferring the evolutionary
mechanisms that give rise to this heterogene-
ity is still hampered by multiple types of er-
rors that occur during the process of scDNA-
seq [Wang and Song, 2017, Hou et al., 2015,
Gawad et al., 2016, Estévez-Gomez et al.,
2018]. DNA sequencing technologies differ in
their protocols of single-cell isolation and ly-
sis, whole genome amplification (WGA), and
library preparation [Zhang et al., 2016]. Fail-
ure of cell isolation leads to the presence—
albeit usually in a small proportion—of dou-
blets instead of single cells and the cell lysis
step can introduce artificial sequence modifi-
cation. The main source of error, however,
is the WGA step. Single cells only carry two
(in case of normal cells) up to tens (in am-
plified regions of disease cells) of copies of
DNA molecules, which need to be substan-

20

tially amplified from pico to nanogram scale
to read their sequence. Amplification-related
artifacts include 1) amplification errors, i.e. se-
quence alterations such as single nucleotide or
indel errors introduced by the polymerase in
the copy process, ii) allelic bias, i.e. the dif-
ferential amplification of the alleles at a ge-
nomic locus (if one allele fails to amplify at
all, this is an allele dropout, if both fail, a
locus dropout), iii) chimeric sequences. The
majority of WGA approaches can be broadly
classified into PCR-based and multiple dis-
placement amplification (MDA )-based meth-
ods. The PCR-based technologies include de-
generate oligonucleotide-primed PCR (DOP-
PCR) [Telenius et al., 1992], linker-adapter
PCR [Klein et al., 1999|, primer extension
pre-amplification PCR (PEP-PCR-/I-PEP-
PCR) [Zhang et al., 1992, Arneson et al.,
2008| and others. They require thermostable
polymerases that withstand all temperatures
during the cycling. More recent MDA-based
technologies use the strand-displacing, high-
fidelity ®29 DNA polymerase |Blanco et al.,
1989, Dean et al., 2002, Spits et al., 2006b,
Picher et al., 2016, Paez et al., 2004, Spits
et al., 2006a| for an isothermal reaction, as
it is not stable at common PCR temperature
maxima. Another approach, called multiple
annealing and looping-based amplification cy-
cles (MALBAC) combines MDA and PCR,
and relies on the Bacillus stearothermophilus
polymerase for the MDA process [Zong et al.,
2012].

4.1.1 Status

Ideally, scDNA-seq should provide informa-
tion about the entire repertoire of distinct
events that occurred in the genome of a single
cell, such as copy number alterations, genomic
rearrangements, together with SNVs and
smaller insertion and deletion variants. How-
ever, amplification biases and errors present a
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Figure 4: From initiation of a tumour to its detection, resection and possible metastasis, it
will evolve somatically. New genomic mutations can confer a selective advantage to the
resulting new subclone, that can allow it to outcompete other tumour subclones (subclone
competition). At the same time, the acting selection pressures can change over time, e.g. due
to new subclones arising, the immune system detecting certain subclones, or as a result of
therapy. Understanding such selective regimes—and how specific mutations alter a subclone’s
susceptibility to changes in selection pressures—will help construct an evolutionary model of
tumorigenesis. And it is only within this evolutionary model, that more efficient and more
patient-specific treatments can be developed. For such a model, unambiguously identifying
mutation profiles of subclones via scDNA-seq of resected or biopsied single cells is crucial.
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a4

serious challenge to variant calling [de Bourcy
et al., 2014, Hou et al., 2015, Huang et al.,
2015, Estévez-Gomez et al., 2018]: It is
broadly accepted that different WGA tech-
nologies should be used depending on whether
SNVs or whether copy number variation
(CNV)s are to be detected, as the distinct
technologies differ in the magnitude of ampli-
fication bias, and the rates of amplification er-
rors and chimera formation. Generally, PCR-
based approaches with more uniform coverage
should be used for CNV calling, while MDA-
based methods that result in less single nu-
cleotide errors should be applied for SNV call-
ing. The goal must thus be to (i) improve the
coverage uniformity of MDA-based methods,
(i) reduce the error rate of the PCR-based
methods, or (iii) create new methods that ex-
hibit both a low error rate and a more uni-
form amplification of alleles. Recent years
witnessed intensive research in these direc-
tions, e.g.: (i) Improved coverage uniformity
for MDA has been achieved using droplet mi-
crofluidics-based methods, resulting in emul-
sion WGA (eWGA, [Fu et al., 2015]), sin-
gle droplet MDA (sd-MDA, [Hosokawa et al.,
2017]) and digital droplet multiple displace-
ment amplification (ddMDA, [Sidore et al.,
2016]).A second approach has been to cou-
ple the ®29 DNA polymerase to a primase
to reduce priming bias [Picher et al., 2016].
Both these approaches improve the calling
of CNVs from the resulting data. (ii) One
way to reduce the amplification error rate
of the PCR-based methods (including MAL-
BAC) would be to employ a thermostable
polymerase (necessary for use in PCR) with
proof-reading activity similar to ®29 DNA
polymerase. While SD polymerase combines
thermostability with strand displacement and
has been tested for WGA |[Blagodatskikh
et al., 2017], we are not aware of any PCR
DNA polymerases with a fidelity in the range
of ®29 DNA polymerase [Potapov and Ong,

22

2017| having been used in PCR-based WGA.
(iii) Three newer methods use an entirely dif-
ferent approach: They randomly insert trans-
posons into the whole genome and then lever-
age these as priming sites for library prepara-
tion and amplification. Direct library prepa-
ration (DLP, |[Zahn et al., 2017a|), as the
name suggests, directly sequences the result-
ing shallow library without any amplification,
allowing only for CNV calling. It has re-
cently been further improved to account for
doublets and dead cells and scaled to 80,000
single cells [Laks et al., 2018]. Transposon
Barcoded (TnBC) follows the transposon in-
tegration with PCR amplification, making it
useful for CNV calling, but suffering from am-
plification errors [Xi et al., 2017|. Finally,
Linear Amplification via Transposon Inser-
tion (LIANTI, [Chen et al., 2017]) introduces
a new approach to dealing with amplifica-
tion errors. Instead of exponential amplifi-
cation, their amplification process is linear:
From promoters included in the transposon
insertion, they transcribe the original tagged
sequence multiple times and then use reverse
transcription and second-strand synthesis to
obtain double-stranded DNA for sequencing.
As errors introduced by the individual pro-
cesses are not propagated, they should be
unique to individual copies and accordingly
the authors report a false positive rate that is
even lower than for MDA [Chen et al., 2017].

4.1.2 Open problems

These recent developments promise scalable
methodology for scDNA-seq comparable to
that already available for scRNA-seq, while
at the same time reducing previously limit-
ing errors and biases. In addition to fur-
ther improvements over the described exist-
ing methods, the major challenge will be to
continuously and systematically evaluate the
whole range of promising WGA methods for
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the identification of all types of genetic varia-
tion from SNVs over smaller insertions and
deletions up to copy number variation and
structural variants.

4.2 Challenge VII: Errors and
missing data in the
identification of features /
variation from single-cell
DNA sequencing data.

The aim of scDNA sequencing usually is to
track somatic evolution at the cellular level,
that is, at the finest resolution possible rela-
tive to the laws of reproduction (cell division,
Figure 5). Examples refer to identifying het-
erogeneity and tracking evolution in cancer,
as the likely most predominant use case (also
see below in section 5), but also to monitor-
ing the interaction of somatic mutation with
developmental and differentiation processes.
To track genetic drifts, selective pressures, or
other phenomena inherent to the development
of cell clones or types (Figure 4)—but also to
stratify cancer patients for the presence of re-
sistant subclones—it is instrumental to geno-
type and also phase genetic variants in single
cells with sufficiently high confidence.

The major disturbing factor in scDNA-seq
data is the WGA process (see section 4.1).
All methodologies introduce amplification er-
rors (false positive alternative alleles), but
more drastic is the effect of amplification bias:
the insufficient or complete failure of am-
plification, which leads to imbalanced pro-
portions or complete lack of variant alleles.
Overall, one can distinguish between three
(i) an imbalanced proportion of al-
leles, i.e. loci harboring heterozygous muta-
tions where preferential amplification of one
of the two alleles leads to read counts that
are distorted, sometimes heavily; (ii) allele
drop-out, i.e. loci harboring heterozygous mu-
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Figure 5: Mutations (colored stars) accumu-
late in cells during somatic cell divisions
and can be used to reconstruct the develop-
mental lineages of individual cells within an
organism (leaf nodes of the tree with muta-
tional presence / absence profiles attached).
However, insufficient or unbalanced WGA
can lead to the dropout of one or both alle-
les at a genomic site. This can be mitigated
by better amplification methods, but also
by computational and statistical methods
that can account for or impute the missing
values.

tations where only one of the alleles was am-
plified and sequenced, and (iii) site drop-out,
which is the complete failure of amplification
of both alleles at a site and the resulting lack
of any observation of a certain position of the
genome. Note that (ii) can be considered an
extreme case of (i).

A sound imputation of missing alleles and
a sufficiently accurate quantification of un-
certainties will yield massive improvements in
geno- and haplotyping (phasing) somatic vari-
ants. This, in turn, is necessary to substan-
tially improve the identification of subclonal
genotypes and the tracking of evolutionary
developments. Potential improvements in this
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area include (i) more explicit accounting for
possible scDNA-seq error types, (ii) integrat-
ing with different data types with error pro-
files different from scDNA-seq (e.g. bulk se-
quencing or RNA sequencing), or (iii) inte-
grating further knowledge of the process of
somatic evolution, such as the constraints of
phylogenetic relationships among cells, into
variant calling models. In this latter context,
it is important to realize that somatic evolu-
tion is asexual. Thus, no recombination oc-
curs during mitosis, eliminating a major dis-
turbing factor usually encountered when aim-
ing to reconstruct species or population trees
from germline mutation profiles.

4.2.1 Status

Current single-cell specific SNV callers in-
clude Monovar |Zafar et al., 2016] and SC-
caller [Dong et al., 2017].  SCcaller de-
tects somatic variants independently for each
cell, but accounts for local allelic amplifi-
cation biases by integrating across neigh-
bouring germline single-nucleotide polymor-
phisms. It exploits the fact that allele drop-
out affects contiguous regions of the genome
large enough to harbor several, and not only
one, heterozygous mutation loci. Monovar
uses an orthogonal approach to variant call-
ing. It does not assume any dependency
across sites, but instead handles low and un-
even coverage and false positive alternative
alleles by integrating the sequencing informa-
tion across multiple cells. While Monovar
merely creates a consensus across cells, in-
tegrating across cells is particularly powerful
if further knowledge about the dependency
structure among cells is incorporated. As
pointed out above, due to the lack of recom-
bination, any sample of cells derived from an
organism shares an evolutionary history that
can be described by a cell lineage tree (see sec-
tion 5). This tree, however, is in general un-
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known and can in turn only be reconstructed
from single-cell mutation profiles. A possible
solution is to infer both mutation calls and
a cell lineage tree at the same time, an ap-
proach taken by a number of existing tools:
single-cell Genotyper |[Roth et al., 2016|, Sci-
CloneFit |Zafar et al., 2018] and Sci® [Singer
et al., 2018|.

Finally, SSrGE, identifies SNVs correlated
with gene expression from scRNA-seq data
[Poirion et al., 2018].

Some basic approaches to CNV calling from
scDNA-seq data are available. These are usu-
ally based on hidden markov models (HMMs)
where the hidden variables correspond to copy
number states, as e.g. in Aneufinder |Bakker
et al., 2016]. Another tool, Ginkgo, pro-
vides interactive CNV detection using circu-
lar binary segmentation, but is only avail-
able as a web-based tool |Garvin et al., 2015].
ScRNA-seq data, which does not suffer from
the errors and biases of WGA, can also be
used to call CNVs or loss of heterozygosity
events: an approach called HoneyBADGER
[Fan et al., 2018| utilizes a probabilistic hid-
den Markov model, whereas the R package
inferCNV simply averages the expression over
adjacent genes [Patel et al., 2014].

4.2.2 Open problems

SNV callers for scDNA-seq data have al-
ready incorporated amplification error rates
and allele dropout in their models. But
beyond these rates, the challenge remains
to further extend this into a full statistical
modelling of the amplification process, that
would inherently account for both errors and
biases, and more accurately quantify the
resulting uncertainties (see section 2.2). This
could be achieved by expanding models that
accurately quantify uncertainties in related
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settings? and would ultimately even allow
reliable control of false discovery rates in the
variant discovery and genotyping process.
Such expanded models can build on a number
of recent studies in this context, e.g. on a
formalisation in a recent preprint [Koptagel
et al., 2018|. Furthermore, such models could
integrate the structure of cell lineage trees
with the structure implicit in haplotypes that
link alleles. For haplotype phasing, Satas
and Raphael [2018| recently proposed an
approach based on contiguous stretches of
amplification bias (similar to SCcaller, see
above), whereas others propose read-backed
phasing in two recent studies [Bohrson et al.,
2019, Hard et al., 2019]. In addition, the
integration with deep bulk sequencing data,
as well as with (sc)RNA-seq data remains
unexplored, although it promises to improve
the precision of callers without compromising
sensitivity.

Identification of short insertions and
deletions (indels) is another major challenge
to be addressed: we are not aware of any
scDNA-seq variant callers with those respec-
tive capabilities.

For copy number variation calling, soft-
ware has previously been published mostly in
conjunction with data-driven studies. Here,
a systematic analysis of biases in the most
common WGA methods for copy number
variation calling (including newer methods
to come) could further inform method devel-
opment. The already mentioned approach
of leveraging amplification bias for phasing
could also be informative [Satas and Raphael,
2018].

The final challenge is a systematic compar-
ison of tools beyond the respective software

’https://varlociraptor.github.io
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publications, which is still lacking for both
SNV and CNV callers. This requires system-
atic benchmarks, which in turn require simu-
lation tools to generate synthetic datasets, as
well as sample-based benchmarking datasets
with a reasonably reliable ground truth (see
section 6.2).

5 Challenges in single-cell
phylogenomics

Single-cell variant profiles from scDNA-seq,
as described above (section 4.2), can be used
in computational models of somatic evolution,
including cancer evolution as an important
special case (Figure 4). For cancer, there is an
on-going, lively discussion about the very na-
ture of evolutionary processes at play, with
competing theories such as linear, branch-
ing, neutral, and punctuated evolution [Davis
et al., 2017].

Models of cancer evolution may range from
a simple binary representation of the pres-
ence versus the absence of a particular mu-
tational event (Figure 5), to elaborate models
of the mechanisms and rates of distinct muta-
tional events. There are two main modeling
approaches that lend themselves to the analy-
sis of tumour evolution [Altrock et al., 2015|:
phylogenetics and population genetics.

Phylogenetics comes with a rich reper-
toire of computational methods for likelihood-
based inference of phylogenetic trees |Felsen-
stein, 1981]. Traditionally, these methods are
used to reconstruct the evolutionary history
of a set of distinct species. However, they can
also be applied to cancer cells or subclones
(Figure 4). In this setting, tips of the phy-
logeny (also called leaves or taxa) represent
sampled and sequenced cells or subclones,
whereas inner nodes (also called ancestral)
represent their hypothetical common ances-
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tors. The input for a phylogenetic inference
commonly consists of a multiple sequence
alignment (MSA) of molecular sequences for
the species of interest. For cancer phyloge-
nies, one would concatenate the SNVs (and
possibly other variant types) to assemble the
input MSA. The key challenge for phyloge-
netic method development comprises design-
ing sequence evolution models that are (i) bio-
logically realistic and yet (ii) computationally
tractable for the increasingly large number of
sequenced cells per patient and study.

In population genetics, the tumor is under-
stood as a population of evolving cells (Fig-
ure 4). To date, population genetic theory
has been used to model the initiation, pro-
gression and spread of tumors from bulk se-
quencing data [Foo et al., 2011, Beerenwinkel
et al., 2007, Haeno et al., 2012]. The general
mathematical framework behind these mod-
els are branching processes [Kimmel and Ax-
elrod, 2015], e.g. in models of the accumula-
tion of driver and passenger mutations [Bozic
et al., 2016, 2010|. Here, the driver mutations
carry a fitness advantage, as might epistatic
interactions among them [Bauer et al., 2014].
On the other hand, passenger mutations are
assumed to be neutral regarding fitness; they
merely hitchhike along the fitness advantage
of driver mutations they are linked to via their
haplotype. The parameters of population ge-
netic models describe inherent features of in-
dividual cells that are relevant for the evolu-
tion of their populations, e.g. fitness and the
rates of birth, death, and mutations. Such
cell-specific parameters should more naturally
apply to and be derived from information
gathered by sequencing of individual cells, as
opposed to sequencing of bulk tissue samples.
Models using these parameters and the in-
formation about the evolutionary dynamics
of cancer they contain, will e.g. be essential
in the design of adaptive cancer treatment
strategies that aim at managing subclonal tu-

26

mour composition [Acar et al., 2019, Zhang
et al., 2017].

5.1 Challenge VIII: Scaling
phylogenetic models to many
cells and many sites

Even if given perfect data, phylogenetic mod-
els of tumor evolution would still face the
challenge of computational tractability, which
is mainly induced by: (i) the increasing num-
bers of cells that are sequenced in cancer
studies (see section 2.3) and (ii) the increas-
ing numbers of sites that can be queried per
genome (also see section 2.3).

5.1.1 Open problems

(i) While adding data from more single cells
will help improve the resolution of tumour
phylogenies |Graybeal, 1998, Pollock et al.,
2002|, this exacerbates one of the main chal-
lenges of phylogenetic inference in general:
the immense space of possible tree topologies
that grows super-exponentially with the
number of taxa—in our case the number of
single cells. Therefore, phylogenetic inference
is NP-hard [Roch, 2006] under most scoring
criteria (a scoring criterion takes a given
tree and MSA to calculate how well the tree
explains the observed data). Calculating the
given score on all possible trees to find the
tree that best explains the data is compu-
tationally not feasible for MSAs containing
more than approximately 20 single cells, and
thus requires heuristic approaches to explore
only promising parts of the tree search space.

(ii) In addition to the growing number of
cells (taxa), the breadth of genomic sites and
genomic alterations that can be queried per
genome also increases. Classical approaches
thus need not only scale with the number of
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single cells queried (see above), but also with
the length of the input MSA. Here, previ-
ous efforts for parallelization [Aberer et al.,
2014, Ayres, 2017] and other optimisation ef-
forts [Ogilvie et al., 2017] exist and can be
built upon. The breadth of sequencing data
also allows determination of large numbers of
invariant sites, which further raises the ques-
tion of whether including them will change
results of phylogenetic inferences in the con-
text of cancer. Excluding invariant sites from
the inference has been coined ascertainment
bias, and for phylogenetic analyses of closely
related individuals from a few populations it
has been shown that accounting for ascertain-
ment bias alters branch lengths, but not the
resulting tree topologies per se [Leaché et al.,
2015].

5.2 Challenge IX: Integrating
multiple types of features /
variation into phylogenetic
models

Naturally, downstream analyses—like charac-
terising intratumor heterogeneity and infer-
ring its evolutionary history—suffer from the
unreliable variant detection in single cells.
The better the quality of the variant calls
gets, however, the more important it becomes
to model all types of available signal in math-
ematical models of tumour evolution, with
the goal of increasing the resolution and re-
liability of the resulting trees; from SNVs,
over smaller insertions and deletions, to large
structural variation and CNVs (Figure 4). Fi-
nally, to model somatic phylogenies compre-
hensively, all available types of variants will
have to be integrated into a comprehensive
model. In the context of cancer, with ge-
nomic destabilisation occurring, this will be
especially challenging.

27

5.2.1 Status

For phylogenetic tree inference from SNVs of
single cells, a considerable number of tools
exist. The early tools OncoNEM [Ross and
Markowetz, 2016] and SCITE [Jahn et al.,
2016 use a binary representation of presence
or absence of a particular SNV. They account
for false negatives, false positives and missing
information in SNV calls, where false nega-
tives are orders of magnitude more likely to
occur than false positives. The more recent
tool SiFit |Zafar et al., 2017] also uses a binary
SNV representation, but infers tumor phylo-
genies allowing for both noise in the calls and
for violations of the infinite sites assumption.
Another approach allowing for violations of
the infinite sites assumption is the extension
of the Dollo parsimony model to allow for k
losses of a mutation (Dollo-k) [El-Kebir, 2018,
Ciccolella et al., 2018]. Single cell genotyper
[Roth et al., 2016|, SciCloneFit |Zafar et al.,
2018, or Sci® [Singer et al., 2018 jointly call
mutations in individual cells and estimate the
tumor phylogeny of these cells, directly from
single-cell raw sequencing data. In a recent
work [Kozlov, 2018|, a standard phylogen-
tic inference tool RAXML-NG [Kozlov et al.,
2019] has been extended to handle single-cell
SNV data. In particular, this implements
(i) a 10-state substitution model to represent
all possible unphased diploid genotypes and
(ii) an explicit error model for allelic dropout
and genotyping/amplification errors.  Ini-
tial experiments showed that—although a 10-
state model incorporates more information—
it outperformed the ternary model (as used
by SiFit) only slightly and only in simulations
with very high error rates (10%-50%). How-
ever, further analysis suggests that benefits of
the genotype model become much more pro-
nounced with an increasing number of cells
and, in particular, an increasing number of
SNVs (Kozlov, personal communication).
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While there are no tools yet available to
identify insertions and deletions from scDNA-
seq (see challenge above), it is only a matter
of time until such callers will become avail-
able. As they can already be identified from
bulk sequencing data, some precious efforts
to incorporate indels in addition to substitu-
tions into classical phylogenetic models exist:
A decade ago, a simple probabilistic model
of indel evolution was proposed [Rivas and
Eddy, 2008]. But although some progress
has been made since then, such models are
less tractable than the respective substitution
models [Holmes, 2017].

Incorporating CNVs in the reconstruction
of tumor phylogeny can be helpful for un-
derstanding tumor progressions, as they rep-
resent one of the most common mutation
types associated to tumor hypermutability
[Kim et al., 2013]. CNVs in single cells were
extensively studied in the context of tumor
evolution and clonal dynamics [Navin et al.,
2011, Eirew et al., 2015]. Reconstructing a
phylogeny with CNVs is not straightforward.
The challenges are not only related to ex-
perimental limits, such as the complexity of
bulk sequencing data |Zaccaria et al., 2017]
and amplification biases |Gawad et al., 2016],
but also involve computational constraints.
First of all, the causal mechanisms, such as
breakage-fusion-bridge cycles |Bignell et al.,
2007] and chromosome missegregation [San-
taguida et al., 2017], can lead to overlapping
copy number events [Schwarz et al., 2014].
Secondly, inferring a phylogeny with CNV
data requires quantifying transition proba-
bilities for changes in copy numbers based
on the causal mechanisms. Towards that
goal, approaches to calculate the distance be-
tween whole copy number profiles |Zeira and
Shamir, 2018] are a first step. But for them,
a number of challenges remain, with several
of the underlying problems known to be NP-
hard |Zeira and Shamir, 2018|.

28

Co-occurrence of all of the above variation
types further complicates mathematical mod-
eling, as these events are not independent.
For example, multiple SNVs that occurred in
the process of tumor evolution may disappear
at once via a deletion of a large genomic
region. In addition, recent analyses revealed
recurrence and loss of particular mutational
hits at specific sites in the life histories of
tumors [Kuipers et al., 2017|, undermining
the validity of the so called infinite sites
assumption, commonly made by phylogenetic
models: it assumes an infinite number of
genomic sites, thus rendering a repeated
mutational hit of the same genomic site along
a phylogeny impossible.

5.2.2 Open problems

For phylogenetic reconstruction from SNVs,
we anticipate a shift towards leveraging im-
provements in input data quality as they are
achieved through better amplification meth-
ods and SNV callers (see challenges above).
For indels, variant callers for scDNA-seq data
remain to be developed (see challenge above),
but are anticipated. Thus, indel modelling
efforts for phylogenetic reconstruction from
bulk sequencing data should be adapted. For
phylogenetic inference from CNVs, the ma-
jor challenges are (i) determining correct mu-
tational profiles and (ii) computing realis-
tic transition probabilities between those pro-
files.

The final challenge will be to incorporate all
of the above phenomena into a holistic model
of cancer evolution. However, this will sub-
stantially increase the computational cost of
reconstructing the evolutionary history of tu-
mor cells. Thus, one needs to carefully de-
termine which phenomena actually do mat-
ter (e.g. which parameters even affect the fi-
nal tree topology) and which features can be
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measured (section 4.1) and called (section 4.2)
with sufficient accuracy to actually improve
modelling results. As a consequence one
might be able to devise more lightweight mod-
els for answering specific questions and in-
vest considerable effort into optimizing novel
tools at the algorithmic and technical level
(see challenge below).

5.3 Challenge X: Inferring
population genetic
parameters of tumor
heterogeneity by model
integration

Tumor heterogeneity is the result of an evo-
lutionary journey of tumor cell populations
through both time and space [Swanton, 2012,
McGranahan and Swanton, 2017]. Microen-
vironmental factors like access to the vascu-
lar system and infiltration with immune cells
differ greatly—for regions within the origi-
nal tumor as well as between the main tu-
mour and metastases, and across different
time points |[Yang and Lin, 2017]. This im-
poses different selective pressures on differ-
ent tumour cells, driving the formation of tu-
mour subclones and thus determining disease
progression (including metastatic potential),
patient outcome and susceptibility to treat-
ment (Junttila and de Sauvage [2013], Corre-
dor et al. [2018] and Figure 4). However, even
the answers to very basic questions about the
resulting dynamics remain unanswered |Tura-
jlic and Swanton, 2016|: for example, whether
metastatic seeding from the primary tumor
occurs early and multiple times in parallel,
with metastases diverging genetically from
the primary tumor, or whether seeding of
metastases occurs late, from a far-developed
subclone in the primary tumour, with that
subclone seeding multiple locations with a
genotype closer to the late-stage primary tu-
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mour; and whether a single cell can seed a
metastasis, or whether the joint migration of
a set of cells is required. Here, sc-seq can pro-
vide invaluable resolution [Navin et al., 2011].

Although many mathematical models of
tumor evolution have been proposed [Bozic
et al., 2010, 2016, Altrock et al., 2015, Foo
et al., 2011, Michor et al., 2004], fundamen-
tal parameters characterizing the evolution-
ary processes remain elusive. To quantita-
tively describe the tumor evolution process
and evaluate different possible modes against
each other (e.g. modes of metastatatic seed-
ing), we would like to estimate fitness values
of individual mutations and mutation combi-
nations, as well as rates of mutation, cell birth
and cell death—if possible, on the level of sub-
clones. These parameters determine the un-
derlying fitness landscape of individual cells
within their microenvironment, which in turn
determines the evolutionary dynamics of can-
cer progression.

5.3.1 Status

Recent technological advances already allow
for measuring the arrangement and relation-
ships of tumor cells in space, with cell loca-
tion basically amounting to a second measure-
ment type requiring data integration within
a cell (Approach 3 in section 6.1, Figure 6
and Table 2). While in vivo imaging tech-
niques might also become interesting for ob-
taining time series data in the future |Larue
et al., 2017|, the automated analysis of whole
slide immunohistochemistry images [Ghaz-
navi et al., 2013, Saco et al., 2016] seems
the most promising in the context of cancer
and mutational profiles from scDNA-seq. It
is already amenable to single-cell extraction
of characterised cells with known spatial con-
text and subsequent scDNA-seq. Using laser
capture microdissection [Datta et al., 2015]
hundreds of single cells have recently been
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isolated from tissue sections and analysed
for copy number variation [Casasent et al.,
2018|. For cell and tissue characterisation in
immunohistochemical images, machine learn-
ing models are trained to segment the im-
ages and recognize structures within tissues
and cells [Gurcan et al., 2009, Irshad et al.,
2014, Komura and Ishikawa, 2018|: They can
e.g. determine the densities and quantities
of mitotic nuclei, vascular invasion, immune
cell infiltration on the tissue level, as well as
stained biomarkers on the level of the individ-
ual cell. These are key parameters of the tu-
mor microenvironment, characterising the in-
teraction tumor cells with their environment
in space [Yuan, 2016, Heindl et al., 2015].

Mathematical models of tumor popula-
tion genetics have classically assumed well
mixed populations, ignoring any spatial struc-
ture, let alone evolutionary microenviron-
ments.  Recently, methods have been ex-
tended to account for some spatial structure
and have already led to refined predictions of
the waiting time to cancer |[Martens et al.,
2011] and intratumor heterogeneity |[Waclaw
et al., 2015|. In particular, spatial statistics
has been proposed for the quantitative sta-
tistical analysis of cancer digital pathology
imaging [Heindl et al., 2015|, but the idea
is applicable to other spatially resolved read-
outs. A number of methods were proposed
to model cell-cell interactions [Schapiro et al.,
2017, Arnol et al., 2018| or to predict single-
cell expression from microenvironmental fea-
tures |Goltsev et al., 2018, Battich et al.,
2015]. With the advent of spatially resolved
DNA sequencing, models can be adapted to
the new data.

Regarding temporal resolution, it is already
common to sequence tumor material from
different timepoints: biopsies used for diag-
nosis, resected tumours, lymph nodes and
metastases upon surgery and tumours after
relapse. These time-points already lend them-
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selves to temporal analyses of clonal dynam-
ics using bulk DNA sequencing data [John-
son et al., 2014]. But scDNA-seq will help
to increase the resolution of subclonal geno-
types. And integrating this clonal stratifica-
tion across timepoints and with other read-
outs, such as cell state markers, will allow
to determine central model parameters for
the detection of positive and negative selec-
tion, e.g. rates of proliferation, mutation and
death.

To also leverage the kinship relationships
between cells, population genetic methods
and models could be integrated with ap-
proaches from phylogenetics. One prominent
example of this recent trend is the use of the
multi-species coalescent model for analyzing
MSAs that contain several individuals for sev-
eral populations [Rannala and Yang, 2017,
Liu et al., 2015]. This naturally translates
into analyzing tumour subclones as popula-
tions of single cells, capturing some of the
population structure seen in cancers. This
phylogenetic context also lends itself to mod-
elling differences in mutational rates and sig-
natures between different cell populations,
e.g. between normal somatic evolution before
tumour initiation and cancer evolution after
tumour initiation, or between different tumor
subclones.

In this setting, we will have to account
for heterotachy (see e.g. Kolaczkowski and
Thornton [2008]), that is, we cannot assume
a single model of substitution for the entire
tree, but have to allow different models to act
on distinct branches or subtrees/subclones.
Here, anything from a simple model of rate
heterogeneity (e.g. Yang [1994]) to an empir-
ical mixture model as used for protein evolu-
tion |Le et al., 2012] could be considered.

A recent example integrating population
genetics approaches with phylogenetics, is a
computational model for inference of fitness
landscapes of cancer clone populations using
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sDNA-Seq data, SCIFIL [Skums et al,
2019]. It estimates the maximum likelihood
fitness of clone variants by fitting a replicator
equation model onto a character-based tumor

phylogeny.

For the detection of positive selection, a
number of phylogenetic and population ge-
netic approaches have been proposed. Phy-
logenetic trees may be used for detecting
branches on which positive [Zhang et al.,
2005] or diversifying episodic selection [Smith
et al., 2015 is acting. The tests from the
area of “classic” phylogenetics might serve as
a starting point for exploring and adapting
appropriate methods that will allow to asso-
ciate positive selection events to branches of
the tumor tree or specific evolutionary events.
Evolutionary pressures are often quantified by
the dN/dS ratio of non-synonymous and syn-
onymous substitutions. In application to tu-
mor cell populations, however, this ratio may
not be applicable, as it has been shown to be
relatively insensitive when applied to popula-
tions within the same species |[Kryazhimskiy
and Plotkin, 2008]. Other measures have been
proposed as better suited for detecting selec-
tion within populations based on time-series
data and could potentially be transferred to
tumor cell populations |[Neher et al., 2014,
Gray et al., 2011, Steinbriick and McHardy,
2011]. An open question is to which extent
the above tests will be sensitive to errors in
cancer data as they are known to produce
high false positive rates in the classic phyloge-
netic setting if the error rate in the input data
is too high [Fletcher and Yang, 2010]. Com-
putationally intense solutions for decreasing
the high false positive rate have been pro-
posed [Redelings, 2014|, but they might not
scale to cancer datasets. Importantly, devel-
opment of tests for positive selection could
contribute to the discussion of whether the
evolution of tumors is driven by selection or
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neutral.

For the detection of negative selection, time
resolved measurements and resulting prolif-
eration and death rates could prove equally
promising.  Further, approaches were de-
veloped to discover epistatic interactions—
particularly synthetic lethality—from ge-
nomic and transcriptomic data in tumor
genomes and cancer cell lines [Szczurek et al.,
2013, Jerby-Arnon et al., 2014], and patient
survival [Matlak and Szczurek, 2017]. Some
of these epistatic interactions, however, can
be hard to spot in bulk sequencing data, as
they may simply disappear because of a low
frequency. ScDNA-seq, ideally in a time re-
solved fashion and across individuals, pro-
vides much more insight into epistatic inter-
actions than bulk sequencing. The key fea-
ture is that it is possible to identify pairs of
mutations that often occur simultanously in
the same genome, and pairs that rarely or
never do. That is, cells affected by nega-
tively selected or synthetic lethal mutations
will go extinct in the tumor population and
thus their genotype with the synthetic lethal
mutations occurring together will not be ob-
served. Cell death, however, can be the result
of mere chance, so to detect significant nega-
tive pressures, large cohorts of repeated time
resolved experiments would have to be per-
formed.

5.3.2 Open problems

With an increased resolution of scDNA-seq
(section 4.1) and more work on the scDNA-
seq challenges described in other sections, it
will be possible to determine subclone geno-
types in more detail.

The first challenge will be to integrate
this with the spatial location of single cells
obtained from other measurements. This
will enable determining whether cells from
the same subclones are co-located, whether
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metastases are founded recurrently by the
same subclone(s) and whether individual
metastases are founded by individual or mul-
tiple subclones. A number of studies utilizing
multiple region samples from the same tumor
and from distant metastases already paved
the way in investigating these questions [Tu-
rajlic and Swanton, 2016]. Still, only single-
cell spatial resolution will allow identification
of specific individual genotypes in specific lo-
cations and the drawing precise conclusions.

The second challenge will be to determine
rates of proliferation and death per subclone.
This could be achieved by measuring num-
bers of mitotic and apoptotic cells per sub-
clone or by integrating subclone abundance
profiles across time points. Good estimates
of these basic parameters will greatly benefit
models, e.g. for the detection of positive and
negative selection in cancer.

A third challenge will be to determine
subclone-specific rates of mutation. Here, in-
tegration of models from population genetics
and phylogenetics holds promise.

A fourth challenge will be to devise ways
to determine further relevant model parame-
ters. For example, comparing expanded sub-
clones in drug screens to determine subclone
fitness under different treatment regimes can
both help to predict subclone resistance (and
thus expected treatment success) and further
inform cancer evolution models.

A final step will then be to put all these
parameters into context with further infor-
mation about local microenvironments (such
as vascular invasion and immune cell infiltra-
tion), to estimate the selection potential of
such local factors for or against different sub-
clones.

32

6 Overarching challenges

6.1 Challenge XI: Integration of
single-cell data: across
samples, experiments and
types of measurement

Biological processes are complex and dy-
namic, varying across cells and organisms. To
comprehensively analyze such processes, dif-
ferent types of measurements from multiple
experiments need to be obtained and inte-
grated. Depending on the actual research
question, such experiments will refer to dif-
ferent time points, tissues or organisms. For
different measurement types, we put particu-
lar emphasis on the combination of scRNA-
seq and scDNA-seq data, although augment-
ing sequencing data with records on protein
or metabolite levels is also possible.

Since the exploration of complex, dynamic
and variable processes requires the integration
of data from multiple experiments, we need
flexible but rigorous statistical and compu-
tational frameworks to support that integra-
tion. See Table 2 and Figure 6 for an overview
of how the issues in creating such frameworks
can vary relative to the particular problem?.

When aiming at the identification of pat-
terns of differential expression, so as to char-
acterize variability across organisms, individ-
uals, or location, data refers to the same
(unique) measurement type (for example,
only scRNA-seq), but stems from different
time points, different locations (such as dif-
ferent tissues or sites in a tumor), or different
organisms. See Approach 1 in Figure 6 and
Table 2 for methodological challenges arising

3Graph representation in Figure 6 Approaches 2 and
5 taken from Wolf et al. [2019], Fig. 3, provided
under Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/
licenses/by/4.0/)
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Figure 6: Approaches for integrating single-cell measurement datasets across measurement
types, samples and experiments, as also described in Table 2.
Approach 0 Clustering of cells from one sample from one experiment, no data integration is
needed. Approach 1 Cell populations / clusters from multiple samples but the same mea-
surement type need to be linked. Approach 2 For cell populations / clusters across multiple
experiments, stable reference systems like cell atlases are needed (compare Figure 1). Ap-
proach 3 Whenever multiple measurement types can be obtained from the same cell, they
are automatically linked. However, this setup highlights the problem of data sparsity of all
available measurement types and the dependency of measurement types that needs to be
accounted for. Approach 4 When multiple measurement types cannot be obtained from
the same cell, a solution is to obtain them from cells of the same cell population. However,
this combines the problems of Approach 1 with those of Approach 3. Approach 5 One
possibility for easing data integration across measurement types from separate cells would
be to have a stable reference (cell atlas) across multiple measurement types. Effectively, this
combines the problems of Approaches 2, 3 and 4.
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Integration example MTs example AMs Promises Challenges
none scDNA-seq, clustering / identify new cell technical noise
scRNA-seq, unsupervised types and states
merFISH
within 1 MT, scDNA-seq, differential identify effects technical noise; batch effects;
within 1 exp, scRNA-seq, analyses, across sample validate cell type assignments
across > 1 smps  merFISH time series, groups, time and
spatial sampling space

within 1 MT, scRNA-seq, map cells to accelerate analyses; technical noise; batch effects;
across > 1 exp, merFISH stable reference increase sample size validate cell type assignments;
across > 1 smps, (cell atlas) & generalize obser- standards across experimental

vations centres
across > 1 MTs, scG&T-seq, MOFA, holistic view of biol. scaling cell throughput;
within 1 exp, scM&T-seq, DIABLO, processes within MT combinations limited;
within 1 cell seqFISH MINT cell; dependency of MTs;

quantification of data sparsity

dependency of MTs
across > 1 MTs, scDNA-seq + Cardelino, use existing datasets technical noise;
within 1 exp, scRNA-seq, Clonealign, (faster than 3); validate cell / data grouping;
across > 1 cells, DNA-seq + MATCHER flexible experimen- test assumptions for integrating
within 1 cell pop scRNA-seq tal design data
across > 1 MTs,  hypothetical: hypothetical: comprehensive char- all from approaches 2, 3 & 4;
across > 1 exps, any combina- multi-omic acterizations of bio- standards across experimental
across > 1 smps, tion HCA, logical systems centres
within cells single-cell

TCGA

Table 2: Approaches for data integration and their potential.

Abbreviations: AM — analysis method; exp(s) — experiment(s); HCA — human cell atlas;
MT — measurement type; smps — samples; TCGA — The Cancer Genome Atlas

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.27885v1 | CC BY 4.0 Open Access | rec: 6 Aug 2019, publ: 6 Aug 2019




10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

a4

from this scenario.

Another scenario arises when aiming at a
general increase in sample sizes, so as to gen-
eralize (and statistically corroborate) obser-
vations. The increase in generality may fur-
ther support the construction of a reference
system, such as a cell atlas, the existence of
which can support decisive speed-ups when
classifying cells or cell states, investigated in
subsequent experiments (see section 3.3). In-
creasing sample sizes often means that data is
raised across multiple experiments of identi-
cal setup, for example experimental replicates
possibly raised in different laboratories, such
that statistically accounting for batch effects
is a decisive factor. See Approach 2 in Fig-
ure 6 and Table 2 for respective methodolog-
ical challenges.

Yet another scenario manifests when try-
ing to unravel complexity and coordination
of intracellular biological processes, as well
as their mutual dependencies, so as to draw
a comprehensive picture of a single cell. In
this, an optimal setup is to raise data from
just one single cell across multiple experi-
ments referring to different types of mea-
surements, such as scDNA-seq, scRNA-seq,
possibly further augmented by measurements
of chromatin accessibility, gene methylation,
proteins or metabolites. See Approach 3 in
Figure 6 and Table 2 for this scenario.

Co-measuring different and possibly con-
curring types of quantities, for example
scRNA-seq and scDNA-seq [Kong et al.,
2019|, in just one single cell can be experi-
mentally challenging or even just impossible
at this point in time. An exit strategy to this
problem is to raise a population of cells that
is coherent in terms of cell type and state.
One then spreads the different measurements
across several single cells, all of which are
drawn from this population. Upon having ap-
plied the different measurements on different
single cells, one needs to combine the data

35

raised in a way that is biologically meaning-
ful, respecting that each measurement stems
from a different cell. Note that this approach
encompasses the possibility to raise data both
from single cells, and from bulks of cells. An
example for the latter are bulk sequencing de-
rived genotypes which one uses for imputa-
tion of missing values or the quantification of
data that have remained uncertain in single
cells that stem from the same population as
the bulk. The integration of different types of
data raised across multiple single cells, pos-
sibly including bulk data, casts issues that
deserve attention in their own right (see Ap-
proach 4 in Figure 6 and Table 2), because
these issues can substantially differ from the
methods referring to Approach 3.

The most comprehensive goal, finally, may
be to gain deeper insight into the complexity
of (intra-) cellular circuits, and to chart
their variability across time, tissues, and
populations. Mapping cellular circuits in this
comprehensive manner requires to take com-
plementary and concurring measurements
in single cells and across multiple single
cells, possibly also across time, tissues and
populations. Approach 5 in Figure 6 and
Table 2 deals with this holistic approach to
examining single cells. The ultimate goal is
to comprehensively characterize biological
systems, which requires to operate at the
single-cell level, because one would not gain
sufficient insight otherwise.

The challenges just outlined in terms of Ap-
proaches 1-5 in Figure 6 and Table 2 all are
affected by the issues that influence single-
cell data analysis in general, namely: (i) the
varying resolution levels that are of interest
depending on the research question at hand
(section 2.1); (ii) the uncertainty of any mea-
surements and how to quantify it for and dur-
ing the analyses (section 2.2) and (iii) the
scaling of single-cell methodology to more
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cells and more features measured at once (sec-
tion 2.3). All of these further compound the
most important challenge in the integration
of single-cell data: to link data from the dif-
ferent sources in a way that is biologically
meaningful and supports the intended anal-
ysis. It is an immediate insight that the
maps that describe how data from the differ-
ent sources is linked, increase in complexity
on increasing amounts of samples, time points
and types of measurements (Figure 6, Ta-
ble 2): Linking multiple samples referring to
the same quantity measured within one exper-
iment (Approach 1 in Figure 6 and Table 2)
or across several experiments (Approach 2)
needs to account for batch effects. Of course,
whenever possible, batch effects should be
minimized by establishing (global) standards
affecting experimental centres worldwide to
streamline common initiatives. Nevertheless,
even if standards have been successfully es-
tablished, additional validation of, for exam-
ple, assignments of cells to types and states
may be required.

The integration of measurements on mul-
tiple quantities (such as scRNA-seq and
scDNA-seq) raised in one single cell (Ap-
proach 3) needs to account for dependencies
if phenomena are concurrent. An illustrative
example is to measure copy number variation
(through scDNA-seq) or methylation so as to
investigate their effects on RNA levels (mea-
sured through scRNA-seq).

Linking multiple types of measurement
across different cells from the same cell pop-
ulation (Approach 4) may require the group-
ing of cells after experiments have been per-
formed, because only then does disturbing
variability among the (prior to the experiment
assumed coherent) different cells become ev-
ident. An example is to group cells based
on commonalities or differences in their geno-
type profile, having become evident only after
the application of a scDNA-seq experiment.
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Any assumptions that underlie these possible
groupings need to resist thorough statistical
testing and functional validation.

6.1.1 Status

For unsupervised clustering (Approach 0 in
Figure 6 and Table 2), method development is
a well-established field. Remaining challenges
have already been identified systematically,
see Duo et al. [2018], Freytag et al. [2018],
Kiselev et al. [2019].

For integrating multiple datasets of the
same measurement type across different sam-
ples in one experiment (Approach 1), a few
approaches are available.  See for exam-
ple MNN |[Haghverdi et al., 2018|, and the
methodologies included in the Seurat pack-
age [Satija et al., 2015, Butler et al., 2018b,
Stuart et al., 2018]. For the challenges and
promises referring to the integration of sc-seq
data that vary in terms of spatial and tempo-
ral origin, see the discussions in the section 3.5
and section 5.3 below.

For integrating multiple datasets of the
same measurement type across erperiments
(Approach 2), mapping cells to reference
datasets such as the Human Cell Atlas [Regev
et al., 2017] are currently emerging as the
most promising strategy. We refer the reader
to more particular and detailed discussions in
section 3.3. If applicable reference systems
are not available (note that the human cell
atlas is not yet fully operable), assembling
cell type clusters from different experiments
is a reasonable strategy, as implemented by
several recently published tools [Zhang et al.,
2018, Barkas et al., 2018, Gao et al., 2018,
Kiselev et al., 2018, Park et al., 2018, Wag-
ner and Yanai, 2018, Boufea et al., 2019, Jo-
hansen and Quon, 2019, Johnson et al., 2019].

The integration of data raised from one cell,
referring to multiple types of measurements
(Approach 3) is described in some particular

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.27885v1 | CC BY 4.0 Open Access | rec: 6 Aug 2019, publ: 6 Aug 2019

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

a4

experimental protocols that address the issue
[Macaulay et al., 2017]. These focus on com-
bining scDNA-seq and scRNA-seq (Dey et al.
[2015], Macaulay et al. 2016, 2017]), methyla-
tion data and scRNA-seq [Angermueller et al.,
2016], or even all of scRNA-seq, scDNA-seq,
methylation and chromatin accessibility data
[Clark et al., 2018]|, or targeted queries on a
cell’s methylation, transcription (scRNA-seq)
and genotype status (sc-GEM, Cheow et al.
[2016]). Beyond these single-cell specific ap-
proaches, bulk approaches that address the
integration of data from different types of ex-
periments have the potential to be leveraged
to account for single-cell specific noise char-
acteristics or adapted to also qualify for cor-
responding single-cell analyses (MOFA, Arge-
laguet et al. [2018]), DIABLO |[Rohart et al.,
2017b, Singh et al., 2018] and MINT |[Rohart
et al., 2017a).

For the integration of different measure-
ments performed on several cells all of which
stem from a population of cells that is co-
herent with respect to the intended analysis
(Approach 4), technologies such as 10X ge-
nomics |[Zheng et al., 2017] for scRNA-seq
and direct library preparation (DLP, Zahn
et al. [2017b]) for scDNA-seq establish an ex-
perimental basis. As above-mentioned, the
greater analytical challenge is to, upon hav-
ing performed experiments, identify subpop-
ulations that had hitherto remained invis-
ible, and whose identification is crucial so
as to not combine different types of data
in mistaken ways. An example for this are
the identification of cancer clones although
single cells had been sampled from identi-
cal tumor tissue—only performing scDNA-
seq experiments can definitively reveal the
clonal structure of a tumor. If one wishes
to correctly link mutation with transcription
profiles—the latter of which are examined via
scRNA-seq experiments—ignoring the clonal
structure of a tumor would be misleading.
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Several analytical methods that address this
problem have recently emerged: (i) clonealign
[Campbell et al., 2019] assumes a copy-num-
ber dosage effect on transcription to assign
gene expression states to clones. (ii) cardelino
[McCarthy et al., 2018| aligns clone-specific
SNVs in scRNA-seq to those inferred from
bulk exome data to infer clone-specific ex-
pression patterns. (iii) MATCHER [Welch
et al., 2017] uses manifold alignment to com-
bine scM&T-seq [Angermueller et al., 2016]
with sc-GEM [Cheow et al., 2016|, leverag-
ing the common set of loci. All of these
methods are based on biologically coherent
assumptions on how to summarize measure-
ments across different types and samples in a
reasonable way, despite their different physi-
cal origin.

6.1.2 Open problems

Experimental technologies that deal with tak-
ing measurements of different kinds on one
single cell (Approach 3 in Figure 6 and Ta-
ble 2) are on the rise and will allow to as-
say more cells at higher fidelity and reduced
cost. Yet, however, many methods for evau-
lating combinations of different types of mea-
surements performed on one single cell have
not been in the focus. It is to be expected
that the corresponding open problems will be-
come more urgent. As an example, consider
combined measurements of scDNA-seq and
scRNA-seq, where one uses the transcripts de-
rived from the latter to impute missing values
in the genotype profile derived from the first.

While this may make Approach 4 look as
if becoming gradually obsolete, the advances
with respect to Approach 3 and the corre-
sponding advances in terms of the resolution
of how intracellular measurements of different
types are linked with one another will benefit
from ground work on Approach 4. Further,
work using Approach 4 will mean a boost for
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reference systems, such as cell atlases (see also
Approach 2), because our understanding of
the link between the different substrates mea-
sured will improve. As an example consider
how gene expression increases on increasing
genomic copy number, known as measure-
ment linkage [Loper et al., 2019|, are impor-
tant to account for in such a reference system.
This, in turn, will yield techniques that map
different cellular quantities with greater ac-
curacy, eventually allowing analyses at higher
resolution and finer granularity. As a con-
sequence, approaches that address taking dif-
ferent measurement across different cells from
the same population (Approach 4) will deliver
more finegrained results, hence also thanks to
these approaches being easier to perform and
being more cost efficient, likely will not expe-
rience a loss in popularity.

As just mentioned, advances with respect
to Approach 3 and 4 will be partially based on
advances in terms of mappings that connect
cells across their types and states, see Ap-
proach 2. With combinations of measurement
types gradually being shifted in the focus of
attention, extensions of Approach 2 (which
predominantly addresses how to connect dif-
ferent cells based on a single measurement)
are necessary. These extensions will have to
address how to connect different cells also in
terms of multiple types of measurements, or
even combinations thereof, such as integrative
genotype-expression-profiles (raised by evalu-
ating combined experiments on both scRNA-
seq and scDNA-seq, for example), which
points out the need for improvements address-
ing Approach 5.

Amounts of material that underlie most
measurements will remain tiny, oftentimes
limited by the amounts within a single cell
and by a limited number of cells available
from a particular cell population. This means
that one overarching theme will persist: that
the analyses we have just discussed will suf-
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fer from missing entire views—samples, time
points, or measurement types missing entirely
at the time of training models or mapping
quantities on one another. This will add to
the difficulties in terms of missing data one
experiences in non-integrative approaches.

6.2 Challenge XII: Validating
and benchmarking analysis
tools for single-cell
measurements

With the advances in sc-seq and other single-
cell technologies, more and more analysis
tools become available for researchers, and
even more are being developed and will be
published in the near future. Thus, the need
for datasets and methods that support sys-
tematic benchmarking and evaluation of these
tools is becoming more pressing. To be useful
and reliable, algorithms and pipelines should
be able to pass the following quality control
tests: (i) They should produce the expected
results (e.g. reconstruct phylogenies, estimate
differential expressions or cluster the data) of
high quality and outperform existing meth-
ods, if such methods exist. (ii) They should
be robust to high levels of sequencing noise
and technological biases, including PCR bias,
allele dropout and chimeric signals. In any
case, benchmarking should be conducted in a
systematic way, following established recom-
mendations [Mangul et al., 2019, Weber et al.,
2019].

Evaluation of tool performance requires
benchmarking datasets with known ground
truth. Such data should include cell popula-
tions with known genomic compositions and
population structures, i.e. where frequencies
of clones and alleles are known. Currently,
such datasets are scarce—with some notable
exceptions |Griin et al., 2014, Tian et al.,
2019]—because generating them in genuine
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laboratory settings is time-, labor- and cost-
intensive. Experimental benchmark datasets
for evolutionary analysis of single-cell pop-
ulations are even harder to obtain, as they
require follow-up samples with known infor-
mation about evolutionary trajectories and
developmental times. With lack of time-
resolved measurements, only anecdotal evi-
dence exists on, for instance, how the ac-
curacy of phylogenetic inferences is affected
by data quality. Availability of such gold-
standard datasets would benefit single-cell ge-
nomics research enormously.

Due to aforementioned difficulties, the most
affordable sources of benchmarking and vali-
dation data are in silico simulations. Simula-
tions provide ground truth test examples that
can be rapidly and cost-effectively generated
under different assumptions. However, devel-
opment of reliable simulation tools require de-
sign and implementation of models which cap-
ture the essence of underlying biological pro-
cesses and technological details of single-cell
technologies and high-throughput sequencing
platforms, establishing single-cell data sim-
ulation as a methodologically involved chal-
lenge.

6.2.1 Status

Recent studies [Soneson and Robinson, 2018,
Saelens et al., 2019] show that systematic
benchmarking of different single-cell analysis
methodologies has begun. However, to the
best of our knowledge, there is still a short-
age of single-cell data simulation tools. Many
single-cell data analysis packages include their
own ad hoc data simulators [Vallejos et al.,
2015, Korthauer et al., 2016a, Lun et al., 2016,
Lun and Marioni, 2017, Jahn et al., 2016, Sa-
tas and Raphael, 2018, Rizzetto et al., 2017,
Koster et al., 2017]. However, these simula-
tors are usually not available as separate tools
or even as a source code, tailored to specific

39

problems studied in corresponding papers and
sometimes not comprehensively documented,
thus limiting their utility for the broad re-
search community. Furthermore, since such
simulators are used only as auxiliary subrou-
tines inside particular projects and are not
published as stand-alone tools, they them-
selves are usually not evaluated, and there-
fore the accuracy of their reflection of real
biological and technological processes remain
unclear. There are few exceptions known
to us, including the tools Splatter |Zappia
et al., 2017], powsimR [Vieth et al., 2017],
and SymSim |Zhang et al., 2019d], which pro-
vide frameworks for simulation of scRNA-seq
data and whose accuracy has been validated
by comparison of its results with real data.
For single-cell phylogenomics, cancer genome
evolution simulators are being designed [Se-
meraro et al., 2018, Xia et al., 2018, Meng
and Chen, 2018].

6.2.2 Open problems

Simulation tools mostly concentrate on differ-
ential expression analysis, while comprehen-
sive simulation methods for other important
aspects of sc-seq analysis are still to be devel-
oped. In particular, to the best of our knowl-
edge, no such tool is available for scDNA-seq
data.

With single-cell phylogenomics, one would
like to assess the accuracy of methods for
phylogenetic inference and subclone identifi-
cation, or the power of population genetics
methods for estimating parameters of interest
(e.g. tests for selection and epistatic interac-
tions in cancer, see section 5.3). To this end,
realistic and comprehensive (w.r.t. the evolu-
tionary phenomena) simulation tools are re-
quired.

Another interesting computational problem
is development of tools for validation of simu-
lated sc-seq datasets themselves by their com-
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parison with real data using a comprehen-
sive set of biological parameters. The first
such tool for scRNA-seq data is countsimQC
[Soneson and Robinson, 2017|, but similar
tools for scDNA-seq data are needed. Finally,
most of the simulators concentrate on model-
ing of biologically meaningful data, while ig-
noring or simplifying models for sc-seq errors
and artifacts.

Another important challenge in single-cell
analysis tool validation is the selection of com-
prehensive evaluation metrics, which should
be used for comparison of different analysis
results with each other and with the ground
truth. For single-cell data it is particularly
complicated, since many analysis tools deal
with heterogeneous clone populations, which
possesses multiple biological characteristics to
be inferred and analyzed. Development of
a single measure which captures several of
these characteristics is complicated, and in
many cases impossible. For example, valida-
tion of tools for imputation of cellular and
transcriptional heterogeneity should simulta-
neously evaluate two measures: (i) how close
are the reconstructed and true cellular ge-
nomic profiles and (ii) how close are recon-
structed and true SNV /haplotype frequency
distributions. Development of synthetic mea-
sures which capture several such characteris-
tics (e.g. based on utilization of earth mover’s
distance [Knyazev et al., 2018|) is highly im-
portant.

When simulating datasets in general, the
circularity of simulating and inferring pa-
rameters under the same—possibly simplis-
tic model—should be critically assessed, as
should potential biases. Thus, further eval-
uation on empirical datasets for which some
ground truth is known will be invaluable. Ide-
ally, all single-cell analysis fields should define
a standard set of benchmark datasets that will
allow for assessing and comparing methods or
come up with a regular data analysis chal-

lenge. This approach has been very success-
ful, e.g. in protein structure prediction? and
metagenomic analyses®. A first step in this
direction was the recent single-cell transcrip-
tomics DREAM challenge®.
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