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The recent upswing of microfluidics and1

combinatorial indexing strategies, further en-2

hanced by very low sequencing costs, have3

turned single cell sequencing into an em-4

powering technology; analyzing thousands—5

or even millions—of cells per experimental6

run is becoming a routine assignment in lab-7

oratories worldwide. As a consequence, we8

are witnessing a data revolution in single cell9

biology. Although some issues are similar in10

spirit to those experienced in bulk sequencing,11

many of the emerging data science problems12

are unique to single cell analysis; together,13

they give rise to the new realm of ’Single Cell14

Data Science’.15

Here, we outline twelve challenges that will16

be central in bringing this new field forward.17

For each challenge, the current state of the art18

in terms of prior work is reviewed, and open19

problems are formulated, with an emphasis20

on the research goals that motivate them.21

This compendium is meant to serve as a22

guideline for established researchers, newcom-23

ers and students alike, highlighting interesting24

and rewarding problems in ’Single Cell Data25

Science’ for the coming years.26
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1 Introduction10

Since being elevated to “Method of the Year”11

in 2013 [Nature Methods, 2013], sequencing12

of the genetic material of individual cells has13

become routine when investigating cell-to-cell14

heterogeneity. Single-cell measurements of15

both RNA and DNA, and more recently also16

of epigenetic marks and protein levels, can17

stratify cells at the finest resolution possible.18

Single-cell RNA sequencing (scRNA-seq)19

facilitates to distinguish cell states within20

coarser cell type clusters [for an early exam-21

ple, see Anchang et al., 2016], thereby ar-22

ranging populations of cells according to novel23

types of hierarchies. It is also possible to24

identify cells in transition between states, so25

we get a much clearer view on the dynamics26

of tissue and organism development, and on27

structures within cell populations that had so28

far been perceived as homogeneous. Along29

a similar vein, analyses based on single-cell30

DNA sequencing (scDNA-seq) can highlight31

somatic clonal structures [e.g. in cancer, see32

Francis et al., 2014, Lawson et al., 2018] and33

are thus helpful for tracking the formation34

of certain cell lineages and to provide insight35

into evolutionary processes acting on somatic36

mutations.37

The opportunities arising from single-cell38

sequencing (sc-seq) are enormous: only now39

is it possible to re-evaluate hypotheses about40

differences between pre-defined sample groups 41

at the single-cell level—no matter if such 42

sample groups are disease subtypes, treat- 43

ment groups or simply morphologically dif- 44

ferent cell types. It is therefore no surprise 45

that the enthusiasm about the possibility to 46

screen the genetic material of the basic units 47

of life has been continuing to grow: a promi- 48

nent example is the Human Cell Atlas [Regev 49

et al., 2017], an initiative aiming to map the 50

different types and states of cells that a hu- 51

man being is composed of, or Zhang and Liu 52

[2019], as a most recent example of a list of 53

single-cell analysis based opportunities in par- 54

ticular domains such as the blood, the brain 55

and the lung. 56

Encouraged by the great potential of in- 57

vestigating DNA and RNA at the single- 58

cell level, the development of the corre- 59

sponding experimental technologies has expe- 60

rienced massive boosts. This upswing of high- 61

throughput sc-seq technologies—most impor- 62

tantly in microfluidics techniques and com- 63

binatorial indexing strategies [Zilionis et al., 64

2017, Vitak et al., 2017, Svensson et al., 65

2018b, Luo et al., 2019, Gao et al., 2019]— 66

means that tens or hundreds of thousands 67

of cells, instead of just tens or hundreds, 68

are routinely sequenced in one experiment; a 69

development—further fueled by in the mean- 70

time low sequencing costs—that has recently 71

even led to a publication on millions of cells in 72

one experiment [Cao et al., 2019a]. As a con- 73

sequence, primary and secondary sc-seq re- 74

sults of very large numbers of single cells are 75

becoming available worldwide, constituting a 76

data revolution for the field of single-cell anal- 77

ysis. 78

These vast amounts of data and the re- 79

search hypotheses that motivate them, need 80

to be handled in a computationally efficient 81

and statistically sound manner. As these 82

aspects clearly match a recent definition of 83

“Data Science” [Hicks and Peng, 2019], we 84

3
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posit that we have entered the era of Single1

Cell Data Science (SCDS).2

While SCDS faces many of the data sci-3

ence issues arising in bulk sequencing, it also4

substantially adds to them and further com-5

pounds existing scientific challenges. Namely,6

limited amounts of material available per cell7

lead to exceptionally high levels of uncer-8

tainty about (possibly missed) observations,9

and where amplification is used to generate10

more material, technical noise is added to the11

resulting data. Further, a new level of resolu-12

tion also means another—rapidly growing—13

dimension in data matrices, thus requiring14

scalable models and methods for data anal-15

ysis. While the particular challenges can vary16

greatly by research goal, tissue analyzed, ex-17

perimental setup or—last but not least—just18

by whether DNA or RNA is sequenced, fur-19

ther factoring into various protocols, assaying20

for example also the epigenome (bisulfite pro-21

tocols), chromatin accessibility (e.g. ATAC-22

seq) or protein levels (CITE-seq), the com-23

mon denominator is that the challenges are24

all rooted in data science, hence are compu-25

tational or statistical in nature. Here, we pro-26

pose the dozen data science challenges that we27

believe to be most relevant for bringing SCDS28

forward. We summarize and categorize them,29

providing a thorough review of the status of30

each challenge relative to existing approaches.31

From this foundation, we point to possible di-32

rections of research to tackle them. This cata-33

logue of SCDS challenges aims at focusing the34

development of data analysis methods and the35

directions of research in this rapidly evolving36

field—as a guideline for researchers looking37

for rewarding problems that match their per-38

sonal expertise and interests.39

2 Single Cell Data Science: 40

Themes and Categories 41

A number of challenging themes are common 42

to all single-cell analyses, regardless of the 43

particular assay or data modality generated. 44

We will start our review by broadly categoriz- 45

ing these aspects. Later, when discussing the 46

specific 12 challenges, we will refer to these 47

broader categories wherever appropriate and, 48

if this is sensible, lay out what these broader 49

theme issues mean in the particular context. 50

If challenges covered in later sections are par- 51

ticularly entangled with the broader themes 52

listed here, we will also refer to them from 53

within this section. 54

These elementary themes may reflect issues 55

one also experiences when analyzing bulk se- 56

quencing data. However, even if not unique 57

to single-cell experiments, these issues may 58

become particularly dominant in the analysis 59

of sc-seq data and therefore require particu- 60

lar attention. The most driving of such el- 61

ementary themes, not necessarily unique to 62

sc-seq, are: (i) The need to quantify mea- 63

surement uncertainty (see challenges in sec- 64

tion 2.2) (ii) The need to benchmark methods 65

systematically, in a way that highlights the 66

metrics that are particularly critical in sc-seq 67

(section 6.2). The most driving themes spe- 68

cific to sc-seq, exacerbated by the rapid ad- 69

vances in terms of experimental technologies 70

supporting single-cell analyses, are: (i) The 71

need to scale to higher dimensional data, be 72

it more cells measured or more data mea- 73

sured per cell (section 2.3); this often arises 74

in combination with: (ii) The need to inte- 75

grate data across different types of single– 76

cell measurements (e.g. RNA, DNA, proteins, 77

methylation and so on) and across samples, 78

be they from different time points, treatment 79

groups or even organisms (section 6.1). Fi- 80

nally, the possibility to operate on the finest 81

4
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levels of resolution casts an important, over-1

arching question: (iii) Which exact level of2

resolution is appropriate relative to the par-3

ticular research question one has in mind (sec-4

tion 2.1)? We will start by qualifying this last5

one.6

2.1 Varying levels of resolution7

Sc-seq allows for a fine-grained definition of8

cell types and states. Hence it allows for9

characterizations of cell populations that are10

significantly more detailed than characteriza-11

tions supported by bulk sequencing experi-12

ments. However, even though sc-seq operates13

at the most basic level, mapping cell types14

and states at a particular level of resolution15

of interest may be challenging: Depending on16

whether the research question allows for a cer-17

tain freedom in terms of resolution, and de-18

pending on the limits imposed by the particu-19

lar experimental setup, achieving the targeted20

level of resolution or granularity for the in-21

tended map of cells may require substantial22

methodological efforts.23

When drawing maps of cell types and24

states, it is important that they: (i) have a25

structure that recapitulates both tissue devel-26

opment and tissue organization; (ii) account27

for continuous cell states in addition to dis-28

crete cell types (i.e. reflecting cell state tra-29

jectories within cell types and smooth tran-30

sitions between cell types, as observed in tis-31

sue generation); (iii) allow for choosing the32

level of resolution flexibly (i.e. the map should33

possibly support zoom type operations, to34

let the researcher choose the desired level35

of granularity with respect to cell types and36

states conveniently, ranging from whole or-37

ganisms via tissues to cell populations and38

cellular subtypes); (iv) include biological and39

functional annotation wherever available and40

helpful in the intended functional context.41

An exemplary illustration of how maps of42

cell types and states can support different lev- 43

els of resolution are the structure-rich topolo- 44

gies generated by PAGA based on scRNA- 45

seq [Wolf et al., 2019], see Figure 1 for an 46

illustration1. At the highest levels of resolu- 47

tion, these topologies also reflect intermedi- 48

ate cell states and the developmental trajec- 49

tories passing through them. A similar ap- 50

proach that also allows for consistently zoom- 51

ing into more detailed levels of resolution is 52

provided by hierarchical stochastic neighbor 53

embedding (HSNE, Pezzotti et al. [2016]), a 54

method pioneered on mass cytometry data 55

sets [Unen et al., 2017, Höllt et al., 2018]. 56

In addition, manifold learning [Welch et al., 57

2017, Moon et al., 2018] and metric learning 58

[Hoffer and Ailon, 2015, Bromley et al., 1993] 59

may provide further theoretical support for 60

even more accurate maps, because they pro- 61

vide sound theories about reasonable, contin- 62

uous distance metrics, instead of just distinct, 63

discrete clusters. 64

2.2 Quantifying uncertainty of 65

measurements and analysis 66

results 67

The amount of material sampled from single 68

cells is considerably less in comparison with 69

the amounts of material raised in bulk exper- 70

iments, because the latter are based on ex- 71

amining the DNA or RNA of larger pools of 72

cells together. Signals become more stable 73

when individual signals are summarized (such 74

as in a bulk experiment), thus the increase in 75

resolution due to sc-seq also means a reduc- 76

tion of the stability of the supporting signals. 77

The reduction in signal stability, in turn, im- 78

plies that data becomes substantially more 79

1Figure 1 was adapted from Wolf et al. [2019],
Fig. 3, provided under Creative Commons
Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/).

5
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�ssues cell types single cells

intermediate
cell states

trajectories

Figure 1: Different levels of resolution are of interest, depending on the research question and
the data available. Thus, analysis tools and reference systems (such as cell atlases) will have
to accommodate for multiple levels of resolution from whole organs and tissues over discrete
cell types to continuously mappable intermediate cell states, indistinguishable even at the
microscopic level. A graph abstraction that enables such multiple levels of focus is provided
by PAGA [Wolf et al., 2019], a structure that allows for discretely grouping cells, as well as
inferring trajectories as paths through a graph.

uncertain and tasks hitherto considered rou-1

tine, such as single nucleotide variation (SNV)2

calling in bulk sequencing, require consider-3

able methodological care to be resolved also4

for sc-seq.5

These issues with data quality and in par-6

ticular missing data pose challenges that are7

novel and unique to sc-seq, and are thus8

at the core of several challenges: regarding9

scDNA-seq data quality (see challenges in10

section 4.1) and especially regarding missing11

data in scDNA-seq (section 4.2) and scRNA-12

seq (section 3.1). In contrast, the non-13

negligible batch effects that scRNA-seq can14

suffer from reflect a common problem in high-15

throughput data analysis [Leek et al., 2010],16

and thus are not discussed here (although in17

certain protocols such effects can be allevi-18

ated by careful use of negative control data19

in the form of spike-in RNA of known con-20

tent and concentration [Severson et al., 2018,21

BEARscc]).22

Optimally, sc-seq analysis tools would accu-23

rately quantify all uncertainties arising from 24

experimental errors and biases. Thereby, 25

these tools would prevent the uncertainties 26

from propagating to the intended downstream 27

analyses in an uncontrolled manner, and 28

rather translate them into statistically sound 29

and accurately quantified qualifiers of final re- 30

sults. 31

2.3 Scaling to higher 32

dimensionalities: more cells, 33

more features, broader 34

coverage 35

The current blossoming of experimental 36

methods poses considerable statistical chal- 37

lenges, and would do even if measurements 38

were not affected by errors and biases. 39

The increase in the number of single cells 40

analyzed per experiment translates into more 41

data points being generated, requiring meth- 42

ods to scale rapidly. With scRNA-seq already 43

6

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27885v1 | CC BY 4.0 Open Access | rec: 6 Aug 2019, publ: 6 Aug 2019



scaling to millions of cells, some of the respec-1

tive methodology has picked up the thread2

[Sengupta et al., 2016, Sinha et al., 2018, Wolf3

et al., 2018, Iacono et al., 2018]. Of course,4

the respective issues have not yet been fully5

resolved; further improvements are conceiv-6

able. For scDNA-seq, experimental method-7

ology has just been scaling up to more cells re-8

cently (see section 4.1 and section 5.1), mak-9

ing this a pressing challenge in the develop-10

ment of data analysis methods.11

Beyond basic scRNA-seq and scDNA-seq12

experiments, various assays have been pro-13

posed to measure chromatin accessibility14

[Buenrostro et al., 2015, Cusanovich et al.,15

2015], DNA methylation [Karemaker and Ver-16

meulen, 2018], protein levels [Virant-Klun17

et al., 2016], protein binding, and also for per-18

forming multiple simultaneous measurements19

[Clark et al., 2018, Cao et al., 2018] in sin-20

gle cells.The corresponding increase in exper-21

imental choices means another possible infla-22

tion of feature spaces.23

In parallel to the increase in the number24

of cells queried and the number of different25

assays possible, the increase of the resolu-26

tion per cell of specific measurement types27

causes a steady increase of the dimension-28

ality of corresponding data spaces. For the29

field of SCDS this amounts to a severe and30

recurring case of the “curse of dimensional-31

ity” for all types of measurements. Here32

again, scRNA-seq based methods are in the33

lead when trying to deal with feature dimen-34

sionality, while scDNA-seq based methodol-35

ogy (which includes epigenome assays) has yet36

to catch up.37

Finally, there are efforts to measure multi-38

ple feature types in parallel, e.g. from scDNA-39

seq (see section 5.2). Also, with spatial and40

temporal sampling becoming available (see41

section 3.5 and section 5.3), data integration42

methods need to scale to more and new types43

of context information for individual cells (see44

section 6.1 for a comprehensive discussion of 45

data integration approaches). 46

2.4 Challenge categories 47

All challenges we identified fall into at least 48

one of three greater categories: transcrip- 49

tomics (section 3), genomics (section 4) and 50

phylogenomics (section 5). Here, the separa- 51

tion of phylogenomics from genomics is due to 52

the distinct research goals the respective chal- 53

lenges address. Last but not least, two chal- 54

lenges are relevant to all of these categories, 55

and are thus discussed as recapitulatory chal- 56

lenges at the end: the data integration chal- 57

lenge (section 6.1) draws on the types of mea- 58

surements and experiments described in the 59

category-specific challenges. The benchmark- 60

ing challenge (presented in section 6.2), al- 61

though being essential in many areas of data 62

science, is worth highlighting here in partic- 63

ular, because benchmarking for SCDS is still 64

in its infancy. 65

3 Challenges in single-cell 66

transcriptomics 67

3.1 Challenge I: Handling 68

sparsity in single-cell RNA 69

sequencing 70

A comprehensive characterization of the tran- 71

scriptional status of individual cells enables us 72

to gain full insight into the interplay of tran- 73

scripts within single cells. However, scRNA- 74

seq measurements typically suffer from large 75

fractions of observed zeros, where a given gene 76

in a given cell has no unique molecule identi- 77

fiers or reads mapping to it. These observed 78

zero values can represent either missing data 79

(i.e. a gene is expressed but not detected by 80

the sequencing technology) or true absence of 81

7
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expression. The proportion of zeros, or degree1

of sparsity, is thought to be due to imper-2

fect reverse transcription and amplification,3

and other technical limitations (Hicks et al.4

[2018], Bacher and Kendziorski [2016]), and5

depends on the scRNA-seq platform used, the6

sequencing depth and the underlying expres-7

sion level of the gene. The term “dropout” is8

often used to denote observed zero values in9

scRNA-seq data, but this term conflates zero10

values attributable to methodological noise11

and biologically-true zero expression, so we12

recommend against its use as a catch-all term13

for observed zeros.14

Sparsity in scRNA-seq data can hinder15

downstream analyses, but it is challenging to16

model or handle it appropriately, and thus,17

there remains an ongoing need for improved18

methods. Sparsity pervades all aspects of19

scRNA-seq data analysis, but here we fo-20

cus on the linked problems of learning la-21

tent spaces and “imputing” expression values22

from scRNA-seq data (Figure 2). Imputation,23

“data smoothing” and “data reconstruction”24

approaches are closely linked to the challenges25

of normalisation. But whereas normalisation26

generally aims to make expression values be-27

tween cells more comparable to each other,28

imputation and data smoothing approaches29

aim to achieve adjusted data values that—it30

is hoped—better represent the true expression31

values. Imputation methods could therefore32

be used for normalisation, but do not entail33

all possible or useful approaches to normali-34

sation.35

3.1.1 Status36

The imputation of missing values has been37

very successful for genotype data. Crucially,38

when imputing genotypes we often know39

which data are missing (e.g. when no geno-40

type call is possible due to no coverage of41

a locus, although see section section 4.2 for42

the challenges with scDNA-seq data) and rich 43

sources of external information are available 44

(e.g. haplotype reference panels). Thus, geno- 45

type imputation is now highly accurate and 46

a commonly-used step in data processing for 47

genetic association studies [Das et al., 2018]. 48

The situation is somewhat different for 49

scRNA-seq data, as we do not routinely have 50

external reference information to apply (see 51

section 3.3). In addition, we can never be sure 52

which observed zeros represent “missing data” 53

and which accurately represent a true gene ex- 54

pression level in the cell [Hicks et al., 2018]. 55

Observed zeros can either represent “biologi- 56

cal” zeros, i.e. those present because the true 57

expression level of a gene in a cell was zero. 58

Or they they are the result of methodological 59

noise, which can arise when a gene has true 60

non-zero expression in a cell, but no counts 61

are observed due to failures at any point in 62

the complicated process of processing mRNA 63

transcripts in cells into mapped reads. Such 64

noise can lead to artefactual zero that are ei- 65

ther more systematic (e.g. sequence-specific 66

mRNA degradation during cell lysis) or that 67

occur by chance (e.g. barely expressed tran- 68

scripts that at the same expression level will 69

sometimes be detected and sometimes not, 70

due to sampling variation, e.g in the sequenc- 71

ing). The high degree of sparsity in scRNA- 72

seq data therefore arises from technical zeros 73

and true biological zeros, which are difficult 74

to distinguish from one another. 75

In general, two broad approaches can be ap- 76

plied to tackle this problem of sparsity: (i) use 77

statistical models that inherently model the 78

sparsity, sampling variation and noise modes 79

of scRNA-seq data with an appropriate data 80

generative model; or (ii) attempt to “impute” 81

values for observed zeros (ideally the tech- 82

nical zeros; sometimes also non-zero values) 83

that better approximate the true gene expres- 84

sion levels. We prefer to use the first option 85

where possible, and for many single-cell data 86
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analysis problems, statistical models appro-1

priate for sparse count data exist and should2

be used (e.g. for differential expression anal-3

ysis). However, there are many cases where4

the appropriate models are not available and5

accurate imputation of technical zeros would6

allow better results from downstream meth-7

ods and algorithms that cannot handle sparse8

count data. For example, imputation could9

be particularly useful for many dimension re-10

duction, visualisation and clustering applica-11

tions. It is therefore desirable to improve both12

statistical methods that work on sparse count13

data directly and approaches for data impu-14

tation for scRNA-seq data, whether by re-15

fining existing techniques or developing new16

ones (see also section 2.2).17

We define three broad (and sometimes over-18

lapping) categories of methods that can be19

used to “impute” scRNA-seq data in the ab-20

sence of an external reference: (i) Model-based21

imputation methods of technical zeros use22

probabilistic models to identify which ob-23

served zeros represent technical rather than24

biological zeros and aim to impute expression25

levels just for these technical zeros, leaving26

other observed expression levels untouched;27

or (ii) Data-smoothing methods define sets28

of “similar” cells (e.g. cells that are neigh-29

bours in a graph or occupy a small region30

in a latent space) and adjust expression val-31

ues for each cell based on expression values32

in similar cells. These methods adjust all33

expression values, including technical zeros,34

biological zeros and observed non-zero val-35

ues. (iii) Data-reconstruction methods typ-36

ically aim to define a latent space repre-37

sentation of the cells. This is often done38

through matrix factorization (e.g. principal39

component analysis) or, increasingly, through40

machine learning approaches (e.g. variational41

autoencoders that exploit deep neural net-42

works to capture non-linear relationships).43

Although a broad class of methods, both ma-44

trix factorization methods and autoencoders 45

(among others) are able to “reconstruct” the 46

observed data matrix from low-rank or sim- 47

plified representations. The reconstructed 48

data matrix will typically no longer be sparse 49

(with many zeros) and the implicitly “im- 50

puted” data can be used for downstream ap- 51

plications that cannot handle sparse count 52

data. 53

The first category of methods generally 54

seeks to infer a probabilistic model that cap- 55

tures the data generation mechanism. Such 56

generative models can be used to identify, 57

probabilistically, which observed zeros cor- 58

respond to technical zeros (to be imputed) 59

and which correspond to biological zeros (to 60

be left alone). There are many model-based 61

imputation methods already available that 62

use ideas from clustering (e.g. k-means), di- 63

mension reduction, regression and other tech- 64

niques to impute technical zeros, oftentimes 65

combining ideas from several of these ap- 66

proaches. These include SAVER [Huang 67

et al., 2018], ScImpute [Li and Li, 2018], 68

bayNorm [Tang et al., 2018], scRecover [Miao 69

et al., 2019], and VIPER [Chen and Zhou, 70

2018]. Clustering methods that implicitly im- 71

pute values, such as CIDR [Lin et al., 2017b] 72

and BISCUIT [Azizi et al., 2017], are closely 73

related to this class of imputation methods. 74

Data-smoothing methods, which adjust all 75

gene expression levels based on expression 76

levels in “similar” cells, have also been pro- 77

posed to handle imputation problems. We 78

might regard these approaches as “denois- 79

ing” methods. To take a simplified exam- 80

ple (Figure 2), we might imagine that sin- 81

gle cells originally refer to points in two- 82

dimensional space, but are likely to describe a 83

one-dimensional curve; projecting data points 84

onto that curve eventually allows imputation 85

of the “missing” values (but all points are 86

adjusted, or smoothed, not just true tech- 87

nical zeros). Prominent data-smoothing ap- 88
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Figure 2: Measurement error requires denoising methods or approaches that quantify uncer-
tainty and propagate it down analysis pipelines. Also, whenever methods cannot deal with
the abundant missing values, imputation approaches are necessary. Whereas the true popu-
lation manifold that generated data is never known, one can usually obtain some estimation
of it that can be used for both denoising and impuation.

proaches to handling sparse counts include:1

• diffusion-based MAGIC [Dijk et al.,2

2018]3

• k-nearest neighbor-based knn-smooth4

[Wagner et al., 2018b]5

• network diffusion-based netSmooth6

[Jonathan Ronen, 2018]7

• clustering-based DrImpute [Gong et al.,8

2018]9

• locality sensitive imputation in LSIm-10

pute [Moussa and Măndoiu, 2019]11

A major task in the analysis of high-12

dimensional single-cell data is to find low-13

dimensional representations of the data that14

capture the salient biological signals and ren-15

der the data more interpretable and amenable16

to further analyses. As it happens, the ma-17

trix factorization and latent-space learning18

methods used for that task also provide an-19

other route for imputation through their abil-20

ity to reconstruct the observed data matrix21

from simplified representations of it. Prin-22

cipal component analysis (PCA) is one such23

standard matrix factorization method that24

can be applied to scRNA-seq data (preferably25

after suitable data normalisation) as are other 26

widely-used general statistical methods like 27

independent component analysis (ICA) and 28

non-negative matrix factorization (NMF). As 29

(linear) matrix factorization methods, PCA, 30

ICA and NMF decompose the observed data 31

matrix into a “small” number of factors in two 32

low-rank matrices, one representing cell-by- 33

factor weights and one gene-by-factor load- 34

ings. Many matrix factorization methods 35

with tweaks for single-cell data have been pro- 36

posed in recent years, including: 37

• ZIFA, a zero-inflated factor analysis 38

[Pierson and Yau, 2015] 39

• f-scLVM, a sparse Bayesian latent vari- 40

able model [Buettner et al., 2017] 41

• GPLVM, a Gaussian process latent vari- 42

able model [Verma and Engelhardt, 2018] 43

• ZINB-WaVE, a zero-inflated negative bi- 44

nomial factor model [Risso et al., 2018] 45

• scCoGAPS, an extension of NMF [Stein- 46

O’Brien et al., 2019] 47

• consensus NMF, a meta-analysis ap- 48

proach to NMF [Kotliar et al., 2019] 49
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• pCMF, probabilistic count matrix factor-1

ization with a Poisson model [Durif et al.,2

2019]3

• SDA, sparse decomposition of arrays;4

another sparse Bayesian method [Jung5

et al., 2019].6

Some data reconstruction approaches have7

been specifically proposed for imputation, in-8

cluding:9

• ENHANCE, denoising PCA with an ag-10

gregation step [Wagner et al., 2019]11

• ALRA, SVD with adaptive thresholding12

[Linderman et al., 2018]13

• scRMD, robust matrix decomposition14

[Chen et al., 2018]15

Recently, machine learning methods have16

emerged that apply autoencoders [AutoIm-17

pute, Talwar et al., 2018] and deep neu-18

ral networks [DeepImpute, Arisdakessian19

et al., 2018]) or ensemble learning [EnImpute,20

Zhang et al., 2019c]) to impute expression val-21

ues.22

Additionally, many deep learning methods23

have been proposed for single-cell data anal-24

ysis that can, but need not, use probabilis-25

tic data generative processes to capture low-26

dimensional or latent space representations of27

a dataset. Even if imputation is not a main28

focus, such methods can generate “imputed”29

expression values as an upshot of a model pri-30

marily focused on other tasks like learning la-31

tent spaces, clustering, batch correction, or32

visualization (and often several of these tasks33

simultaneously). The latter set includes tools34

such as:35

• DCA, an autoencoder with a zero-36

inflated negative binomial distribution37

[Eraslan et al., 2019]38

• scVI, a variational autoencoder with a 39

zero-inflated negative binomial model 40

[Lopez et al., 2018] 41

• LATE [Badsha et al., 2018] 42

• VASC [Wang and Gu, 2018] 43

• compscVAE [Grønbech et al., 2018] 44

• scScope [Deng et al., 2019] 45

• Tybalt [Way and Greene, 2018] 46

• SAUCIE [Amodio et al., 2019] 47

• scvis [Ding et al., 2018] 48

• net-SNE [Cho et al., 2018] 49

• BERMUDA, focused on batch correction 50

[Wang et al., 2019] 51

• DUSC [Srinivasan et al., 2019] 52

• Expression Saliency [Kinalis et al., 2019] 53

• others [Lin et al., 2017a, Zhang, 2019] 54

Besides the three categories described 55

above, a small number of scRNA-seq impu- 56

tation methods have been developed to in- 57

corporate information external to the cur- 58

rent dataset for imputation. These include: 59

ADImpute [Leote et al., 2019], which uses 60

gene regulatory network information from 61

external sources; SAVER-X [Wang et al., 62

2018], a transfer learning method for denois- 63

ing and imputation that can use informa- 64

tion from atlas-type resources; and methods 65

that borrow information from matched bulk 66

RNAseq data like URSM [Zhu et al., 2018] 67

and SCRABBLE [Peng et al., 2019]. 68
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3.1.2 Open problems1

A major challenge in this context is the circu-2

larity that arises when imputation solely relies3

on information that is internal to the imputed4

dataset. This circularity can artificially am-5

plify the signal contained in the data, leading6

to inflated correlations between genes and/or7

cells. In turn, this can introduce false pos-8

itives in downstream analyses such as differ-9

ential expression testing and gene network in-10

ference [Andrews and Hemberg, 2019]. Han-11

dling batch effects and potential confounders12

requires further work to ensure that imputa-13

tion methods do not mistake unwanted varia-14

tion from technical sources for biological sig-15

nal. In a similar vein, single-cell experiments16

are affected by various uncertainties (see sec-17

tion 2.2). Approaches that allow quantifica-18

tion and propagation of the uncertainties as-19

sociated with expression measurements (sec-20

tion 2.2), may help to avoid problems associ-21

ated with ‘overimputation’ and the introduc-22

tion of spurious signals noted by Andrews and23

Hemberg [2019].24

To avoid this circularity, it is important25

to identify reliable external sources of infor-26

mation that can inform the imputation pro-27

cess. One possibility is to exploit external28

reference panels (like in the context of ge-29

netic association studies). Such panels are30

not generally available for scRNA-seq data,31

but ongoing efforts to develop large scale cell32

atlases [e.g. Regev et al., 2017, see also sec-33

tion 3.3] could provide a valuable resource34

for this purpose. Systematic integration of35

known biological network structures is de-36

sirable and may also help to avoid circular-37

ity. A possible approach is to encode net-38

work structure knowledge as prior informa-39

tion, as attempted in netSmooth and ADIm-40

pute. Another alternative solution is to ex-41

plore complementary types of data that can42

inform scRNA-seq imputation. This idea was43

adopted in SCRABBLE and URSM, where an 44

external reference is defined by bulk expres- 45

sion measurements from the same population 46

of cells for which imputation is performed. 47

Yet another possibility could be to incorpo- 48

rate orthogonal information provided by dif- 49

ferent types of molecular measurements (see 50

section 6.1). Methods designed to integrate 51

multi-omics data could then be extended to 52

enable scRNA-seq imputation, e.g. through 53

generative models that explicitly link scRNA- 54

seq with other data types [e.g. clonealign, 55

Campbell et al., 2019] or by inferring a shared 56

low-dimensional latent structure [e.g. MOFA, 57

Argelaguet et al., 2018] that could be used 58

within a data-reconstruction framework. 59

With the proliferation of alternative meth- 60

ods, comprehensive benchmarking is urgently 61

required as for all areas of single-cell data 62

analysis section 6.2. Early attempts by Zhang 63

and Zhang [2018] and Andrews and Hemberg 64

[2019] provide valuable insights into the per- 65

formance of methods available at the time. 66

But many more methods have since been pro- 67

posed and even more comprehensive bench- 68

marking platforms are needed. Many meth- 69

ods, especially those using deep learning, de- 70

pend strongly on choice of hyperparameters 71

[Hu and Greene, 2019]. There, more de- 72

tailed comparisons that explore parameter 73

spaces would be helpful, extending work like 74

that from Sun et al. [2019] comparing di- 75

mensionality reduction methods. Learning 76

from exemplary bechmarking studies [Sone- 77

son and Robinson, 2018, Saelens et al., 2019], 78

it would be immensely beneficial to develop 79

a community-supported benchmarking plat- 80

form with a wide-range of synthetic and ex- 81

periment ground-truth datasets (or as close 82

as possible, in the case of experimental data) 83

and a variety of thoughtful metrics for eval- 84

uating performance. Ideally, such a bench- 85

marking platform would remain dynamic be- 86

yond an initial publication to allow ongoing 87
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comparison of methods as new approaches are1

proposed. Detailed benchmarking would also2

help to establish when normalisation methods3

derived from explicit count models [e.g. Hafe-4

meister and Satija, 2019, Townes et al., 2019]5

may be preferable to imputation.6

Finally, scalability for large numbers of7

cells remains an ongoing concern for imputa-8

tion, data smoothing and data reconstruction9

methods, as for all high-throughput single-cell10

methods and software (see section 2.3).11

3.2 Challenge II: Defining12

flexible statistical13

frameworks for discovering14

complex differential patterns15

in gene expression16

Beyond simple changes in average gene ex-17

pression between cell types (or across bulk-18

collected libraries), scRNA-seq enables a19

high granularity of changes in expression to20

be unraveled. Interesting and informative21

changes in expression patterns can be re-22

vealed, as well as cell-type-specific changes23

in cell state across samples (Figure 6, Ap-24

proach 1). Further understanding of gene25

expression changes will enable deeper knowl-26

edge across a myriad of applications, such as27

immune responses [Kang et al., 2018b, Stub-28

bington et al., 2017], development [Karaiskos29

et al., 2017a] and drug response [Kim et al.,30

2015].31

3.2.1 Status32

Currently, the vast majority of differential ex-33

pression detection methods assume that the34

groups of cells to be compared are known35

in advance (e.g., experimental conditions or36

cell types). However, most current analy-37

sis pipelines rely on clustering or cell type38

assignment to identify such groups, before39

downstream differential analysis is performed, 40

without propagating the uncertainty in these 41

assignments or accounting for the double use 42

of data (clustering, differential testing be- 43

tween clusters). 44

In this context, most methods have fo- 45

cused on comparing average expression be- 46

tween groups [Kharchenko et al., 2014, Fi- 47

nak et al., 2015], but it appears that single- 48

cell-specific methods do not uniformly out- 49

perform the state-of-the-art bulk methods 50

[Soneson and Robinson, 2018]. Instead, lit- 51

tle attention has been given to more gen- 52

eral patterns of differential expression (Fig- 53

ure 3), such as changes in variability that ac- 54

count for mean expression confounding [Eling 55

et al., 2018], changes in trajectory along pseu- 56

dotime [Campbell and Yau, 2018, van den 57

Berge et al., 2019], or more generally, changes 58

in distributions [Korthauer et al., 2016b]. 59

Furthermore, methods for cross-sample com- 60

parisons of gene expression (e.g., cell-type- 61

specific changes in cell state across samples, 62

compare section 6.1, Figure 6 and Table 2) 63

are now emerging, such as pseudo-bulk com- 64

parisons [Kang et al., 2018a], where expres- 65

sion is aggregated over multiple cells within 66

each sample. With the expanding capacity 67

of experimental techniques to generate multi- 68

sample scRNA-seq datasets, further general 69

and flexible statistical frameworks will be re- 70

quired to identify complex differential pat- 71

terns across samples. This will be particularly 72

critical in clinical applications, where cells are 73

collected from multiple patients. 74

3.2.2 Open problems 75

Accounting for uncertainty in cell type as- 76

signment and for double use of data will 77

require, first of all, a systematic study of 78

their impact. Integrative approaches in which 79

clustering and differential testing are simul- 80

taneously performed [Vavoulis et al., 2015] 81
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Figure 3: Differential expression of a gene or transcript between cell populations. The top row
labels the specific gene or transcript, as is also done in Figure 6. A difference in mean gene
expression manifests in a consistent difference of gene expression across all cells of a popu-
lation (e.g. high vs. low). A difference in variability of gene expression means that in one
population, all cells have a very similar expression level, whereas in another population some
cells have a much higher expression and some a much lower expression. The resulting average
expression level may be the same and in such cases, only single-cell measurements can find
the difference between populations. A difference across pseudotime is a change of expres-
sion within a population, e.g. along a developmental trajectory (compare Figure 1). This
also constitutes a difference between cell populations that is not apparent from population
averages, but requires a pseudo-temporal ordering of measurements on single cells.

can address both issues. However, integra-1

tive methods typically require bespoke imple-2

mentations, precluding a direct combination3

between arbitrary clustering and differential4

testing tools. In such cases, the adaptation of5

selective inference methods [Reid et al., 2018,6

Zhang et al., 2019b] could provide an alterna-7

tive solution.8

While some methods exist to identify more9

general patterns of gene expression changes10

(e.g. variability, distributions), these meth-11

ods could be further improved by integrat-12

ing with existing approaches that account for13

confounding effects such as cell cycle [Ste-14

gle et al., 2015] and complex batch effects15

[Butler et al., 2018a, Haghverdi et al., 2018].16

Moreover, our capability to discover interest-17

ing gene expression patterns will be vastly18

expanded by connecting with other aspects19

of single-cell expression dynamics, such as20

cell type composition, RNA velocity [Manno 21

et al., 2018], splicing and allele-specificity. 22

This will allow us to fully exploit the granu- 23

larity contained in single-cell level expression 24

measurements. 25

In the multi-donor setting, several promis- 26

ing methods have been applied to discover 27

state transitions in high-dimensional cytome- 28

try datasets [Lun et al., 2017, Bruggner et al., 29

2014, Weber et al., 2018, Nowicka et al., 2017]. 30

These approaches could be expanded to the 31

higher dimensions and characteristic aspects 32

of scRNA-seq data. Alternatively, there is a 33

large space to explore other general and flex- 34

ible approaches, such as hierarchical models 35

where information is borrowed across sam- 36

ples, while allowing for sample-specific pat- 37

terns. 38
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3.3 Challenge III: Mapping1

single cells to a reference2

atlas3

Classifying cells into cell types or states is4

essential for many secondary analyses. As5

an example, consider studying and classify-6

ing how expression varies across different cells7

and different biological conditions (for differ-8

ential expression analyses, see section 3.2 and9

data integration Approach 1 in section 6.1,10

Figure 6 and Table 2). To put the results of11

such studies on a map, reliable reference sys-12

tems are required.13

The lack of appropriate, available refer-14

ences has so far implied that only reference-15

free approaches were conceivable, where unsu-16

pervised clustering approaches were the pre-17

dominant option (see data integration Ap-18

proach 0 in section 6.1, Figure 6 and Table 2).19

Method development for such unsupervised20

clustering of cells has already reached a cer-21

tain level of maturity; see Duò et al. [2018],22

Freytag et al. [2018], Kiselev et al. [2019] for23

a systematic identification of available tech-24

niques.25

However, unsupervised approaches involve26

manual cluster annotation. There are two27

major caveats: (i) manual annotation is a28

time-consuming process, which also (ii) puts29

certain limits to the reproducibility of the re-30

sults. Cell atlases, as reference systems that31

systematically capture cell types and states,32

either tissue-specific or across different tis-33

sues, remedy this issue (see data integration34

Approach 2 in section 6.1, Figure 6 and Ta-35

ble 2; see also Figure 1 for an idea of what cell36

atlas type reference systems preferably could37

look like).38

3.3.1 Status39

See Table 1 for a list of cell atlas type refer-40

ences that have recently been published. For41

human, similar endeavours as for the mouse 42

are under way, with the intention to raise a 43

Human Cell Atlas [Regev et al., 2017]. To- 44

wards this end, initial consortia focus on spe- 45

cific organs, for example the lung [Schiller 46

et al., 2019]. 47

The availability of these reference atlases 48

has led to the active development of methods 49

that make use of them in the context of su- 50

pervised classification of cell types and states 51

[Lieberman et al., 2018, Srivastava et al., 52

2018, Cao et al., 2019b, DePasquale et al., 53

2019, Kanter et al., 2019, Sato et al., 2019, 54

Zhang et al., 2019a]. A field that serves as 55

a source of inspiration is flow/mass cytom- 56

etry, where several methods have addressed 57

the classification of high-dimensional cell type 58

data [Chester and Maecker, 2015, Weber and 59

Robinson, 2016, Saeys et al., 2016, Guilliams 60

et al., 2016]. Finally, as for benchmarking 61

methods that map cells of unknown type or 62

state onto reference atlases (see Section sec- 63

tion 6.2 for benchmarking in general), atlases 64

of model organisms where full lineages of cells 65

have been integrated can form the basis for 66

further developments [Spanjaard et al., 2018, 67

Plass et al., 2018, Fincher et al., 2018, Farrell 68

et al., 2018, Briggs et al., 2018].Importantly, 69

additional information available from lineage 70

tracing can provide a cross-check with respect 71

to the transcriptome-profile-based classifica- 72

tion [Briggs et al., 2018, Kester and van Oude- 73

naarden, 2018]. 74

3.3.2 Open problems 75

Cell atlases can still be considered under 76

active development, with several computa- 77

tional challenges still open, in particular re- 78

ferring to the fundamental themes from above 79

[Regev et al., 2017, Schiller et al., 2019, Hon 80

et al., 2018]. Here, we focus on the map- 81

ping of cells or rather their molecular profiles 82

onto stable existing reference atlases to fur- 83
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organism scale of cell atlas citation
nematode
Caenorhabditis ele-
gans

whole organism at larval stage
L2

[Cao et al., 2017]

planaria
Schmidtea mediter-
ranea

whole organism of the adult an-
imal

[Fincher et al., 2018, Plass et al.,
2018]

fruit fly
Drosophila
melanogaster

whole organism at embryonic
stage

[Karaiskos et al., 2017b]

Zebrafish whole organism at embryonic
stage

[Farrell et al., 2018, Wagner
et al., 2018a]

frog
Xenopus tropicalis

whole organism at embryonic
stage

[Briggs et al., 2018]

Mouse whole adult brain [Rosenberg et al., 2018, Saunders
et al., 2018, Zeisel et al., 2018]

Mouse whole adult organism [Tabula Muris Consortium, 2018,
Han et al., 2018]

Table 1: Published cell atlases of whole tissues or whole organisms.

ther highlight the importance of these fun-1

damental themes. A computationally and2

statistically sound method for mapping cells3

onto atlases for a range of conceivable re-4

search questions will need to: (i) enable op-5

eration at various levels of resolution of inter-6

est, and also cover continuous, transient cell7

states (see section 2.1); (ii) quantify the un-8

certainty of a particular mapping of cells of9

unknown type/state (see section 2.2); (iii) to10

scale to ever more cells and broader cover-11

age of types and states (see section 2.3), and12

(iv) to eventually integrate information gen-13

erated not only through scRNA-seq experi-14

ments, but also through other types of mea-15

surements, for example scDNA-seq or protein16

expression data (see below in section 6.1 for a17

discussion of data integration, especially data18

integration Approaches 4 and 5 in section 6.1,19

Figure 6 and Table 2).20

3.4 Challenge IV: Generalizing 21

trajectory inference 22

Several biological processes, such as differen- 23

tiation, immune response or cancer expansion 24

can be described and represented as continu- 25

ous dynamic changes in cell type/state space 26

using tree, graphical or probabilistic mod- 27

els. A potential path that a cell can undergo 28

in this continuous space is often referred to 29

as a trajectory (Trapnell et al. [2014] and 30

Figure 1), and the ordering induced by this 31

path is referred to as pseudotime. Several 32

models have been proposed to describe cell 33

state dynamics, starting from transcriptomic 34

data [Saelens et al., 2019]. Trajectory infer- 35

ence is in principle not limited to transcrip- 36

tomics. Nevertheless, modeling of other mea- 37

surements, such as proteomic, metabolomic, 38

and epigenomic, or even integrating multiple 39

types of data (see section 6.1), is still at its 40

infancy. We believe the study of complex tra- 41
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jectories integrating different data-types es-1

pecially epigenetics and proteomics informa-2

tion in addition to transcriptomics data will3

lead to a more systematic understanding of4

the processes determining cell fate.5

3.4.1 Status6

More than sixty trajectory methods have7

been proposed for trajectory inference from8

transcriptomic data using snapshot data at9

single or multiple time points [Saelens et al.,10

2019]. Briefly, those methods start from a11

count matrix where genes are rows and cells12

are columns. First, a feature selection or di-13

mensionality reduction step is used to explore14

a subspace where distances between cells are15

more reliable. Next, clustering and minimum16

spanning trees [Trapnell et al., 2014, Ji and17

Ji, 2016], principal curve or graph fitting [Qiu18

et al., 2017, Chen et al., 2019, Rizvi et al.,19

2017], or random walks and diffusion opera-20

tions on graphs (Haghverdi et al. [2016], Setty21

et al. [2016] among others) are used to in-22

fer pseudotime and/or branching trajectories.23

Alternative probabilistic descriptions can be24

obtained using optimal transport analysis25

[Schiebinger et al., 2017] or approximation of26

the Fokker-Planck equations [Weinreb et al.,27

2018] or by estimating pseudotime through di-28

mensionality reduction with a Gaussian pro-29

cess latent variable model [Campbell and Yau,30

2016, Reid and Wernisch, 2016, Ahmed et al.,31

2019].32

3.4.2 Open problems33

Potentially, many of the above-mentioned34

methods for trajectory inference can be35

extended to data obtained with non-36

transcriptomic assays. Thereby, the follow-37

ing aspects are crucial. First, it is necessary38

to define the features to use; while for tran-39

scriptomic data the features are well anno-40

tated and correspond to expression levels of 41

genes, clear-cut features are harder to deter- 42

mine for data such as methylation profiles and 43

chromatin accessibility where signals can re- 44

fer to individual genomic sites, but also be 45

pooled over sequence features or sequence re- 46

gions. Second, many of those recent technolo- 47

gies only allow measurement of a quite lim- 48

ited number of cells compared to transcrip- 49

tomic assays where millions of cells can be 50

profiled using droplet-based platforms [Ma- 51

cosko et al., 2015, Klein et al., 2015, Zheng 52

et al., 2017]. Third, some of those measure- 53

ments are technically challenging since the in- 54

put material for each cell is limited (for exam- 55

ple two copies of each chromosome for methy- 56

lation or chromatin accessibility), giving rise 57

to more sparsity than scRNA-seq. In the 58

latter case it is necessary to define distance 59

or similarity metrics that take this problem 60

into account. An alternative approach con- 61

sists of pooling/combining information from 62

several cells or data imputation. For ex- 63

ample, imputation has been used for single- 64

cell DNA methylation [Angermueller et al., 65

2017], aggregation over chromatin accessibil- 66

ity peaks from bulk or pseudo-bulk sample 67

[Cusanovich et al., 2018], and k-mer-based 68

approaches have been proposed [Buenrostro 69

et al., 2018, de Boer and Regev, 2018, Chen 70

et al., 2019]. However, so far, no systematic 71

evaluation (see section 6.2) of those choices 72

has been performed and it is not clear how 73

many cells are necessary to reliably define 74

those features. 75

A pressing challenge is to assess how the 76

different trajectory inference methods per- 77

form on different data types and importantly 78

to define metrics that are suitable. Also, it 79

is necessary to reason on the ground truth or 80

propose reasonable surrogates (e.g. previous 81

knowledge about developmental processes). 82

Some recent papers explore this idea using 83

scATAC-seq data, an assay to measure chro- 84
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matin accessibility [Buenrostro et al., 2018,1

Chen et al., 2019, Pliner et al., 2018].2

Having defined robust methods to recon-3

struct trajectories from each data type, an-4

other future challenge is related to their com-5

parison or alignment. Here, some ideas from6

recent methods used to align transcriptomic7

datasets may be extended [Butler et al.,8

2018b, Haghverdi et al., 2018, Welch et al.,9

2018]. A related unsolved problem is that10

of comparing different trajectories obtained11

from the same data type but across individu-12

als or conditions to highlight unique and com-13

mon aspects.14

3.5 Challenge V: Finding15

patterns in spatially resolved16

measurements17

Single-cell spatial transcriptomics or pro-18

teomics [Crosetto et al., 2015, Strell et al.,19

2018, Moffitt et al., 2018] technologies can20

obtain transcript abundance measurements21

while retaining spatial coordinates of cells or22

even transcripts within a tissue (this can be23

seen as an additional feature space to inte-24

grate, see Approach 3 in section 6.1, Figure 625

and Table 2). With such data, the question26

arises of how spatial information can best be27

leveraged to find patterns, infer cell types or28

functions and classify cells in a given tissue29

[Tanay and Regev, 2017].30

3.5.1 Status31

Experimental approaches have been tailored32

to either systematically extract foci of cells33

and analyze them with scRNA-seq, or to mea-34

sure RNA and proteins in-situ. Histological35

sections can be projected in two dimensions36

while preserving spatial information using se-37

quencing arrays [Ståhl et al., 2016]. Whole38

tissues can be decomposed using the Niche-39

seq approach [Medaglia et al., 2017]: here40

a group of cells are specifically labeled with 41

a fluorescent signal, sorted and subjected to 42

scRNA-seq. The Slide-seq approach uses an 43

array of Drop-seq drops with known barcodes 44

to dissolve corresponding slide sites and se- 45

quence them with the respective barcodes 46

[Rodriques et al., 2019]. Ultimately, one 47

would like to sequence inside a tissue with- 48

out dissociating the cells and without compro- 49

mising on the unbiased nature of scRNA-seq. 50

A preliminary approach has been proposed 51

by Lee et al. [2015] coined FISSEQ (Fluo- 52

rescent in-situ sequencing). Lubeck et al. 53

[2014] have shown a first approach to itera- 54

tively apply fluorescence in-situ hybridization 55

to measure hundreds of RNA species simulta- 56

neously, called seqFISH. SeqFISH+ scales the 57

FISH barcoding strategy to 10,000 genes by 58

splitting each of four barcode locations to be 59

scanned into 20 separate readings to avoid sig- 60

nal crowding [Eng et al., 2019]. Based on a 61

related principle, MERFISH was proposed by 62

Chen et al. [2015], which enables to measure 63

hundreds to thousands of transcripts in sin- 64

gle cells simultaneously while retaining spa- 65

tial coordinates [Moffitt et al., 2016]. Here, 66

even the subcellular coordinates of each in- 67

dividual transcript are retained. In addition 68

to the methods that provide in-situ measure- 69

ments of RNA, Giesen et al. [2014] and An- 70

gelo et al. [2014] use mass cytometry tech- 71

nology to quantify the abundance of proteins 72

while preserving subcellular resolution. Fi- 73

nally, the recently described Digital Spatial 74

Profiling [DSP, Merritt et al., 2019, Van and 75

Blank, 2019] promises to provide both RNA 76

and protein measurements with spatial reso- 77

lution. 78

For determining cell types, or clustering 79

cells into groups that conduct a common func- 80

tion, several methods are available [Zhang 81

et al., 2019a, Kiselev et al., 2018, Butler et al., 82

2018b]. None of these currently directly use 83

spatial information. In contrast, spatial cor- 84
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relation methods have been used to detect1

aggregation of proteins [Shivanandan et al.,2

2016]. Shah et al. [2016] use seqFISH to mea-3

sure transcript abundance of a set of marker4

genes while retaining the spatial coordinates5

of the cells. Cells are clustered by gene ex-6

pression profiles and then assigned to regions7

in the brain based on their coordinates in the8

sample. Recently, Edsgärd et al. [2018] pre-9

sented a method to detect spatial differential10

expression patterns per gene based on marked11

point processes [Jacobsen, 2005]. Svensson12

et al. [2018a] provided a method to perform a13

spatially resolved differential expression anal-14

ysis. Here, spatial dependence for each gene15

is learned by nonparametric regression, en-16

abling the testing of the statistical signifi-17

cance for a gene to be differentially expressed18

in space.19

3.5.2 Open problems20

The central problem is to consider gene or21

transcript expression and spatial coordinates22

of cells, and derive an assignment of cells23

to classes, functional groups or cell types.24

While methods for both assigning cell types25

or functional groups and spatially resolved26

gene expression analysis are present, there is27

currently no method available that combines28

the two by leveraging information from spa-29

tial localization to determine the cell type or30

find groups of cells that conduct a common31

function. Depending on the studied biolog-32

ical question, it can be useful to constrain33

assignments with expectations on the homo-34

geneity of the tissue. For example, a set of35

cells grouped together might be required to36

appear in one or multiple clusters where lit-37

tle to no other cells are present. Such con-38

straints might depend on the investigated cell39

types or tissues. For example, in cancer, spa-40

tial patterns can occur on multiple scales,41

ranging from single infiltrating immune cells42

[Fridman et al., 2011] and minor subclones 43

[Swanton, 2012] to larger subclonal structures 44

or the embedding in surrounding normal tis- 45

sue and the tumor microenvironment [Cretu 46

and Brooks, 2007]. Currently, to the best of 47

our knowledge, there is no method available 48

that would allow the encoding of such prior 49

knowledge while inferring cell types by inte- 50

grating spatial information with transcript or 51

gene expression. Another important aspect 52

when modeling the relation between space 53

and expression is whether uncertainty in the 54

measurements can be propagated to down- 55

stream analyses. For example, it is desir- 56

able to rely on transcript quantification meth- 57

ods that provide the posterior distribution 58

of transcript expression [Kharchenko et al., 59

2014, Köster et al., 2017] and propagate this 60

information to the spatial analysis. Finally, 61

in light of issues with sparsity in single-cell 62

measurements (section 3.1), it appears desir- 63

able to integrate spatial information into the 64

quantification itself, and e.g. use neighboring 65

cells within the same tissue for imputation 66

or the inference of a posterior distribution of 67

transcript expression. 68

4 Challenges in single-cell 69

genomics 70

With every cell division in an organism, the 71

genome can be altered through mutational 72

events ranging from point mutations, over 73

short insertions and deletions, to large scale 74

copy number variation and complex struc- 75

tural variants. In cancer, the entire reper- 76

toire of these genetic events can occur during 77

disease progression (Figure 4). The resulting 78

tumor cell populations are highly heteroge- 79

neous. As tumor heterogeneity can predict 80

patient survival and response to therapy, in- 81

cluding immunotherapy, quantifying this het- 82
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erogeneity and understanding its dynamics1

are crucial for improving diagnosis and ther-2

apeutic choices (Figure 4).3

Classic bulk sequencing data of tumor sam-4

ples taken during surgery are always a mix-5

ture of tumor and normal cells (including6

e.g. invading immune cells). This means7

that disentangling mutational profiles of tu-8

mour subclones will always be challenging,9

which especially holds for rare subclones that10

could nevertheless be the ones e.g. bearing11

resistance mutation combinations prior to a12

treatment (Figure 4). Here, the sequencing13

of (sufficient) single cells holds the exciting14

promise of directly identifying and character-15

izing those subclone profiles (Figure 4).16

4.1 Challenge VI: Improving17

single-cell DNA sequencing18

data quality and scaling to19

more cells20

Despite accumulating technological advances21

in the field, the task of characterizing tumor22

heterogeneity and inferring the evolutionary23

mechanisms that give rise to this heterogene-24

ity is still hampered by multiple types of er-25

rors that occur during the process of scDNA-26

seq [Wang and Song, 2017, Hou et al., 2015,27

Gawad et al., 2016, Estévez-Gómez et al.,28

2018]. DNA sequencing technologies differ in29

their protocols of single-cell isolation and ly-30

sis, whole genome amplification (WGA), and31

library preparation [Zhang et al., 2016]. Fail-32

ure of cell isolation leads to the presence—33

albeit usually in a small proportion—of dou-34

blets instead of single cells and the cell lysis35

step can introduce artificial sequence modifi-36

cation. The main source of error, however,37

is the WGA step. Single cells only carry two38

(in case of normal cells) up to tens (in am-39

plified regions of disease cells) of copies of40

DNA molecules, which need to be substan-41

tially amplified from pico to nanogram scale 42

to read their sequence. Amplification-related 43

artifacts include i) amplification errors, i.e. se- 44

quence alterations such as single nucleotide or 45

indel errors introduced by the polymerase in 46

the copy process, ii) allelic bias, i.e. the dif- 47

ferential amplification of the alleles at a ge- 48

nomic locus (if one allele fails to amplify at 49

all, this is an allele dropout, if both fail, a 50

locus dropout), iii) chimeric sequences. The 51

majority of WGA approaches can be broadly 52

classified into PCR-based and multiple dis- 53

placement amplification (MDA)-based meth- 54

ods. The PCR-based technologies include de- 55

generate oligonucleotide-primed PCR (DOP- 56

PCR) [Telenius et al., 1992], linker-adapter 57

PCR [Klein et al., 1999], primer extension 58

pre-amplification PCR (PEP-PCR-/I-PEP- 59

PCR) [Zhang et al., 1992, Arneson et al., 60

2008] and others. They require thermostable 61

polymerases that withstand all temperatures 62

during the cycling. More recent MDA-based 63

technologies use the strand-displacing, high- 64

fidelity Φ29 DNA polymerase [Blanco et al., 65

1989, Dean et al., 2002, Spits et al., 2006b, 66

Picher et al., 2016, Paez et al., 2004, Spits 67

et al., 2006a] for an isothermal reaction, as 68

it is not stable at common PCR temperature 69

maxima. Another approach, called multiple 70

annealing and looping-based amplification cy- 71

cles (MALBAC) combines MDA and PCR, 72

and relies on the Bacillus stearothermophilus 73

polymerase for the MDA process [Zong et al., 74

2012]. 75

4.1.1 Status 76

Ideally, scDNA-seq should provide informa- 77

tion about the entire repertoire of distinct 78

events that occurred in the genome of a single 79

cell, such as copy number alterations, genomic 80

rearrangements, together with SNVs and 81

smaller insertion and deletion variants. How- 82

ever, amplification biases and errors present a 83
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Figure 4: From initiation of a tumour to its detection, resection and possible metastasis, it
will evolve somatically. New genomic mutations can confer a selective advantage to the
resulting new subclone, that can allow it to outcompete other tumour subclones (subclone
competition). At the same time, the acting selection pressures can change over time, e.g. due
to new subclones arising, the immune system detecting certain subclones, or as a result of
therapy. Understanding such selective regimes—and how specific mutations alter a subclone’s
susceptibility to changes in selection pressures—will help construct an evolutionary model of
tumorigenesis. And it is only within this evolutionary model, that more efficient and more
patient-specific treatments can be developed. For such a model, unambiguously identifying
mutation profiles of subclones via scDNA-seq of resected or biopsied single cells is crucial.
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serious challenge to variant calling [de Bourcy1

et al., 2014, Hou et al., 2015, Huang et al.,2

2015, Estévez-Gómez et al., 2018]: It is3

broadly accepted that different WGA tech-4

nologies should be used depending on whether5

SNVs or whether copy number variation6

(CNV)s are to be detected, as the distinct7

technologies differ in the magnitude of ampli-8

fication bias, and the rates of amplification er-9

rors and chimera formation. Generally, PCR-10

based approaches with more uniform coverage11

should be used for CNV calling, while MDA-12

based methods that result in less single nu-13

cleotide errors should be applied for SNV call-14

ing. The goal must thus be to (i) improve the15

coverage uniformity of MDA-based methods,16

(ii) reduce the error rate of the PCR-based17

methods, or (iii) create new methods that ex-18

hibit both a low error rate and a more uni-19

form amplification of alleles. Recent years20

witnessed intensive research in these direc-21

tions, e.g.: (i) Improved coverage uniformity22

for MDA has been achieved using droplet mi-23

crofluidics-based methods, resulting in emul-24

sion WGA (eWGA, [Fu et al., 2015]), sin-25

gle droplet MDA (sd-MDA, [Hosokawa et al.,26

2017]) and digital droplet multiple displace-27

ment amplification (ddMDA, [Sidore et al.,28

2016]).A second approach has been to cou-29

ple the Φ29 DNA polymerase to a primase30

to reduce priming bias [Picher et al., 2016].31

Both these approaches improve the calling32

of CNVs from the resulting data. (ii) One33

way to reduce the amplification error rate34

of the PCR-based methods (including MAL-35

BAC) would be to employ a thermostable36

polymerase (necessary for use in PCR) with37

proof-reading activity similar to Φ29 DNA38

polymerase. While SD polymerase combines39

thermostability with strand displacement and40

has been tested for WGA [Blagodatskikh41

et al., 2017], we are not aware of any PCR42

DNA polymerases with a fidelity in the range43

of Φ29 DNA polymerase [Potapov and Ong,44

2017] having been used in PCR-based WGA. 45

(iii) Three newer methods use an entirely dif- 46

ferent approach: They randomly insert trans- 47

posons into the whole genome and then lever- 48

age these as priming sites for library prepara- 49

tion and amplification. Direct library prepa- 50

ration (DLP, [Zahn et al., 2017a]), as the 51

name suggests, directly sequences the result- 52

ing shallow library without any amplification, 53

allowing only for CNV calling. It has re- 54

cently been further improved to account for 55

doublets and dead cells and scaled to 80,000 56

single cells [Laks et al., 2018]. Transposon 57

Barcoded (TnBC) follows the transposon in- 58

tegration with PCR amplification, making it 59

useful for CNV calling, but suffering from am- 60

plification errors [Xi et al., 2017]. Finally, 61

Linear Amplification via Transposon Inser- 62

tion (LIANTI, [Chen et al., 2017]) introduces 63

a new approach to dealing with amplifica- 64

tion errors. Instead of exponential amplifi- 65

cation, their amplification process is linear: 66

From promoters included in the transposon 67

insertion, they transcribe the original tagged 68

sequence multiple times and then use reverse 69

transcription and second-strand synthesis to 70

obtain double-stranded DNA for sequencing. 71

As errors introduced by the individual pro- 72

cesses are not propagated, they should be 73

unique to individual copies and accordingly 74

the authors report a false positive rate that is 75

even lower than for MDA [Chen et al., 2017]. 76

4.1.2 Open problems 77

These recent developments promise scalable 78

methodology for scDNA-seq comparable to 79

that already available for scRNA-seq, while 80

at the same time reducing previously limit- 81

ing errors and biases. In addition to fur- 82

ther improvements over the described exist- 83

ing methods, the major challenge will be to 84

continuously and systematically evaluate the 85

whole range of promising WGA methods for 86
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the identification of all types of genetic varia-1

tion from SNVs over smaller insertions and2

deletions up to copy number variation and3

structural variants.4

4.2 Challenge VII: Errors and5

missing data in the6

identification of features /7

variation from single-cell8

DNA sequencing data.9

The aim of scDNA sequencing usually is to10

track somatic evolution at the cellular level,11

that is, at the finest resolution possible rela-12

tive to the laws of reproduction (cell division,13

Figure 5). Examples refer to identifying het-14

erogeneity and tracking evolution in cancer,15

as the likely most predominant use case (also16

see below in section 5), but also to monitor-17

ing the interaction of somatic mutation with18

developmental and differentiation processes.19

To track genetic drifts, selective pressures, or20

other phenomena inherent to the development21

of cell clones or types (Figure 4)—but also to22

stratify cancer patients for the presence of re-23

sistant subclones—it is instrumental to geno-24

type and also phase genetic variants in single25

cells with sufficiently high confidence.26

The major disturbing factor in scDNA-seq27

data is the WGA process (see section 4.1).28

All methodologies introduce amplification er-29

rors (false positive alternative alleles), but30

more drastic is the effect of amplification bias:31

the insufficient or complete failure of am-32

plification, which leads to imbalanced pro-33

portions or complete lack of variant alleles.34

Overall, one can distinguish between three35

cases: (i) an imbalanced proportion of al-36

leles, i.e. loci harboring heterozygous muta-37

tions where preferential amplification of one38

of the two alleles leads to read counts that39

are distorted, sometimes heavily; (ii) allele40

drop-out, i.e. loci harboring heterozygous mu-41

10000

11000

11100

110101100? 100?01?101

Figure 5: Mutations (colored stars) accumu-
late in cells during somatic cell divisions
and can be used to reconstruct the develop-
mental lineages of individual cells within an
organism (leaf nodes of the tree with muta-
tional presence / absence profiles attached).
However, insufficient or unbalanced WGA
can lead to the dropout of one or both alle-
les at a genomic site. This can be mitigated
by better amplification methods, but also
by computational and statistical methods
that can account for or impute the missing
values.

tations where only one of the alleles was am- 42

plified and sequenced, and (iii) site drop-out, 43

which is the complete failure of amplification 44

of both alleles at a site and the resulting lack 45

of any observation of a certain position of the 46

genome. Note that (ii) can be considered an 47

extreme case of (i). 48

A sound imputation of missing alleles and 49

a sufficiently accurate quantification of un- 50

certainties will yield massive improvements in 51

geno- and haplotyping (phasing) somatic vari- 52

ants. This, in turn, is necessary to substan- 53

tially improve the identification of subclonal 54

genotypes and the tracking of evolutionary 55

developments. Potential improvements in this 56
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area include (i) more explicit accounting for1

possible scDNA-seq error types, (ii) integrat-2

ing with different data types with error pro-3

files different from scDNA-seq (e.g. bulk se-4

quencing or RNA sequencing), or (iii) inte-5

grating further knowledge of the process of6

somatic evolution, such as the constraints of7

phylogenetic relationships among cells, into8

variant calling models. In this latter context,9

it is important to realize that somatic evolu-10

tion is asexual. Thus, no recombination oc-11

curs during mitosis, eliminating a major dis-12

turbing factor usually encountered when aim-13

ing to reconstruct species or population trees14

from germline mutation profiles.15

4.2.1 Status16

Current single-cell specific SNV callers in-17

clude Monovar [Zafar et al., 2016] and SC-18

caller [Dong et al., 2017]. SCcaller de-19

tects somatic variants independently for each20

cell, but accounts for local allelic amplifi-21

cation biases by integrating across neigh-22

bouring germline single-nucleotide polymor-23

phisms. It exploits the fact that allele drop-24

out affects contiguous regions of the genome25

large enough to harbor several, and not only26

one, heterozygous mutation loci. Monovar27

uses an orthogonal approach to variant call-28

ing. It does not assume any dependency29

across sites, but instead handles low and un-30

even coverage and false positive alternative31

alleles by integrating the sequencing informa-32

tion across multiple cells. While Monovar33

merely creates a consensus across cells, in-34

tegrating across cells is particularly powerful35

if further knowledge about the dependency36

structure among cells is incorporated. As37

pointed out above, due to the lack of recom-38

bination, any sample of cells derived from an39

organism shares an evolutionary history that40

can be described by a cell lineage tree (see sec-41

tion 5). This tree, however, is in general un-42

known and can in turn only be reconstructed 43

from single-cell mutation profiles. A possible 44

solution is to infer both mutation calls and 45

a cell lineage tree at the same time, an ap- 46

proach taken by a number of existing tools: 47

single-cell Genotyper [Roth et al., 2016], Sci- 48

CloneFit [Zafar et al., 2018] and SciΦ [Singer 49

et al., 2018]. 50

Finally, SSrGE, identifies SNVs correlated 51

with gene expression from scRNA-seq data 52

[Poirion et al., 2018]. 53

54

Some basic approaches to CNV calling from 55

scDNA-seq data are available. These are usu- 56

ally based on hidden markov models (HMMs) 57

where the hidden variables correspond to copy 58

number states, as e.g. in Aneufinder [Bakker 59

et al., 2016]. Another tool, Ginkgo, pro- 60

vides interactive CNV detection using circu- 61

lar binary segmentation, but is only avail- 62

able as a web-based tool [Garvin et al., 2015]. 63

ScRNA-seq data, which does not suffer from 64

the errors and biases of WGA, can also be 65

used to call CNVs or loss of heterozygosity 66

events: an approach called HoneyBADGER 67

[Fan et al., 2018] utilizes a probabilistic hid- 68

den Markov model, whereas the R package 69

inferCNV simply averages the expression over 70

adjacent genes [Patel et al., 2014]. 71

4.2.2 Open problems 72

SNV callers for scDNA-seq data have al- 73

ready incorporated amplification error rates 74

and allele dropout in their models. But 75

beyond these rates, the challenge remains 76

to further extend this into a full statistical 77

modelling of the amplification process, that 78

would inherently account for both errors and 79

biases, and more accurately quantify the 80

resulting uncertainties (see section 2.2). This 81

could be achieved by expanding models that 82

accurately quantify uncertainties in related 83
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settings2 and would ultimately even allow1

reliable control of false discovery rates in the2

variant discovery and genotyping process.3

Such expanded models can build on a number4

of recent studies in this context, e.g. on a5

formalisation in a recent preprint [Koptagel6

et al., 2018]. Furthermore, such models could7

integrate the structure of cell lineage trees8

with the structure implicit in haplotypes that9

link alleles. For haplotype phasing, Satas10

and Raphael [2018] recently proposed an11

approach based on contiguous stretches of12

amplification bias (similar to SCcaller, see13

above), whereas others propose read-backed14

phasing in two recent studies [Bohrson et al.,15

2019, Hård et al., 2019]. In addition, the16

integration with deep bulk sequencing data,17

as well as with (sc)RNA-seq data remains18

unexplored, although it promises to improve19

the precision of callers without compromising20

sensitivity.21

22

Identification of short insertions and23

deletions (indels) is another major challenge24

to be addressed: we are not aware of any25

scDNA-seq variant callers with those respec-26

tive capabilities.27

28

For copy number variation calling, soft-29

ware has previously been published mostly in30

conjunction with data-driven studies. Here,31

a systematic analysis of biases in the most32

common WGA methods for copy number33

variation calling (including newer methods34

to come) could further inform method devel-35

opment. The already mentioned approach36

of leveraging amplification bias for phasing37

could also be informative [Satas and Raphael,38

2018].39

40

The final challenge is a systematic compar-41

ison of tools beyond the respective software42

2https://varlociraptor.github.io

publications, which is still lacking for both 43

SNV and CNV callers. This requires system- 44

atic benchmarks, which in turn require simu- 45

lation tools to generate synthetic datasets, as 46

well as sample-based benchmarking datasets 47

with a reasonably reliable ground truth (see 48

section 6.2). 49

5 Challenges in single-cell 50

phylogenomics 51

Single-cell variant profiles from scDNA-seq, 52

as described above (section 4.2), can be used 53

in computational models of somatic evolution, 54

including cancer evolution as an important 55

special case (Figure 4). For cancer, there is an 56

on-going, lively discussion about the very na- 57

ture of evolutionary processes at play, with 58

competing theories such as linear, branch- 59

ing, neutral, and punctuated evolution [Davis 60

et al., 2017]. 61

Models of cancer evolution may range from 62

a simple binary representation of the pres- 63

ence versus the absence of a particular mu- 64

tational event (Figure 5), to elaborate models 65

of the mechanisms and rates of distinct muta- 66

tional events. There are two main modeling 67

approaches that lend themselves to the analy- 68

sis of tumour evolution [Altrock et al., 2015]: 69

phylogenetics and population genetics. 70

Phylogenetics comes with a rich reper- 71

toire of computational methods for likelihood- 72

based inference of phylogenetic trees [Felsen- 73

stein, 1981]. Traditionally, these methods are 74

used to reconstruct the evolutionary history 75

of a set of distinct species. However, they can 76

also be applied to cancer cells or subclones 77

(Figure 4). In this setting, tips of the phy- 78

logeny (also called leaves or taxa) represent 79

sampled and sequenced cells or subclones, 80

whereas inner nodes (also called ancestral) 81

represent their hypothetical common ances- 82
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tors. The input for a phylogenetic inference1

commonly consists of a multiple sequence2

alignment (MSA) of molecular sequences for3

the species of interest. For cancer phyloge-4

nies, one would concatenate the SNVs (and5

possibly other variant types) to assemble the6

input MSA. The key challenge for phyloge-7

netic method development comprises design-8

ing sequence evolution models that are (i) bio-9

logically realistic and yet (ii) computationally10

tractable for the increasingly large number of11

sequenced cells per patient and study.12

In population genetics, the tumor is under-13

stood as a population of evolving cells (Fig-14

ure 4). To date, population genetic theory15

has been used to model the initiation, pro-16

gression and spread of tumors from bulk se-17

quencing data [Foo et al., 2011, Beerenwinkel18

et al., 2007, Haeno et al., 2012]. The general19

mathematical framework behind these mod-20

els are branching processes [Kimmel and Ax-21

elrod, 2015], e.g. in models of the accumula-22

tion of driver and passenger mutations [Bozic23

et al., 2016, 2010]. Here, the driver mutations24

carry a fitness advantage, as might epistatic25

interactions among them [Bauer et al., 2014].26

On the other hand, passenger mutations are27

assumed to be neutral regarding fitness; they28

merely hitchhike along the fitness advantage29

of driver mutations they are linked to via their30

haplotype. The parameters of population ge-31

netic models describe inherent features of in-32

dividual cells that are relevant for the evolu-33

tion of their populations, e.g. fitness and the34

rates of birth, death, and mutations. Such35

cell-specific parameters should more naturally36

apply to and be derived from information37

gathered by sequencing of individual cells, as38

opposed to sequencing of bulk tissue samples.39

Models using these parameters and the in-40

formation about the evolutionary dynamics41

of cancer they contain, will e.g. be essential42

in the design of adaptive cancer treatment43

strategies that aim at managing subclonal tu-44

mour composition [Acar et al., 2019, Zhang 45

et al., 2017]. 46

5.1 Challenge VIII: Scaling 47

phylogenetic models to many 48

cells and many sites 49

Even if given perfect data, phylogenetic mod- 50

els of tumor evolution would still face the 51

challenge of computational tractability, which 52

is mainly induced by: (i) the increasing num- 53

bers of cells that are sequenced in cancer 54

studies (see section 2.3) and (ii) the increas- 55

ing numbers of sites that can be queried per 56

genome (also see section 2.3). 57

5.1.1 Open problems 58

(i) While adding data from more single cells 59

will help improve the resolution of tumour 60

phylogenies [Graybeal, 1998, Pollock et al., 61

2002], this exacerbates one of the main chal- 62

lenges of phylogenetic inference in general: 63

the immense space of possible tree topologies 64

that grows super-exponentially with the 65

number of taxa—in our case the number of 66

single cells. Therefore, phylogenetic inference 67

is NP-hard [Roch, 2006] under most scoring 68

criteria (a scoring criterion takes a given 69

tree and MSA to calculate how well the tree 70

explains the observed data). Calculating the 71

given score on all possible trees to find the 72

tree that best explains the data is compu- 73

tationally not feasible for MSAs containing 74

more than approximately 20 single cells, and 75

thus requires heuristic approaches to explore 76

only promising parts of the tree search space. 77

78

(ii) In addition to the growing number of 79

cells (taxa), the breadth of genomic sites and 80

genomic alterations that can be queried per 81

genome also increases. Classical approaches 82

thus need not only scale with the number of 83
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single cells queried (see above), but also with1

the length of the input MSA. Here, previ-2

ous efforts for parallelization [Aberer et al.,3

2014, Ayres, 2017] and other optimisation ef-4

forts [Ogilvie et al., 2017] exist and can be5

built upon. The breadth of sequencing data6

also allows determination of large numbers of7

invariant sites, which further raises the ques-8

tion of whether including them will change9

results of phylogenetic inferences in the con-10

text of cancer. Excluding invariant sites from11

the inference has been coined ascertainment12

bias, and for phylogenetic analyses of closely13

related individuals from a few populations it14

has been shown that accounting for ascertain-15

ment bias alters branch lengths, but not the16

resulting tree topologies per se [Leaché et al.,17

2015].18

5.2 Challenge IX: Integrating19

multiple types of features /20

variation into phylogenetic21

models22

Naturally, downstream analyses—like charac-23

terising intratumor heterogeneity and infer-24

ring its evolutionary history—suffer from the25

unreliable variant detection in single cells.26

The better the quality of the variant calls27

gets, however, the more important it becomes28

to model all types of available signal in math-29

ematical models of tumour evolution, with30

the goal of increasing the resolution and re-31

liability of the resulting trees; from SNVs,32

over smaller insertions and deletions, to large33

structural variation and CNVs (Figure 4). Fi-34

nally, to model somatic phylogenies compre-35

hensively, all available types of variants will36

have to be integrated into a comprehensive37

model. In the context of cancer, with ge-38

nomic destabilisation occurring, this will be39

especially challenging.40

5.2.1 Status 41

For phylogenetic tree inference from SNVs of 42

single cells, a considerable number of tools 43

exist. The early tools OncoNEM [Ross and 44

Markowetz, 2016] and SCITE [Jahn et al., 45

2016] use a binary representation of presence 46

or absence of a particular SNV. They account 47

for false negatives, false positives and missing 48

information in SNV calls, where false nega- 49

tives are orders of magnitude more likely to 50

occur than false positives. The more recent 51

tool SiFit [Zafar et al., 2017] also uses a binary 52

SNV representation, but infers tumor phylo- 53

genies allowing for both noise in the calls and 54

for violations of the infinite sites assumption. 55

Another approach allowing for violations of 56

the infinite sites assumption is the extension 57

of the Dollo parsimony model to allow for k 58

losses of a mutation (Dollo-k) [El-Kebir, 2018, 59

Ciccolella et al., 2018]. Single cell genotyper 60

[Roth et al., 2016], SciCloneFit [Zafar et al., 61

2018], or SciΦ [Singer et al., 2018] jointly call 62

mutations in individual cells and estimate the 63

tumor phylogeny of these cells, directly from 64

single-cell raw sequencing data. In a recent 65

work [Kozlov, 2018], a standard phylogen- 66

tic inference tool RAxML-NG [Kozlov et al., 67

2019] has been extended to handle single-cell 68

SNV data. In particular, this implements 69

(i) a 10-state substitution model to represent 70

all possible unphased diploid genotypes and 71

(ii) an explicit error model for allelic dropout 72

and genotyping/amplification errors. Ini- 73

tial experiments showed that—although a 10- 74

state model incorporates more information— 75

it outperformed the ternary model (as used 76

by SiFit) only slightly and only in simulations 77

with very high error rates (10%-50%). How- 78

ever, further analysis suggests that benefits of 79

the genotype model become much more pro- 80

nounced with an increasing number of cells 81

and, in particular, an increasing number of 82

SNVs (Kozlov, personal communication). 83
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While there are no tools yet available to1

identify insertions and deletions from scDNA-2

seq (see challenge above), it is only a matter3

of time until such callers will become avail-4

able. As they can already be identified from5

bulk sequencing data, some precious efforts6

to incorporate indels in addition to substitu-7

tions into classical phylogenetic models exist:8

A decade ago, a simple probabilistic model9

of indel evolution was proposed [Rivas and10

Eddy, 2008]. But although some progress11

has been made since then, such models are12

less tractable than the respective substitution13

models [Holmes, 2017].14

Incorporating CNVs in the reconstruction15

of tumor phylogeny can be helpful for un-16

derstanding tumor progressions, as they rep-17

resent one of the most common mutation18

types associated to tumor hypermutability19

[Kim et al., 2013]. CNVs in single cells were20

extensively studied in the context of tumor21

evolution and clonal dynamics [Navin et al.,22

2011, Eirew et al., 2015]. Reconstructing a23

phylogeny with CNVs is not straightforward.24

The challenges are not only related to ex-25

perimental limits, such as the complexity of26

bulk sequencing data [Zaccaria et al., 2017]27

and amplification biases [Gawad et al., 2016],28

but also involve computational constraints.29

First of all, the causal mechanisms, such as30

breakage-fusion-bridge cycles [Bignell et al.,31

2007] and chromosome missegregation [San-32

taguida et al., 2017], can lead to overlapping33

copy number events [Schwarz et al., 2014].34

Secondly, inferring a phylogeny with CNV35

data requires quantifying transition proba-36

bilities for changes in copy numbers based37

on the causal mechanisms. Towards that38

goal, approaches to calculate the distance be-39

tween whole copy number profiles [Zeira and40

Shamir, 2018] are a first step. But for them,41

a number of challenges remain, with several42

of the underlying problems known to be NP-43

hard [Zeira and Shamir, 2018].44

Co-occurrence of all of the above variation 45

types further complicates mathematical mod- 46

eling, as these events are not independent. 47

For example, multiple SNVs that occurred in 48

the process of tumor evolution may disappear 49

at once via a deletion of a large genomic 50

region. In addition, recent analyses revealed 51

recurrence and loss of particular mutational 52

hits at specific sites in the life histories of 53

tumors [Kuipers et al., 2017], undermining 54

the validity of the so called infinite sites 55

assumption, commonly made by phylogenetic 56

models: it assumes an infinite number of 57

genomic sites, thus rendering a repeated 58

mutational hit of the same genomic site along 59

a phylogeny impossible. 60

61

5.2.2 Open problems 62

For phylogenetic reconstruction from SNVs, 63

we anticipate a shift towards leveraging im- 64

provements in input data quality as they are 65

achieved through better amplification meth- 66

ods and SNV callers (see challenges above). 67

For indels, variant callers for scDNA-seq data 68

remain to be developed (see challenge above), 69

but are anticipated. Thus, indel modelling 70

efforts for phylogenetic reconstruction from 71

bulk sequencing data should be adapted. For 72

phylogenetic inference from CNVs, the ma- 73

jor challenges are (i) determining correct mu- 74

tational profiles and (ii) computing realis- 75

tic transition probabilities between those pro- 76

files. 77

The final challenge will be to incorporate all 78

of the above phenomena into a holistic model 79

of cancer evolution. However, this will sub- 80

stantially increase the computational cost of 81

reconstructing the evolutionary history of tu- 82

mor cells. Thus, one needs to carefully de- 83

termine which phenomena actually do mat- 84

ter (e.g. which parameters even affect the fi- 85

nal tree topology) and which features can be 86
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measured (section 4.1) and called (section 4.2)1

with sufficient accuracy to actually improve2

modelling results. As a consequence one3

might be able to devise more lightweight mod-4

els for answering specific questions and in-5

vest considerable effort into optimizing novel6

tools at the algorithmic and technical level7

(see challenge below).8

5.3 Challenge X: Inferring9

population genetic10

parameters of tumor11

heterogeneity by model12

integration13

Tumor heterogeneity is the result of an evo-14

lutionary journey of tumor cell populations15

through both time and space [Swanton, 2012,16

McGranahan and Swanton, 2017]. Microen-17

vironmental factors like access to the vascu-18

lar system and infiltration with immune cells19

differ greatly—for regions within the origi-20

nal tumor as well as between the main tu-21

mour and metastases, and across different22

time points [Yang and Lin, 2017]. This im-23

poses different selective pressures on differ-24

ent tumour cells, driving the formation of tu-25

mour subclones and thus determining disease26

progression (including metastatic potential),27

patient outcome and susceptibility to treat-28

ment (Junttila and de Sauvage [2013], Corre-29

dor et al. [2018] and Figure 4). However, even30

the answers to very basic questions about the31

resulting dynamics remain unanswered [Tura-32

jlic and Swanton, 2016]: for example, whether33

metastatic seeding from the primary tumor34

occurs early and multiple times in parallel,35

with metastases diverging genetically from36

the primary tumor, or whether seeding of37

metastases occurs late, from a far-developed38

subclone in the primary tumour, with that39

subclone seeding multiple locations with a40

genotype closer to the late-stage primary tu-41

mour; and whether a single cell can seed a 42

metastasis, or whether the joint migration of 43

a set of cells is required. Here, sc-seq can pro- 44

vide invaluable resolution [Navin et al., 2011]. 45

Although many mathematical models of 46

tumor evolution have been proposed [Bozic 47

et al., 2010, 2016, Altrock et al., 2015, Foo 48

et al., 2011, Michor et al., 2004], fundamen- 49

tal parameters characterizing the evolution- 50

ary processes remain elusive. To quantita- 51

tively describe the tumor evolution process 52

and evaluate different possible modes against 53

each other (e.g. modes of metastatatic seed- 54

ing), we would like to estimate fitness values 55

of individual mutations and mutation combi- 56

nations, as well as rates of mutation, cell birth 57

and cell death—if possible, on the level of sub- 58

clones. These parameters determine the un- 59

derlying fitness landscape of individual cells 60

within their microenvironment, which in turn 61

determines the evolutionary dynamics of can- 62

cer progression. 63

5.3.1 Status 64

Recent technological advances already allow 65

for measuring the arrangement and relation- 66

ships of tumor cells in space, with cell loca- 67

tion basically amounting to a second measure- 68

ment type requiring data integration within 69

a cell (Approach 3 in section 6.1, Figure 6 70

and Table 2). While in vivo imaging tech- 71

niques might also become interesting for ob- 72

taining time series data in the future [Larue 73

et al., 2017], the automated analysis of whole 74

slide immunohistochemistry images [Ghaz- 75

navi et al., 2013, Saco et al., 2016] seems 76

the most promising in the context of cancer 77

and mutational profiles from scDNA-seq. It 78

is already amenable to single-cell extraction 79

of characterised cells with known spatial con- 80

text and subsequent scDNA-seq. Using laser 81

capture microdissection [Datta et al., 2015] 82

hundreds of single cells have recently been 83
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isolated from tissue sections and analysed1

for copy number variation [Casasent et al.,2

2018]. For cell and tissue characterisation in3

immunohistochemical images, machine learn-4

ing models are trained to segment the im-5

ages and recognize structures within tissues6

and cells [Gurcan et al., 2009, Irshad et al.,7

2014, Komura and Ishikawa, 2018]: They can8

e.g. determine the densities and quantities9

of mitotic nuclei, vascular invasion, immune10

cell infiltration on the tissue level, as well as11

stained biomarkers on the level of the individ-12

ual cell. These are key parameters of the tu-13

mor microenvironment, characterising the in-14

teraction tumor cells with their environment15

in space [Yuan, 2016, Heindl et al., 2015].16

Mathematical models of tumor popula-17

tion genetics have classically assumed well18

mixed populations, ignoring any spatial struc-19

ture, let alone evolutionary microenviron-20

ments. Recently, methods have been ex-21

tended to account for some spatial structure22

and have already led to refined predictions of23

the waiting time to cancer [Martens et al.,24

2011] and intratumor heterogeneity [Waclaw25

et al., 2015]. In particular, spatial statistics26

has been proposed for the quantitative sta-27

tistical analysis of cancer digital pathology28

imaging [Heindl et al., 2015], but the idea29

is applicable to other spatially resolved read-30

outs. A number of methods were proposed31

to model cell-cell interactions [Schapiro et al.,32

2017, Arnol et al., 2018] or to predict single-33

cell expression from microenvironmental fea-34

tures [Goltsev et al., 2018, Battich et al.,35

2015]. With the advent of spatially resolved36

DNA sequencing, models can be adapted to37

the new data.38

Regarding temporal resolution, it is already39

common to sequence tumor material from40

different timepoints: biopsies used for diag-41

nosis, resected tumours, lymph nodes and42

metastases upon surgery and tumours after43

relapse. These time-points already lend them-44

selves to temporal analyses of clonal dynam- 45

ics using bulk DNA sequencing data [John- 46

son et al., 2014]. But scDNA-seq will help 47

to increase the resolution of subclonal geno- 48

types. And integrating this clonal stratifica- 49

tion across timepoints and with other read- 50

outs, such as cell state markers, will allow 51

to determine central model parameters for 52

the detection of positive and negative selec- 53

tion, e.g. rates of proliferation, mutation and 54

death. 55

To also leverage the kinship relationships 56

between cells, population genetic methods 57

and models could be integrated with ap- 58

proaches from phylogenetics. One prominent 59

example of this recent trend is the use of the 60

multi-species coalescent model for analyzing 61

MSAs that contain several individuals for sev- 62

eral populations [Rannala and Yang, 2017, 63

Liu et al., 2015]. This naturally translates 64

into analyzing tumour subclones as popula- 65

tions of single cells, capturing some of the 66

population structure seen in cancers. This 67

phylogenetic context also lends itself to mod- 68

elling differences in mutational rates and sig- 69

natures between different cell populations, 70

e.g. between normal somatic evolution before 71

tumour initiation and cancer evolution after 72

tumour initiation, or between different tumor 73

subclones. 74

In this setting, we will have to account 75

for heterotachy (see e.g. Kolaczkowski and 76

Thornton [2008]), that is, we cannot assume 77

a single model of substitution for the entire 78

tree, but have to allow different models to act 79

on distinct branches or subtrees/subclones. 80

Here, anything from a simple model of rate 81

heterogeneity (e.g. Yang [1994]) to an empir- 82

ical mixture model as used for protein evolu- 83

tion [Le et al., 2012] could be considered. 84

A recent example integrating population 85

genetics approaches with phylogenetics, is a 86

computational model for inference of fitness 87

landscapes of cancer clone populations using 88
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sDNA-Seq data, SCIFIL [Skums et al.,1

2019]. It estimates the maximum likelihood2

fitness of clone variants by fitting a replicator3

equation model onto a character-based tumor4

phylogeny.5

6

For the detection of positive selection, a7

number of phylogenetic and population ge-8

netic approaches have been proposed. Phy-9

logenetic trees may be used for detecting10

branches on which positive [Zhang et al.,11

2005] or diversifying episodic selection [Smith12

et al., 2015] is acting. The tests from the13

area of “classic” phylogenetics might serve as14

a starting point for exploring and adapting15

appropriate methods that will allow to asso-16

ciate positive selection events to branches of17

the tumor tree or specific evolutionary events.18

Evolutionary pressures are often quantified by19

the dN/dS ratio of non-synonymous and syn-20

onymous substitutions. In application to tu-21

mor cell populations, however, this ratio may22

not be applicable, as it has been shown to be23

relatively insensitive when applied to popula-24

tions within the same species [Kryazhimskiy25

and Plotkin, 2008]. Other measures have been26

proposed as better suited for detecting selec-27

tion within populations based on time-series28

data and could potentially be transferred to29

tumor cell populations [Neher et al., 2014,30

Gray et al., 2011, Steinbrück and McHardy,31

2011]. An open question is to which extent32

the above tests will be sensitive to errors in33

cancer data as they are known to produce34

high false positive rates in the classic phyloge-35

netic setting if the error rate in the input data36

is too high [Fletcher and Yang, 2010]. Com-37

putationally intense solutions for decreasing38

the high false positive rate have been pro-39

posed [Redelings, 2014], but they might not40

scale to cancer datasets. Importantly, devel-41

opment of tests for positive selection could42

contribute to the discussion of whether the43

evolution of tumors is driven by selection or44

neutral. 45

For the detection of negative selection, time 46

resolved measurements and resulting prolif- 47

eration and death rates could prove equally 48

promising. Further, approaches were de- 49

veloped to discover epistatic interactions— 50

particularly synthetic lethality—from ge- 51

nomic and transcriptomic data in tumor 52

genomes and cancer cell lines [Szczurek et al., 53

2013, Jerby-Arnon et al., 2014], and patient 54

survival [Matlak and Szczurek, 2017]. Some 55

of these epistatic interactions, however, can 56

be hard to spot in bulk sequencing data, as 57

they may simply disappear because of a low 58

frequency. ScDNA-seq, ideally in a time re- 59

solved fashion and across individuals, pro- 60

vides much more insight into epistatic inter- 61

actions than bulk sequencing. The key fea- 62

ture is that it is possible to identify pairs of 63

mutations that often occur simultanously in 64

the same genome, and pairs that rarely or 65

never do. That is, cells affected by nega- 66

tively selected or synthetic lethal mutations 67

will go extinct in the tumor population and 68

thus their genotype with the synthetic lethal 69

mutations occurring together will not be ob- 70

served. Cell death, however, can be the result 71

of mere chance, so to detect significant nega- 72

tive pressures, large cohorts of repeated time 73

resolved experiments would have to be per- 74

formed. 75

5.3.2 Open problems 76

With an increased resolution of scDNA-seq 77

(section 4.1) and more work on the scDNA- 78

seq challenges described in other sections, it 79

will be possible to determine subclone geno- 80

types in more detail. 81

The first challenge will be to integrate 82

this with the spatial location of single cells 83

obtained from other measurements. This 84

will enable determining whether cells from 85

the same subclones are co-located, whether 86
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metastases are founded recurrently by the1

same subclone(s) and whether individual2

metastases are founded by individual or mul-3

tiple subclones. A number of studies utilizing4

multiple region samples from the same tumor5

and from distant metastases already paved6

the way in investigating these questions [Tu-7

rajlic and Swanton, 2016]. Still, only single-8

cell spatial resolution will allow identification9

of specific individual genotypes in specific lo-10

cations and the drawing precise conclusions.11

The second challenge will be to determine12

rates of proliferation and death per subclone.13

This could be achieved by measuring num-14

bers of mitotic and apoptotic cells per sub-15

clone or by integrating subclone abundance16

profiles across time points. Good estimates17

of these basic parameters will greatly benefit18

models, e.g. for the detection of positive and19

negative selection in cancer.20

A third challenge will be to determine21

subclone-specific rates of mutation. Here, in-22

tegration of models from population genetics23

and phylogenetics holds promise.24

A fourth challenge will be to devise ways25

to determine further relevant model parame-26

ters. For example, comparing expanded sub-27

clones in drug screens to determine subclone28

fitness under different treatment regimes can29

both help to predict subclone resistance (and30

thus expected treatment success) and further31

inform cancer evolution models.32

A final step will then be to put all these33

parameters into context with further infor-34

mation about local microenvironments (such35

as vascular invasion and immune cell infiltra-36

tion), to estimate the selection potential of37

such local factors for or against different sub-38

clones.39

6 Overarching challenges 40

6.1 Challenge XI: Integration of 41

single-cell data: across 42

samples, experiments and 43

types of measurement 44

Biological processes are complex and dy- 45

namic, varying across cells and organisms. To 46

comprehensively analyze such processes, dif- 47

ferent types of measurements from multiple 48

experiments need to be obtained and inte- 49

grated. Depending on the actual research 50

question, such experiments will refer to dif- 51

ferent time points, tissues or organisms. For 52

different measurement types, we put particu- 53

lar emphasis on the combination of scRNA- 54

seq and scDNA-seq data, although augment- 55

ing sequencing data with records on protein 56

or metabolite levels is also possible. 57

Since the exploration of complex, dynamic 58

and variable processes requires the integration 59

of data from multiple experiments, we need 60

flexible but rigorous statistical and compu- 61

tational frameworks to support that integra- 62

tion. See Table 2 and Figure 6 for an overview 63

of how the issues in creating such frameworks 64

can vary relative to the particular problem3. 65

When aiming at the identification of pat- 66

terns of differential expression, so as to char- 67

acterize variability across organisms, individ- 68

uals, or location, data refers to the same 69

(unique) measurement type (for example, 70

only scRNA-seq), but stems from different 71

time points, different locations (such as dif- 72

ferent tissues or sites in a tumor), or different 73

organisms. See Approach 1 in Figure 6 and 74

Table 2 for methodological challenges arising 75

3Graph representation in Figure 6 Approaches 2 and
5 taken from Wolf et al. [2019], Fig. 3, provided
under Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/
licenses/by/4.0/)
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Figure 6: Approaches for integrating single-cell measurement datasets across measurement
types, samples and experiments, as also described in Table 2.
Approach 0 Clustering of cells from one sample from one experiment, no data integration is
needed. Approach 1 Cell populations / clusters from multiple samples but the same mea-
surement type need to be linked. Approach 2 For cell populations / clusters across multiple
experiments, stable reference systems like cell atlases are needed (compare Figure 1). Ap-

proach 3 Whenever multiple measurement types can be obtained from the same cell, they
are automatically linked. However, this setup highlights the problem of data sparsity of all
available measurement types and the dependency of measurement types that needs to be
accounted for. Approach 4 When multiple measurement types cannot be obtained from
the same cell, a solution is to obtain them from cells of the same cell population. However,
this combines the problems of Approach 1 with those of Approach 3. Approach 5 One
possibility for easing data integration across measurement types from separate cells would
be to have a stable reference (cell atlas) across multiple measurement types. Effectively, this
combines the problems of Approaches 2, 3 and 4.
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Integration example MTs example AMs Promises Challenges
0 none scDNA-seq,

scRNA-seq,
merFISH

clustering /
unsupervised

identify new cell
types and states

technical noise

1 within 1 MT,
within 1 exp,
across > 1 smps

scDNA-seq,
scRNA-seq,
merFISH

differential
analyses,
time series,
spatial sampling

identify effects
across sample
groups, time and
space

technical noise; batch effects;
validate cell type assignments

2 within 1 MT,
across > 1 exp,
across > 1 smps,

scRNA-seq,
merFISH

map cells to
stable reference
(cell atlas)

accelerate analyses;
increase sample size
& generalize obser-
vations

technical noise; batch effects;
validate cell type assignments;
standards across experimental
centres

3 across > 1 MTs,
within 1 exp,
within 1 cell

scG&T-seq,
scM&T-seq,
seqFISH

MOFA,
DIABLO,
MINT

holistic view of biol.
processes within
cell;
quantification of
dependency of MTs

scaling cell throughput;
MT combinations limited;
dependency of MTs;
data sparsity

4 across > 1 MTs,
within 1 exp,
across > 1 cells,
within 1 cell pop

scDNA-seq +

scRNA-seq,
DNA-seq +

scRNA-seq

Cardelino,
Clonealign,
MATCHER

use existing datasets
(faster than 3);
flexible experimen-
tal design

technical noise;
validate cell / data grouping;
test assumptions for integrating
data

5 across > 1 MTs,
across > 1 exps,
across > 1 smps,
within cells

hypothetical:
any combina-
tion

hypothetical:
multi-omic
HCA,
single-cell
TCGA

comprehensive char-
acterizations of bio-
logical systems

all from approaches 2, 3 & 4;
standards across experimental
centres

Table 2: Approaches for data integration and their potential.
Abbreviations: AM – analysis method; exp(s) – experiment(s); HCA – human cell atlas;
MT – measurement type; smps – samples; TCGA – The Cancer Genome Atlas
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from this scenario.1

Another scenario arises when aiming at a2

general increase in sample sizes, so as to gen-3

eralize (and statistically corroborate) obser-4

vations. The increase in generality may fur-5

ther support the construction of a reference6

system, such as a cell atlas, the existence of7

which can support decisive speed-ups when8

classifying cells or cell states, investigated in9

subsequent experiments (see section 3.3). In-10

creasing sample sizes often means that data is11

raised across multiple experiments of identi-12

cal setup, for example experimental replicates13

possibly raised in different laboratories, such14

that statistically accounting for batch effects15

is a decisive factor. See Approach 2 in Fig-16

ure 6 and Table 2 for respective methodolog-17

ical challenges.18

Yet another scenario manifests when try-19

ing to unravel complexity and coordination20

of intracellular biological processes, as well21

as their mutual dependencies, so as to draw22

a comprehensive picture of a single cell. In23

this, an optimal setup is to raise data from24

just one single cell across multiple experi-25

ments referring to different types of mea-26

surements, such as scDNA-seq, scRNA-seq,27

possibly further augmented by measurements28

of chromatin accessibility, gene methylation,29

proteins or metabolites. See Approach 3 in30

Figure 6 and Table 2 for this scenario.31

Co-measuring different and possibly con-32

curring types of quantities, for example33

scRNA-seq and scDNA-seq [Kong et al.,34

2019], in just one single cell can be experi-35

mentally challenging or even just impossible36

at this point in time. An exit strategy to this37

problem is to raise a population of cells that38

is coherent in terms of cell type and state.39

One then spreads the different measurements40

across several single cells, all of which are41

drawn from this population. Upon having ap-42

plied the different measurements on different43

single cells, one needs to combine the data44

raised in a way that is biologically meaning- 45

ful, respecting that each measurement stems 46

from a different cell. Note that this approach 47

encompasses the possibility to raise data both 48

from single cells, and from bulks of cells. An 49

example for the latter are bulk sequencing de- 50

rived genotypes which one uses for imputa- 51

tion of missing values or the quantification of 52

data that have remained uncertain in single 53

cells that stem from the same population as 54

the bulk. The integration of different types of 55

data raised across multiple single cells, pos- 56

sibly including bulk data, casts issues that 57

deserve attention in their own right (see Ap- 58

proach 4 in Figure 6 and Table 2), because 59

these issues can substantially differ from the 60

methods referring to Approach 3. 61

The most comprehensive goal, finally, may 62

be to gain deeper insight into the complexity 63

of (intra-) cellular circuits, and to chart 64

their variability across time, tissues, and 65

populations. Mapping cellular circuits in this 66

comprehensive manner requires to take com- 67

plementary and concurring measurements 68

in single cells and across multiple single 69

cells, possibly also across time, tissues and 70

populations. Approach 5 in Figure 6 and 71

Table 2 deals with this holistic approach to 72

examining single cells. The ultimate goal is 73

to comprehensively characterize biological 74

systems, which requires to operate at the 75

single-cell level, because one would not gain 76

sufficient insight otherwise. 77

78

The challenges just outlined in terms of Ap- 79

proaches 1-5 in Figure 6 and Table 2 all are 80

affected by the issues that influence single- 81

cell data analysis in general, namely: (i) the 82

varying resolution levels that are of interest 83

depending on the research question at hand 84

(section 2.1); (ii) the uncertainty of any mea- 85

surements and how to quantify it for and dur- 86

ing the analyses (section 2.2) and (iii) the 87

scaling of single-cell methodology to more 88
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cells and more features measured at once (sec-1

tion 2.3). All of these further compound the2

most important challenge in the integration3

of single-cell data: to link data from the dif-4

ferent sources in a way that is biologically5

meaningful and supports the intended anal-6

ysis. It is an immediate insight that the7

maps that describe how data from the differ-8

ent sources is linked, increase in complexity9

on increasing amounts of samples, time points10

and types of measurements (Figure 6, Ta-11

ble 2): Linking multiple samples referring to12

the same quantity measured within one exper-13

iment (Approach 1 in Figure 6 and Table 2)14

or across several experiments (Approach 2)15

needs to account for batch effects. Of course,16

whenever possible, batch effects should be17

minimized by establishing (global) standards18

affecting experimental centres worldwide to19

streamline common initiatives. Nevertheless,20

even if standards have been successfully es-21

tablished, additional validation of, for exam-22

ple, assignments of cells to types and states23

may be required.24

The integration of measurements on mul-25

tiple quantities (such as scRNA-seq and26

scDNA-seq) raised in one single cell (Ap-27

proach 3) needs to account for dependencies28

if phenomena are concurrent. An illustrative29

example is to measure copy number variation30

(through scDNA-seq) or methylation so as to31

investigate their effects on RNA levels (mea-32

sured through scRNA-seq).33

Linking multiple types of measurement34

across different cells from the same cell pop-35

ulation (Approach 4) may require the group-36

ing of cells after experiments have been per-37

formed, because only then does disturbing38

variability among the (prior to the experiment39

assumed coherent) different cells become ev-40

ident. An example is to group cells based41

on commonalities or differences in their geno-42

type profile, having become evident only after43

the application of a scDNA-seq experiment.44

Any assumptions that underlie these possible 45

groupings need to resist thorough statistical 46

testing and functional validation. 47

6.1.1 Status 48

For unsupervised clustering (Approach 0 in 49

Figure 6 and Table 2), method development is 50

a well-established field. Remaining challenges 51

have already been identified systematically, 52

see Duò et al. [2018], Freytag et al. [2018], 53

Kiselev et al. [2019]. 54

For integrating multiple datasets of the 55

same measurement type across different sam- 56

ples in one experiment (Approach 1), a few 57

approaches are available. See for exam- 58

ple MNN [Haghverdi et al., 2018], and the 59

methodologies included in the Seurat pack- 60

age [Satija et al., 2015, Butler et al., 2018b, 61

Stuart et al., 2018]. For the challenges and 62

promises referring to the integration of sc-seq 63

data that vary in terms of spatial and tempo- 64

ral origin, see the discussions in the section 3.5 65

and section 5.3 below. 66

For integrating multiple datasets of the 67

same measurement type across experiments 68

(Approach 2), mapping cells to reference 69

datasets such as the Human Cell Atlas [Regev 70

et al., 2017] are currently emerging as the 71

most promising strategy. We refer the reader 72

to more particular and detailed discussions in 73

section 3.3. If applicable reference systems 74

are not available (note that the human cell 75

atlas is not yet fully operable), assembling 76

cell type clusters from different experiments 77

is a reasonable strategy, as implemented by 78

several recently published tools [Zhang et al., 79

2018, Barkas et al., 2018, Gao et al., 2018, 80

Kiselev et al., 2018, Park et al., 2018, Wag- 81

ner and Yanai, 2018, Boufea et al., 2019, Jo- 82

hansen and Quon, 2019, Johnson et al., 2019]. 83

The integration of data raised from one cell, 84

referring to multiple types of measurements 85

(Approach 3) is described in some particular 86
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experimental protocols that address the issue1

[Macaulay et al., 2017]. These focus on com-2

bining scDNA-seq and scRNA-seq (Dey et al.3

[2015], Macaulay et al. [2016, 2017]), methyla-4

tion data and scRNA-seq [Angermueller et al.,5

2016], or even all of scRNA-seq, scDNA-seq,6

methylation and chromatin accessibility data7

[Clark et al., 2018], or targeted queries on a8

cell’s methylation, transcription (scRNA-seq)9

and genotype status (sc-GEM, Cheow et al.10

[2016]). Beyond these single-cell specific ap-11

proaches, bulk approaches that address the12

integration of data from different types of ex-13

periments have the potential to be leveraged14

to account for single-cell specific noise char-15

acteristics or adapted to also qualify for cor-16

responding single-cell analyses (MOFA, Arge-17

laguet et al. [2018]), DIABLO [Rohart et al.,18

2017b, Singh et al., 2018] and MINT [Rohart19

et al., 2017a]).20

For the integration of different measure-21

ments performed on several cells all of which22

stem from a population of cells that is co-23

herent with respect to the intended analysis24

(Approach 4), technologies such as 10X ge-25

nomics [Zheng et al., 2017] for scRNA-seq26

and direct library preparation (DLP, Zahn27

et al. [2017b]) for scDNA-seq establish an ex-28

perimental basis. As above-mentioned, the29

greater analytical challenge is to, upon hav-30

ing performed experiments, identify subpop-31

ulations that had hitherto remained invis-32

ible, and whose identification is crucial so33

as to not combine different types of data34

in mistaken ways. An example for this are35

the identification of cancer clones although36

single cells had been sampled from identi-37

cal tumor tissue—only performing scDNA-38

seq experiments can definitively reveal the39

clonal structure of a tumor. If one wishes40

to correctly link mutation with transcription41

profiles—the latter of which are examined via42

scRNA-seq experiments—ignoring the clonal43

structure of a tumor would be misleading.44

Several analytical methods that address this 45

problem have recently emerged: (i) clonealign 46

[Campbell et al., 2019] assumes a copy-num- 47

ber dosage effect on transcription to assign 48

gene expression states to clones. (ii) cardelino 49

[McCarthy et al., 2018] aligns clone-specific 50

SNVs in scRNA-seq to those inferred from 51

bulk exome data to infer clone-specific ex- 52

pression patterns. (iii) MATCHER [Welch 53

et al., 2017] uses manifold alignment to com- 54

bine scM&T-seq [Angermueller et al., 2016] 55

with sc-GEM [Cheow et al., 2016], leverag- 56

ing the common set of loci. All of these 57

methods are based on biologically coherent 58

assumptions on how to summarize measure- 59

ments across different types and samples in a 60

reasonable way, despite their different physi- 61

cal origin. 62

6.1.2 Open problems 63

Experimental technologies that deal with tak- 64

ing measurements of different kinds on one 65

single cell (Approach 3 in Figure 6 and Ta- 66

ble 2) are on the rise and will allow to as- 67

say more cells at higher fidelity and reduced 68

cost. Yet, however, many methods for evau- 69

lating combinations of different types of mea- 70

surements performed on one single cell have 71

not been in the focus. It is to be expected 72

that the corresponding open problems will be- 73

come more urgent. As an example, consider 74

combined measurements of scDNA-seq and 75

scRNA-seq, where one uses the transcripts de- 76

rived from the latter to impute missing values 77

in the genotype profile derived from the first. 78

While this may make Approach 4 look as 79

if becoming gradually obsolete, the advances 80

with respect to Approach 3 and the corre- 81

sponding advances in terms of the resolution 82

of how intracellular measurements of different 83

types are linked with one another will benefit 84

from ground work on Approach 4. Further, 85

work using Approach 4 will mean a boost for 86
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reference systems, such as cell atlases (see also1

Approach 2), because our understanding of2

the link between the different substrates mea-3

sured will improve. As an example consider4

how gene expression increases on increasing5

genomic copy number, known as measure-6

ment linkage [Loper et al., 2019], are impor-7

tant to account for in such a reference system.8

This, in turn, will yield techniques that map9

different cellular quantities with greater ac-10

curacy, eventually allowing analyses at higher11

resolution and finer granularity. As a con-12

sequence, approaches that address taking dif-13

ferent measurement across different cells from14

the same population (Approach 4) will deliver15

more finegrained results, hence also thanks to16

these approaches being easier to perform and17

being more cost efficient, likely will not expe-18

rience a loss in popularity.19

As just mentioned, advances with respect20

to Approach 3 and 4 will be partially based on21

advances in terms of mappings that connect22

cells across their types and states, see Ap-23

proach 2. With combinations of measurement24

types gradually being shifted in the focus of25

attention, extensions of Approach 2 (which26

predominantly addresses how to connect dif-27

ferent cells based on a single measurement)28

are necessary. These extensions will have to29

address how to connect different cells also in30

terms of multiple types of measurements, or31

even combinations thereof, such as integrative32

genotype-expression-profiles (raised by evalu-33

ating combined experiments on both scRNA-34

seq and scDNA-seq, for example), which35

points out the need for improvements address-36

ing Approach 5.37

Amounts of material that underlie most38

measurements will remain tiny, oftentimes39

limited by the amounts within a single cell40

and by a limited number of cells available41

from a particular cell population. This means42

that one overarching theme will persist: that43

the analyses we have just discussed will suf-44

fer from missing entire views—samples, time 45

points, or measurement types missing entirely 46

at the time of training models or mapping 47

quantities on one another. This will add to 48

the difficulties in terms of missing data one 49

experiences in non-integrative approaches. 50

6.2 Challenge XII: Validating 51

and benchmarking analysis 52

tools for single-cell 53

measurements 54

With the advances in sc-seq and other single- 55

cell technologies, more and more analysis 56

tools become available for researchers, and 57

even more are being developed and will be 58

published in the near future. Thus, the need 59

for datasets and methods that support sys- 60

tematic benchmarking and evaluation of these 61

tools is becoming more pressing. To be useful 62

and reliable, algorithms and pipelines should 63

be able to pass the following quality control 64

tests: (i) They should produce the expected 65

results (e.g. reconstruct phylogenies, estimate 66

differential expressions or cluster the data) of 67

high quality and outperform existing meth- 68

ods, if such methods exist. (ii) They should 69

be robust to high levels of sequencing noise 70

and technological biases, including PCR bias, 71

allele dropout and chimeric signals. In any 72

case, benchmarking should be conducted in a 73

systematic way, following established recom- 74

mendations [Mangul et al., 2019, Weber et al., 75

2019]. 76

Evaluation of tool performance requires 77

benchmarking datasets with known ground 78

truth. Such data should include cell popula- 79

tions with known genomic compositions and 80

population structures, i.e. where frequencies 81

of clones and alleles are known. Currently, 82

such datasets are scarce—with some notable 83

exceptions [Grün et al., 2014, Tian et al., 84

2019]—because generating them in genuine 85
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laboratory settings is time-, labor- and cost-1

intensive. Experimental benchmark datasets2

for evolutionary analysis of single-cell pop-3

ulations are even harder to obtain, as they4

require follow-up samples with known infor-5

mation about evolutionary trajectories and6

developmental times. With lack of time-7

resolved measurements, only anecdotal evi-8

dence exists on, for instance, how the ac-9

curacy of phylogenetic inferences is affected10

by data quality. Availability of such gold-11

standard datasets would benefit single-cell ge-12

nomics research enormously.13

Due to aforementioned difficulties, the most14

affordable sources of benchmarking and vali-15

dation data are in silico simulations. Simula-16

tions provide ground truth test examples that17

can be rapidly and cost-effectively generated18

under different assumptions. However, devel-19

opment of reliable simulation tools require de-20

sign and implementation of models which cap-21

ture the essence of underlying biological pro-22

cesses and technological details of single-cell23

technologies and high-throughput sequencing24

platforms, establishing single-cell data sim-25

ulation as a methodologically involved chal-26

lenge.27

6.2.1 Status28

Recent studies [Soneson and Robinson, 2018,29

Saelens et al., 2019] show that systematic30

benchmarking of different single-cell analysis31

methodologies has begun. However, to the32

best of our knowledge, there is still a short-33

age of single-cell data simulation tools. Many34

single-cell data analysis packages include their35

own ad hoc data simulators [Vallejos et al.,36

2015, Korthauer et al., 2016a, Lun et al., 2016,37

Lun and Marioni, 2017, Jahn et al., 2016, Sa-38

tas and Raphael, 2018, Rizzetto et al., 2017,39

Köster et al., 2017]. However, these simula-40

tors are usually not available as separate tools41

or even as a source code, tailored to specific42

problems studied in corresponding papers and 43

sometimes not comprehensively documented, 44

thus limiting their utility for the broad re- 45

search community. Furthermore, since such 46

simulators are used only as auxiliary subrou- 47

tines inside particular projects and are not 48

published as stand-alone tools, they them- 49

selves are usually not evaluated, and there- 50

fore the accuracy of their reflection of real 51

biological and technological processes remain 52

unclear. There are few exceptions known 53

to us, including the tools Splatter [Zappia 54

et al., 2017], powsimR [Vieth et al., 2017], 55

and SymSim [Zhang et al., 2019d], which pro- 56

vide frameworks for simulation of scRNA-seq 57

data and whose accuracy has been validated 58

by comparison of its results with real data. 59

For single-cell phylogenomics, cancer genome 60

evolution simulators are being designed [Se- 61

meraro et al., 2018, Xia et al., 2018, Meng 62

and Chen, 2018]. 63

6.2.2 Open problems 64

Simulation tools mostly concentrate on differ- 65

ential expression analysis, while comprehen- 66

sive simulation methods for other important 67

aspects of sc-seq analysis are still to be devel- 68

oped. In particular, to the best of our knowl- 69

edge, no such tool is available for scDNA-seq 70

data. 71

With single-cell phylogenomics, one would 72

like to assess the accuracy of methods for 73

phylogenetic inference and subclone identifi- 74

cation, or the power of population genetics 75

methods for estimating parameters of interest 76

(e.g. tests for selection and epistatic interac- 77

tions in cancer, see section 5.3). To this end, 78

realistic and comprehensive (w.r.t. the evolu- 79

tionary phenomena) simulation tools are re- 80

quired. 81

Another interesting computational problem 82

is development of tools for validation of simu- 83

lated sc-seq datasets themselves by their com- 84
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parison with real data using a comprehen-1

sive set of biological parameters. The first2

such tool for scRNA-seq data is countsimQC3

[Soneson and Robinson, 2017], but similar4

tools for scDNA-seq data are needed. Finally,5

most of the simulators concentrate on model-6

ing of biologically meaningful data, while ig-7

noring or simplifying models for sc-seq errors8

and artifacts.9

Another important challenge in single-cell10

analysis tool validation is the selection of com-11

prehensive evaluation metrics, which should12

be used for comparison of different analysis13

results with each other and with the ground14

truth. For single-cell data it is particularly15

complicated, since many analysis tools deal16

with heterogeneous clone populations, which17

possesses multiple biological characteristics to18

be inferred and analyzed. Development of19

a single measure which captures several of20

these characteristics is complicated, and in21

many cases impossible. For example, valida-22

tion of tools for imputation of cellular and23

transcriptional heterogeneity should simulta-24

neously evaluate two measures: (i) how close25

are the reconstructed and true cellular ge-26

nomic profiles and (ii) how close are recon-27

structed and true SNV/haplotype frequency28

distributions. Development of synthetic mea-29

sures which capture several such characteris-30

tics (e.g. based on utilization of earth mover’s31

distance [Knyazev et al., 2018]) is highly im-32

portant.33

When simulating datasets in general, the34

circularity of simulating and inferring pa-35

rameters under the same—possibly simplis-36

tic model—should be critically assessed, as37

should potential biases. Thus, further eval-38

uation on empirical datasets for which some39

ground truth is known will be invaluable. Ide-40

ally, all single-cell analysis fields should define41

a standard set of benchmark datasets that will42

allow for assessing and comparing methods or43

come up with a regular data analysis chal-44

lenge. This approach has been very success- 45

ful, e.g. in protein structure prediction4 and 46

metagenomic analyses5. A first step in this 47

direction was the recent single-cell transcrip- 48

tomics DREAM challenge6. 49
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