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Abstract 13 

Global forest assessments use forest area as a proxy indicator of biodiversity status, which may 14 

mask below-canopy pressures driving forest biodiversity loss and ‘empty forest’ syndrome. The 15 

status of forest biodiversity is important not only for species conservation but also because species 16 

loss can have consequences for forest health and carbon storage. We aimed to develop a global 17 

indicator of forest specialist vertebrate populations to improve assessments of forest biodiversity 18 

status. For this purpose we used the Living Planet Index methodology, developing a weighted 19 
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composite Forest Specialist Index for the period 1970-2014. We then investigated potential drivers 20 

of forest vertebrate population change, including tree cover change, to determine whether forest 21 

area is a good proxy for forest biodiversity. The effects of satellite-derived tree cover trends and 22 

other pressures on the average rate of change of forest vertebrate populations were analysed. We 23 

reviewed the literature to gain more context-specific information relating to drivers of forest 24 

specialist population change. On average, forest vertebrate populations declined by 53% between 25 

1970 and 2014. We found little evidence of a consistent global effect of tree cover change on forest 26 

vertebrate populations but a significant negative effect of exploitation threat on forest specialists. 27 

However, time-series cross-correlation analyses showed some forest specialist populations are 28 

closely aligned to tree cover change. The literature review identified several drivers of population 29 

change that cannot be detected remotely and may cause populations to change independently of 30 

tree cover. Forest vertebrate populations have more than halved since the 1970s. In conclusion, we 31 

found that forest area is a poor proxy of forest biodiversity status. For forest biodiversity to recover, 32 

we must monitor and manage all threats to vertebrates, including those below the canopy. 33 

 34 

Keywords defaunation, deforestation, exploitation, forest biodiversity, forest cover change, 35 

Living Planet Index, indicators, post-2020, vertebrates 36 

 37 

Introduction 38 

 39 

As we approach the 2020 deadline for the Aichi Biodiversity Targets under the Convention on 40 

Biological Diversity (CBD), the continuing loss of biodiversity remains a seemingly intractable 41 

environmental challenge (Ceballos et al., 2015) with grave implications for human wellbeing and 42 
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the supply of valuable ecosystem services (Dirzo et al., 2014). Some 322 vertebrates have become 43 

extinct since 1500, and more than 27% of all assessed extant species are threatened with extinction 44 

(Dirzo et al., 2014; IUCN, 2019).  At a global scale, the average abundance of monitored vertebrate 45 

populations declined by 60% between 1970 and 2014 (WWF, 2018). With the average rate of 46 

vertebrate species loss over the last century being up to 100 times the background rate, there is 47 

little doubt that we have entered an era representing the sixth mass extinction (Ceballos et al., 48 

2015).  49 

  50 

Deforestation has been a significant driver of this worldwide biodiversity crisis. Over a century 51 

ago most clearance was of temperate forests (Brooks, Pimm, & Oyugi, 1999) leading to observed 52 

species extinctions (Pimm & Askins, 1995), whilst in the last decades the main deforestation 53 

frontiers and risks to biodiversity have been in the tropics (Gibbs et al., 2010; Myers, 1993; Song 54 

et al., 2018). Tropical forests are some of the most biodiverse ecosystems on Earth, harbouring 55 

over half the world’s terrestrial species (Groombridge & Jenkins, 2003). Yet deforestation and 56 

degradation of tropical forests have reduced their land coverage from 12% to less than 5% 57 

(Brandon, 2014), primarily as a result of large-scale industrial and local subsistence agriculture 58 

(Hosonuma et al., 2012) as well as logging, fires and fragmentation (Lewis, Edwards, & Galbraith, 59 

2016). This represents a loss of important resources and habitat for humanity (between 1.2 and 1.5 60 

billion people are directly dependent on ecosystem services provided by tropical forests; (Vira et 61 

al., 2015) as well as biodiversity, with far-reaching implications for the climate system (Lewis et 62 

al., 2016) and global carbon cycle (McNicol, Ryan, & Mitchard, 2018; Sullivan et al., 2017). 63 

 64 
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Land use change is predicted to continue as a major driver of terrestrial biodiversity loss for the 65 

rest of this century (Sala et al., 2000). In order to assess the impacts of land conversion pressures, 66 

it is crucial to develop national-to-global scale biodiversity measurements (Scholes et al., 2008). 67 

Yet, in the absence of a global measure of the status of forest biodiversity, forest area has been 68 

employed as a proxy indicator during global target setting and monitoring processes. Under the 69 

Strategic Plan for Biodiversity 2011-2020, for example, Aichi Target 5 focuses on halving the rate 70 

of loss of forests and other natural habitats by 2020 (CBD, 2010). The suite of indicators for 71 

Sustainable Development Goal 15 (‘Life on land’) of the 2030 Agenda on Sustainable 72 

Development includes forest area as a proportion of total land area, and the proportion of forest 73 

and other ecosystems covered by protected areas (UN DESA, 2017). Similarly, indicators used to 74 

monitor biodiversity conservation in the Forest Resources Assessment of the Food and 75 

Agricultural Organisation (FAO) comprise area of primary forest, forest area designated for the 76 

conservation of biodiversity, and forest area in legally established protected areas (FAO, 2016). 77 

However, the pertinence of forest area as a proxy indicator of forest biodiversity has never been 78 

tested. While habitat loss is the major driver of forest biodiversity loss, a focus on forest area alone 79 

risks masking other pressures on forest vertebrates that can operate below the canopy in 80 

conjunction with or independently of forest cover change. Consequently, areas with stable or 81 

increasing forest cover might be experiencing undetected declines in forest vertebrates, leading to 82 

so-called ‘empty forests’ that appear intact but have lost many of their large animals (Redford, 83 

1992). 84 

 85 

Understanding the status of forest biodiversity is important not only for species conservation but 86 

also because biodiversity loss can have consequences for forest health and carbon stocks). The 87 
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status of the world’s forests is a critical factor in the avoidance of dangerous climate change, with 88 

almost all scenarios consistent with meeting the 1.5 degree target requiring the maintenance and 89 

expansion of forest area. Forests are well recognised in the Paris Agreement on climate change for 90 

their potential to reduce emissions, act as carbon sinks, and deliver “non-carbon benefits”, 91 

including biodiversity conservation. Concurrently, the conservation of biodiversity in forests can 92 

have direct carbon benefits. Recent research has shed light on the important role that some forest 93 

vertebrates, particularly large birds and primates, play in forest regeneration and long-term carbon 94 

storage (Gardner, Bicknell, Struebig, & Davies, 2017). A loss or reduction in forest vertebrates 95 

from regions with a high proportion of large-seeded animal-dispersed tree species, such as Africa, 96 

Asia and the Neotropics, can lead to carbon losses in forests (Bello et al., 2015; Osuri et al., 2016; 97 

Poulsen, Clark, & Palmer, 2013). Defaunation therefore threatens the role that forests play as 98 

essential carbon stores and sinks, risking the investments made by governments and non-state 99 

actors in forests as carbon ‘banks’. 100 

 101 

Using the Living Planet Index (LPI) methodology (Collen et al., 2009; McRae, Deinet, & Freeman, 102 

2017) we aimed to develop the first global indicator of forest vertebrate specialist populations to 103 

improve assessments of forest biodiversity status. We then assessed whether trends in forest 104 

vertebrate populations were related to changes in tree cover, using satellite-derived tree cover 105 

datasets that matched the forest vertebrate data in space and time. If forest cover were a good 106 

indicator of forest biodiversity, we would expect to find a positive relationship between forest 107 

vertebrate population change and tree cover change. We therefore tested two hypotheses: 108 

1.  Forest vertebrates are in decline worldwide 109 

2.  Forest vertebrate population change is positively correlated to tree cover change. 110 
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 111 

Materials and Methods 112 

 113 

Development of a Forest Specialists Index 114 

 115 

The Living Planet Database (LPD) contains time-series abundance data for over 22,000 vertebrate 116 

populations including more than 4,200 species across the globe with the earliest records dating 117 

back to the 1950s (www.livingplanetindex.org). In order to be eligible for the LPD, data must 118 

cover at least 2 years, be collected at the same location using consistent monitoring methods and 119 

be traceable. The data is collated from a range of sources, including peer-review literature, grey 120 

literature, online databases and data holders. In addition to abundance data, metadata associated 121 

with each population is entered into the database. This additional information allows the 122 

disaggregation of populations based on, for example, taxa, region, biome, or habitat association. 123 

 124 

The decision to develop an indicator for forest specialists as opposed to all forest species follows 125 

the approach, but not the same method of selection, as the indicators developed for European birds 126 

(Gregory et al., 2005). Given that specialists depend entirely on forests, and non-specialists may 127 

be generalists or specialists of other habitats, their use in this indicator would provide a better 128 

representation of ecosystem health. We defined forest specialists using the habitat coding from the 129 

IUCN Red List (IUCN, 2019). Those with “Forest” listed as one of the major habitats for that 130 

species were considered forest generalists, whilst those with only “Forest” listed as the major 131 

habitat were considered forest specialists. This definition of specialist is narrow as the “Forest” 132 

category from the IUCN Red List refers to natural habitat and does not include artificial habitats 133 
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such as plantations. The forest specialists dataset comprised 268 forest specialist species (455 134 

populations): 135 birds, 89 mammals, 19 reptiles and 25 amphibians. See Appendix S1 in 135 

Supporting Information for a breakdown by realm and taxonomic class. 136 

 137 

We followed the approach of the diversity-weighted Living Planet Index (McRae et al., 2017) to 138 

create a weighted index proportional to the species richness of each biogeographic realm and taxa 139 

in the data set; also to enable results to be compared to the global Living Planet Index. In order to 140 

calculate weightings for each taxa and realm, the total number of vertebrate species from each 141 

taxonomic class and biogeographic realm that has “Forest” listed as a habitat was taken from the 142 

IUCN Red List. Unlike for birds, mammals and amphibians, the coverage of reptile assessments 143 

in the IUCN Red List is not comprehensive so we did not have a full list of forest reptile species 144 

globally. However, the number of forest reptiles by realm was considered usable given that the 145 

proportion of reptile species in each realm was similar to amphibians and also because spatial 146 

patterns of species richness tends to be similar among other vertebrate groups (Grenyer et al., 147 

2006). 148 

 149 

To create the subsets for the indicator, we disaggregated the data according to three taxonomic 150 

groups (mammals, birds, herptiles) by five realms (Nearctic, Palearctic, Neotropical, Afrotropical, 151 

Indo-Pacific). Combining amphibians and reptiles into a herptile group and Indo-Malaya, 152 

Australasia and Oceania into a single Indo-Pacific realm was a response to low data availability 153 

for these subsets. The final combinations yielded a total of 14 subsets as there were no time-series 154 

data available for Palearctic herptiles. 155 

 156 
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The Forest Specialist Index was calculated using the R package rlpi 157 

(https://github.com/Zoological-Society-of-London/rlpi) following the approach in McRae et al. 158 

(2017). The weightings calculated above for forest species were applied to each of the 14 subsets. 159 

 160 

Drivers of forest vertebrate population change 161 

 162 

Forest populations and tree cover change 163 

 164 

We selected all forest specialists and generalists that were surveyed at a specific location (defined 165 

as a discrete area such as a national park or sample area of a forest; a non-specific location 166 

comprises a larger survey area such as a province or country). For each population, the period 167 

encompassing the first and last year of survey data is subsequently referred to as the study period. 168 

Many population records do not have data available for every year of the study period. We 169 

determined annual predicted abundance values per population by fitting Generalised Additive 170 

Models (GAMs) to the time-series population data where survey data was available for at least 6 171 

years and linear regressions where data was available for between 2 and 5 years, following 172 

Spooner, Pearson, & Freeman (2018). 173 

 174 

In order to assess the relationship between tree cover change and forest vertebrate populations, we 175 

required a continuous measure of tree cover spanning multiple years and at a biologically useful 176 

resolution. Various global datasets exist that provide continuous tree cover values for multiple 177 

years and vary in tree cover definition, spatial resolution, temporal coverage and frequency 178 

(Appendix S2). Currently, the highest resolution global datasets (e.g. ~30-m) are available for a 179 
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shorter temporal coverage than some datasets with a coarser resolution. Higher resolution datasets 180 

allow more fine-scale detection of changes in vegetation cover, while longer-term datasets increase 181 

the likelihood of detecting a relationship between tree cover change and population change by 182 

increasing the number of populations and years that can be analysed. We opted to run our analyses 183 

twice, once using the shorter-term 30-m Landsat Global Forest Change dataset (hereafter referred 184 

to as the Hansen dataset; Hansen et al., 2013) and once using the longer-term 5.6-km MEASURES 185 

VCF5KYR 1982-2016 dataset which includes annual fractional tree cover and bare ground cover 186 

values (hereafter referred to as the Song dataset; Song et al., 2018). In addition to fractional tree 187 

cover in 2000 and 2010 (2010 layer accessed from USGS Land Cover Institute, 2017), the Hansen 188 

dataset provides annual tree cover loss as a binary presence/absence value for 2000 to 2017, 189 

defined as complete stand replacement or a change from a forest to a non-forest state within a 190 

pixel. This information allows the estimation of deforestation rates, but may mask fine-scale 191 

changes within pixels such as a reduction (but not complete loss) in tree cover and assigns gradual 192 

losses that occur over multiple years to a single year. 193 

 194 

It is important to note that, while these datasets may refer to ‘forest cover’, none differentiate 195 

between natural, semi-natural or non-natural forests (such as plantations). Thus, while losses (or 196 

gains) in tree cover might reflect deforestation (or regeneration) in natural forests, in plantations 197 

this might reflect harvest (or growth) of products grown specifically for human extraction that may 198 

provide lower quality habitat for forest vertebrate populations. Systematically collected global data 199 

on tree plantations are lacking. The Global Forest Watch (GFW) Tree Plantations layer records 200 

tree plantations in a single year (2013/2014) for only seven countries (Brazil, Cambodia, 201 

Colombia, Indonesia, Liberia, Malaysia, Peru; Petersen et al., 2016) and is therefore unsuitable for 202 
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our analyses. A recently released near-global dataset on plantations by GFW (Harris, Goldman, & 203 

Gibbes, 2019) is also unsuitable, as the reference year is 2015 and the image interpretation method 204 

varied between countries. In the absence of suitable global information distinguishing natural and 205 

planted forests, we therefore refer to tree cover rather than forest cover whenever discussing values 206 

derived from the spatial tree cover datasets used in this analysis. 207 

 208 

We fitted buffers with a 5-km radius around the central coordinates of each forest population and 209 

extracted annual tree cover area and bare ground area for 1982-2016 using the Song dataset and 210 

tree cover area in 2000 and 2010 using the Hansen dataset. We additionally extracted annual loss 211 

values for 2001-2017 from the Hansen dataset, using per-pixel tree cover in 2000 to estimate how 212 

much tree cover was lost per buffer per year. All data extraction was carried out in Google Earth 213 

Engine (Gorelick et al., 2017). We visually assessed the change in tree cover over time per location 214 

based on the Song dataset and identified substantial inter-annual fluctuations in tree cover at some 215 

locations that were unlikely to reflect true changes. To smooth these fluctuations in the Song 216 

dataset, GAMs were fitted to the annual tree cover values within each buffer to obtain annual fitted 217 

tree cover values.  218 

 219 

We reduced the annual fitted population data to only include years that fell within 1982-2016 when 220 

analysing the effects of tree cover change with the Song dataset and 2000-2015 when analysing 221 

with the Hansen tree cover dataset. In both cases we removed populations that no longer had ≥2 222 

years of data covering a ≥5 year period (Appendix S3 & S4). Average logged rate of change of 223 

each remaining population was calculated following Spooner et al. (2018). Using the Song dataset, 224 

we reduced the annual fitted tree cover values to match the study period of each population, with 225 
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a 1-year lag (i.e. tree cover in year t matched to population data in year t+1). We then calculated 226 

three predictor variables from the fitted tree cover values: mean tree cover during the study period; 227 

mean bare ground cover during the study period; and the tree cover trend over the study period, 228 

taken as the year coefficient from an ordinary least squares regression of annual fitted tree cover 229 

on year. We also calculated three predictor variables from the Hansen dataset: tree cover in 2000; 230 

the area of tree cover lost over the study period (based on loss data only); and the proportional 231 

change in tree cover between 2000 and 2010 (as these are the two years with percent tree cover 232 

per pixel available). We removed populations with zero tree cover in all years from the analyses, 233 

leaving 1668 generalist and 175 specialist populations in the analyses using the Song dataset 234 

compared with 685 generalist and 74 specialist populations in the analyses with the Hansen dataset 235 

(see Appendices S3 and S4 for a breakdown by realm and taxonomic class, respectively). 236 

 237 

Additional drivers of forest population change 238 

 239 

Forest vertebrates are affected by many drivers that may occur independently of, or in conjunction 240 

with, tree cover change, and some of this information is stored in the LPD. Each time-series in the 241 

LPD has metadata associated with it that provide ancillary information about the population, 242 

including threat information. If the source of the population data specified the existence of any 243 

threats to the population, this was categorised as climate change, disease, exploitation, habitat 244 

degradation/change, habitat loss, invasive species/genes or pollution, and was recorded in the LPD. 245 

Exploitation, including the hunting, persecution, indirect killing or collection of wild individuals 246 

for trade, is likely to be a key driver of some forest vertebrates and can occur independently of tree 247 

cover change. We therefore included in our analyses a binary variable specifying whether the 248 
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primary threat to the population was or was not exploitation. It is possible that body size may 249 

impact species’ sensitivity to forest change (Henle et al., 2004).  To investigate this effect, we took 250 

adult body mass values per species from the Amniote (Myhrvold et al., 2015),  AmphiBIO 251 

(Oliveira, São-Pedro, Santos-Barrera, Penone, & Costa, 2017) and EltonTraits 1.0 (Wilman et al., 252 

2014) databases. Where species-level body mass information was not available, we assigned the 253 

species the mean body mass of its genus, family or order (higher taxonomic ranks used where data 254 

was unavailable for lower ranks). The body mass values were logged (base 10) to normalise them. 255 

We calculated additional predictor variables using independently derived global spatial datasets. 256 

We calculated the density of roads within the study area, defined as the total length of roads within 257 

each population’s 5-km buffer, using the gROADS v1 dataset (CIESIN & ITOS, 2013). We used 258 

the UN-Adjusted Gridded Population of the World Version 4 dataset (CIESIN, 2016) to calculate 259 

the mean Human Population Density (HPD) within each buffer in the year 2000. Finally, we 260 

calculated the mean travel time to the nearest city or densely populated area for each buffer from 261 

the Accessibility to Cities 2015 dataset (Weiss et al., 2018).  262 

 263 

 Model structure 264 

 265 

At some locations multiple populations were monitored over the same period, so we chose to fit a 266 

model to the data that would take into account their non-independence. For each predictor variable 267 

we fitted mixed effects models using the ‘lme4’ package (Bates, Mächler, Bolker, & Walker, 2015) 268 

with the average rate of change of each population as the dependent variable, location as a random 269 

effect and the predictor as a fixed effect. We fitted separate models for each predictor variable to 270 

identify any relationships between these variables and population change. To determine whether a 271 
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predictor variable was a significant driver of population change, we calculated Akaike’s 272 

Information Criterion (AIC) for all models and compared them with the AIC of the null model 273 

including only a random effect of location. We considered a predictor variable to have significantly 274 

improved the model fit if inclusion of the variable lowered the AIC by at least 2 compared to the 275 

null model  (Burnham & Anderson 2004). 276 

 277 

We fitted these models to all forest populations (generalists and specialists) and additionally to 278 

forest specialist populations only. All analyses were carried out in the statistical software R 279 

version 3.5.1 (R Core Team, 2018). 280 

 281 

Influential genera 282 

 283 

We wished to determine whether any groups of species were having a significant influence on the 284 

models. In the absence of any groups of influential species, models iteratively excluding one group 285 

at a time would not produce substantially different model estimates. We used the ‘influence.ME’ 286 

package (Nieuwenhuis, Grotenhuis, & Pelzer, 2012) to produce estimates from models that 287 

iteratively excluded the influence of each genus, where each predictor variable was fitted in a 288 

univariate mixed effects model with genus as a random effect. We used the “sigtest” function to 289 

test whether excluding any genus changed the statistical significance of any of the predictor 290 

variables in our models. We then examined the influential genus to determine the cause and 291 

repeated our analyses with the genus omitted.  292 

 293 

 294 
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Forest specialist literature review 295 

 296 

We additionally carried out population-level time series cross-correlation analyses to assess the 297 

relationship between annual forest specialist abundance and tree cover. For each population we 298 

assessed the correlation between annual fitted population abundance and annual fitted tree cover 299 

values using the Song tree cover dataset. As population change may lag behind tree cover change, 300 

for instance when a loss of habitat causes a reduction in fecundity or juvenile survival but not adult 301 

mortality, we assessed the correlation between population abundance and tree cover allowing for 302 

the existence of a time lag, selecting the lag that gave the strongest correlation. Because these 303 

populations are forest specialists we assumed that they were more likely to have a positively 304 

correlated relationship with tree cover change. Therefore we initially checked for a significant 305 

positive correlation between the annual abundance estimates and tree cover, and only checked for 306 

a significant negative relationship in the absence of a positive relationship. Populations were 307 

therefore categorised as positively, inversely or uncorrelated with tree cover. A cross-correlation 308 

was considered significant if its absolute value exceeded the double square root of the number of 309 

years of data that were used in that specific cross-correlation analysis. This follows the 310 

approximate (large-sample) standard deviation for the usual Pearson-correlation-coefficient-based 311 

n independent observations on pairs of independent measurements. We note that we are applying 312 

this threshold for filtering not for formal statistical testing. 313 

 314 

To identify any common themes in the forest specialist populations that appear to be responding 315 

to tree cover change, we reviewed the source literature of the populations that we categorised as 316 

positively or inversely correlated with tree cover. We extracted qualitative information relating to 317 
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forest type (natural or plantation), forest utilisation (e.g. logging, hunting, recreational use), drivers 318 

of forest cover change (e.g. regeneration, fire, storm damage, disease, invasive species) and drivers 319 

of population change (e.g. change in habitat, change in food availability, predator control, 320 

increased predation, poaching or protection from poaching, invasive species, climate change, 321 

disease). 322 

 323 

Results 324 

Forest Specialist Index 325 

 326 

The Forest Specialist Index declined by 53% between 1970 and 2014 (Fig 1A; Index value: 0.47; 327 

range 0.30-0.73). This indicates an average decline in 455 monitored populations of forest 328 

specialists at an annual rate of 1.7% per year. The decline in the index was steepest between 1970 329 

and 1976. The percentage of all species that had an annual declining trend was consistently 330 

between 50 and 65% during the time period except for the late 1980s, early 2000s and 2013-4 331 

when the proportion dropped below half (Appendix S5). These time periods are illustrated by 332 

corresponding changes in the index to a slower decline. There is an increase in the percentage of 333 

increasing annual trends in 2013 and 2014 and the percentage in 2014 is the highest out of all 44 334 

years; this pattern is noticeable across all taxa (Fig 1B-D).  There were more declining years than 335 

 336 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27882v1 | CC BY 4.0 Open Access | rec: 1 Aug 2019, publ: 1 Aug 2019



16 
 

 

 

 

 337 

Fig 1: Weighted index of population change for 268 forest specialist species (A). Solid line 338 

shows the weighted index values and shaded region shows the 95% confidence for the index. 339 

Percentage of annual species trends which are increasing (positive) or declining (negative) 340 

for mammals (B), herptiles (C) and birds (D) 341 

 342 
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increasing among species trends for mammals (53% of all annual data points) and herptiles (63% 343 

of all annual data points); the reverse was true for birds where there were more increasing years 344 

(52% of all annual data points). For all taxa, the percentage of increasing and declining annual 345 

trends varied across the time series (Fig 1B-D). The number of declining species trends from 346 

tropical realms and tropical forest biomes was greater than increasing, while the reverse was true 347 

of temperate realms and temperate forest biomes (Appendix S6). 348 

 349 

Drivers of forest vertebrate population change 350 

 351 

We identified one genus (Gyps) that had a large influence on the model estimates. Gyps vultures 352 

are a group of generalist species that have declined severely since the 1990s because of accidental 353 

poisoning from the veterinary drug diclofenac (Oaks et al., 2004), and are therefore a very specific 354 

case that does not reflect responses of forest populations to any of the widespread pressures we 355 

have investigated. We therefore excluded Gyps vultures from our analyses. 356 

 357 

Mixed effects models including specialist and generalist forest populations and using the long-358 

term Song tree cover dataset showed no evidence of a relationship between forest population 359 

change and mean tree cover, mean bare ground, exploitation, HPD, mean travel time or road 360 

density (Table 1). Positive effects of tree cover trend over the study period and body size (both 361 

p<0.05) suggested some relationship between these predictor variables and population change (Fig 362 

2), but effect sizes were zero or close to zero with confidence intervals overlapping the zero line, 363 

and a comparison of AIC values with the null model showed the fit of the models were not 364 

significantly improved by including either variable (Table 1). 365 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27882v1 | CC BY 4.0 Open Access | rec: 1 Aug 2019, publ: 1 Aug 2019



18 
 

 366 

 367 

Fig 2. Average rate of change of forest vertebrate populations (specialists and generalists) 368 

with abundance data covering at least a 5 year range between 1982 and 2016 from the Living 369 

Planet Database, and tree cover trend within a 5-km radius of each population’s study 370 

location calculated over the same period as the population data from remotely-sensed tree 371 

cover data (Song et al., 2018). Green = mammals, Red = birds, Blue = reptiles, Black = 372 

amphibians. N = 1668. 373 

 374 

We found a significant negative effect of exploitation on forest specialist population change, 375 

although this was based on exploitation being the primary threat of just 12 out of 175 forest 376 

specialist populations. We found no evidence of a relationship between forest specialist population 377 

change and any other predictor variable (Table 2). 378 
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 379 

Mixed effects models including forest specialists and generalists and using the Hansen tree cover 380 

dataset suggested a positive effect of HPD and body mass (both p<0.05) on forest population 381 

change, but a comparison of AIC with the null model showed this was not significant. There was 382 

no evidence of any relationships between population change and any other variables (Appendix 383 

S7). We found no significant relationships between any predictors and population change when 384 

repeating the analyses using only forest specialist data (Appendix S8). 385 

 386 

Table 1. Average rate of forest population change regressed on fixed predictor effects with a 387 

random effect of location: mixed effect model results for forest vertebrate populations 388 

(generalists and specialists). Populations had at least 2 years of data covering at least a 5 year 389 

period from 1982-2016. Tree cover variables calculated using the Song et al (2018) dataset. 390 

N = 1668. 391 

Fixed effect Estimate CI p-value AIC ∆AIC 

NULL NA NA NA -4113.666 0 

Tree cover 

trend 

0.01 0.00 – 0.02 0.033 -4107.464 6.202 

Body mass 0.00 0.00 – 0.01 0.002 -4109.732 3.934 

Mean tree 

cover 

-0.00 -0.01 – 0.00 0.501 -4102.222 11.444 
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Mean bare 

ground 

0.00 -0.01 – 0.01 0.857 -4102.885 10.781 

Exploitation 

(Y) 

0.00 -0.01 – 0.02 0.800 -4103.753 9.913 

HPD 0.00 -0.00 – 0.01 0.144 -4103.674 9.992 

Road density -0.00 -0.00 – 0.00 0.901 -4096.325 17.341 

Mean travel 

time 

-0.00 -0.01 – 0.01 0.707 -4102.185 11.481 

  392 

 393 

Table 2. Average rate of forest population change regressed on fixed predictor effects with a 394 

random effect of location: mixed effect model results for forest vertebrate populations 395 

(specialists only). Populations had at least 2 years of data covering at least a 5 year period 396 

from 1982-2016. Tree cover variables calculated using the Song et al. (2018) dataset. N = 175.  397 

 398 

Fixed effect Estimate CI p AIC ∆AIC 

NULL NA NA NA -461.632 3.409 

Tree cover 

trend 

0.02 -0.01 – 0.04 0.126 -454.989 10.052 
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Body mass -0.00 -0.01 - 0.00 0.305 -451.438 13.603 

Mean tree 

cover 

-0.02 -0.06 – 0.03 0.437 -454.560 10.481 

Mean bare 

ground 

0.02 -0.02 – 0.07 0.287 -454.991 10.05 

Exploitation 

(Y) 

-0.09 -0.14 – -0.04 0.001 -465.041 0 

HPD -0.01 -0.02 – 0.01 0.472 -452.625 12.416 

Road density -0.00 -0.00 – 0.00 0.310 -448.816 16.225 

Mean travel 

time 

0.01 -0.01 – 0.04 0.242 -453.894 11.147 

 399 

Cross-correlation analyses between annual forest specialist abundance and annual tree cover 400 

identified 40 populations with positively correlated relationships and 31 populations with inversely 401 

correlated relationships. 104 populations had no correlation with tree cover. A review of the 402 

literature of the 71 populations that were positively or negatively correlated with tree cover found 403 

some common themes. All populations that were monitored in areas where forest regeneration (10 404 

populations) or extreme events (3 populations) were specified as a driver of forest cover change 405 

displayed a positively correlated relationship with tree cover, and populations in areas where 406 

logging was present also tended to have a positively correlated relationship (6/9 populations). In 407 
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all cases where invasive species control was specified as a driver of population change (4 408 

populations), populations had a positively correlated relationship with tree cover. Populations 409 

monitored in forests where hunting was present (not necessarily targeting that species) tended to 410 

be negatively inversely correlated with tree cover (11/14 populations), and all hunted populations 411 

(5 populations) had an inversely correlated relationship with tree cover. Populations that were 412 

noted as being affected by climate change also tended to be inversely correlated with tree cover 413 

(10/11 populations). Other specified drivers of population change, such as habitat change, food 414 

availability, disease and increased predation were infrequent and less consistently associated with 415 

populations that were positively or inversely correlated with tree cover.  416 

  417 

Discussion 418 

 419 

Our results indicate that, on average, the global abundance of forest specialists more than halved 420 

from 1970 to 2014. The finding was consistent among mammal and herptiles but less so among 421 

birds, especially from temperate forests. Trends are worse in the tropics, as might be expected 422 

given the more rapid rates of forest loss in tropical regions (FAO, 2016) over that period. The final 423 

years of the index, 2013 and 2014, showed an increasing trend as a result of a greater proportion 424 

of increasing annual trends among species than in previous years, across all taxa. As there have 425 

been other increasing trend years in the index throughout the time-series followed by a decline 426 

(1991-2, 2001-2, 2004-6), it is not possible to say at this stage whether the latest upturn in the 427 

Forest Specialist Index is a sign of a significant improvement in the abundance of forest specialists. 428 

  429 
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In understanding the overall reduction in the rate of decline of the index after 2000, we need to 430 

consider three factors which are pertinent to interpreting trends in composite indices: species with 431 

increasing trends entering the data set, species with declining trends leaving the data set and 432 

improvement in species trends from declining to increasing during this time period. The first two 433 

factors result from turnover in the species data that contributes to the index as data are not available 434 

for all 44 years for all species. This turnover in data is observed in our data set, suggesting that the 435 

reduced rate of decline may not entirely reflect overall improving status for species in the data set, 436 

rather a change in the underlying data coupled with some species recoveries. This highlights a 437 

limitation of composite indices such as this where the temporal representation of species data is 438 

not comprehensive across the time-series (Buckland & Johnston, 2017) and illustrates the need for 439 

diagnostics to accompany interpretation as well as additional data to strengthen the index. In 440 

addressing the third factor, and in order to eliminate any effect of data turnover, we looked at 441 

species with data present in all decades. These are predominantly bird species from the Nearctic 442 

which are well monitored over the long-term. After an initial decline, the average trend for this set 443 

of species does show an improvement to stability from the mid-2000s, but this trend is not yet 444 

increasing (Appendix S9). The stabilisation of trends in forest bird species in the Nearctic is 445 

consistent with other findings (BirdLife International, 2018). It is worth noting that species 446 

biodiversity data is currently skewed away from where species richness is greatest (Collen, Ram, 447 

Zamin, & McRae, 2008), limiting our ability to identify and address threats in some of the most 448 

biodiverse areas on the planet. The lack of population time-series in the Living Planet Database 449 

from forest hotspots in Africa, Asia and the Amazon highlights this issue. To develop a more 450 

representative picture of the status of forest biodiversity and drivers of population change, these 451 
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data gaps need to be filled. This will require greater investment in systematic, long-term, on-the-452 

ground monitoring of forest vertebrates and improved data sharing within the research community. 453 

  454 

It has been claimed that, whilst remote sensing allows rigorous and quantitative monitoring of 455 

forest cover change, processes of defaunation are more cryptic and difficult to track (Dirzo et al., 456 

2014), even occurring in large protected habitats (Peres & Palacios, 2007). Our results lend support 457 

to this assessment that forest cover alone is inadequate as an indicator of forest biodiversity. We 458 

did not find significant evidence of a consistent relationship between forest vertebrate populations 459 

and tree cover change in the surrounding area. Analyses such as these would benefit from a global, 460 

systematically-developed dataset categorising forest areas into natural or planted forests, with 461 

temporal information detailing when each plantation was established. This would allow tree cover 462 

loss or gains within plantations to be identified, allowing for more rigorous checks of the 463 

relationship between populations of forest-dwelling species and natural forest cover change. A 464 

recently released database by GFW offers a promising development in this respect, but its start 465 

date of 2015 precludes its use in the current study (Harris et al., 2019). 466 

 467 

Positively correlated relationships between tree cover change and population trends were evident 468 

for some forest vertebrates included in our analyses, but this was not detected across all populations 469 

and other factors appear to have masked this relationship at a global level. By reviewing the source 470 

literature of forest specialist populations we investigated common factors associated with 471 

populations that displayed a positive or inverse correlation with tree cover change. We found 472 

examples of multiple pressures driving population declines (such as poaching, climatic conditions 473 

and disease) and conservation interventions supporting population recovery (such as the control of 474 
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invasive species and forest regeneration). All populations in areas undergoing natural or managed 475 

native forest regeneration had a positively correlated relationship with tree cover change, while 476 

populations specified as being threatened by climatic conditions, such as an increasing intensity of 477 

La Niña events, tended to be inversely correlated with tree cover change. Similarly, the exploited 478 

populations identified in our literature review, exclusively mammalian species, had a inversely 479 

correlated relationship with tree cover change. Given that we also found a significant negative 480 

effect of exploitation on forest specialist population change, this suggests that the impact of 481 

exploitation on mammalian forest specialists is strong enough to decouple the expected positively 482 

correlated relationship between these populations and tree cover change. 483 

  484 

Our finding of exploitation as a key driver of forest specialist population decline supports evidence 485 

presented elsewhere. An analysis of threat information for 8688 species on the IUCN Red List of 486 

Threatened Species identified over-exploitation alongside agriculture (principally crop and 487 

livestock farming) as the main drivers of biodiversity loss (Maxwell, Fuller, Brooks, & Watson, 488 

2016). Climate change is considered to be an increasingly important driver in the future (Foden et 489 

al., 2013; Maxwell et al., 2016). Indeed, its impact is already evident: an analysis of bird and 490 

mammal data in the Living Planet Database found the rate of climate warming, but not land 491 

conversion, a strong driver of population change (Spooner et al., 2018). The intensification of 492 

climate and other global environmental changes are predicted to interact with overexploitation and 493 

other pressures to lead to severe future degradation of tropical forests unless alternative, non-494 

destructive development pathways are followed (Lewis et al., 2016). With most drivers of change 495 

interacting in space, time and organisational level (Liu et al., 2015), ultimately an explicitly linked 496 
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set of forest biodiversity indicators may be more useful than reliance on any individual indicator 497 

to understand and communicate forest biodiversity trends and guide policy (Butchart et al., 2010). 498 

 499 

The Forest Specialist Index should be among such a set of indicators. This indicator, as developed 500 

here, has now been put forward through the Biodiversity Indicators Partnership to measure 501 

progress towards Aichi Targets 5, 7 and 12 (https://www.bipindicators.net/indicators/living-502 

planet-index/living-planet-index-forest-specialists) and would complement existing indicators in 503 

monitoring progress towards SDG 15, the post-2020 framework under the CBD and in the delivery 504 

of the Paris Agreement. As such, it would also be a valuable inclusion in the Global Core Set of 505 

forest-related indicators as being coordinated by the FAO. 506 

  507 

The findings presented here also demonstrate the importance of complementing satellite remote 508 

sensing-derived datasets with repeated on the ground species surveys and site-specific threat 509 

information when assessing the status of forest biodiversity and drivers of species population 510 

change. While remote sensing data has undoubtedly improved our ability to independently monitor 511 

and assess changes in forest cover, there are many additional drivers of forest population change 512 

that can only be identified by looking below the canopy. A focus on forest cover alone risks 513 

masking below-canopy processes, such as defaunation, with grave consequences not only for 514 

forest biodiversity but also long-term forest health and carbon storage (Bello et al., 2015; Gardner 515 

et al., 2017; Poulsen et al., 2013). Therefore, we must not lose sight of the crucial role that site-516 

level species monitoring plays in understanding trends and drivers of forest biodiversity change. 517 

 518 

 519 
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Supporting Information 693 

Appendix S1. Number of species and populations in the forest specialist index by realm and 694 

taxonomic class 695 

 696 

 Afrotropical Indopacific Nearctic Neotropical Palearctic 

Species Populati

ons 

Species Populati

ons 

Species Populati

ons 

Species Populati

ons 

Species Populati

ons 

Birds 1 1 27 44 45 47 60 75 8 42 

Mammals 27 49 19 32 6 32 31 54 6 14 

Reptiles and 

amphibians 

5 5 7 11 4 11 27 37 0 0 
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 718 

 719 

Appendix S2. Specifications of some global tree cover datasets with continuous vegetation fields 720 

 721 

Dataset name Definition of tree 

cover 

Spatial 

resolution 

Temporal 

coverage/ 

cadence 

Reference 

  

Landsat Global 

Forest Change 

Canopy closure for all 

vegetation taller than 5 

meters in height. 

30 m Fractional tree 

cover available 

for 2000 and 

2010 only; tree 

cover loss 

available for 

2001-2017 

Hansen et al 

(2013) 

Landsat VCF 

(GLCF) 

The percentage of 

horizontal ground in 

each 30-m pixel 

covered by woody 

vegetation greater than 

5 meters in height 

30 m 2000, 2005, 

2010 

(Sexton et 

al., 2013) 

MEASURES 

VCF5KYR 

The proportion of the 

ground covered by the 

vertical projection of 

tree crowns. Trees are 

defined as all 

vegetation taller than 5 

meters in height. 

0.05 

degree 

(5600 m) 

1982-2016, 

annual 

Song et al 

(2018) 

MODIS VCF Percent of the pixel 

covered by tree canopy 

equal to or greater than 

5 m in height. 

250 m 2000-2015, 

annual 

(DiMiceli et 

al., 2015) 
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 728 

Appendix S3. Number of forest populations (generalists and specialists) and forest specialist 729 

populations per realm included in analyses using long-term and short-term tree cover datasets. 730 

  731 

Analysis Realm All forest populations Forest specialist populations 

Long-term (Song) 

Afrotropical 365 36 

Australasia 64 3 

Indo-Malayan 98 20 

Nearctic 321 14 

Neotropical 315 76 

Oceania 30 12 

Palearctic 475 14 

Short-term (Hansen) 

Afrotropical 172 12 

Australasia 42 3 

Indo-Malayan 52 10 

Nearctic 96 2 

Neotropical 127 43 

Oceania 0 0 

Palearctic 196 4 
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Appendix S4. Number of forest populations (generalists and specialists) and forest specialist 746 

populations per taxonomic class included in analyses using long-term and short-term tree cover 747 

datasets. 748 

Analysis Taxa All forest populations Forest specialist populations 

Long-term (Song) 

Amphibians 154 19 

Birds 701 73 

Mammals 767 78 

Reptiles 46 5 

Short-term (Hansen) 

Amphibians 52 2 

Birds 251 33 

Mammals 348 34 

Reptiles 34 5 
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Appendix S5. Number of species trends in the FSI annually, with proportions of positive and 774 

negative annual trends  775 
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Appendix S6. Number of average declining, increasing and stable (less than 5% change in 800 

abundance) species trends in tropical and temperate realms (A) and biomes (B). Nine species 801 

were not located in a forest biome (where forest is the dominant habitat type), so were not 802 

included in B. 803 

 804 

A Realm Decline Increase Stable 

Temperate realms (Nearctic, 

Palearctc) 25 35 7 

Tropical realms (Afrotropical, 

Neotropical, Indo-Pacific) 99 83 19 

B Biome Decline Increase Stable 

Temperate forest biomes 

(including Mediterranean and 

boreal) 29 39 7 

Tropical forest biomes (including 

mangrove) 89 76 19 
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Appendix S7. Model results from mixed effects models of average rate of population change of 828 

forest generalists and specialists regressed on fixed predictor effects with a random effect of 829 

location. Populations had at least 2 years of data covering at least a 5 year period from 2000-830 

2015. Tree cover variables calculated using the Hansen dataset. N = 685. 831 

  832 

Fixed effect Estimate CI p-value AIC 

NULL NA NA NA -1479.421 

Tree cover 

2000 

-0.00 -0.01 – 0.01 0.769 -1468.794 

Total tree loss 0.00 -0.00 – 0.01 0.736 -1467.425 

Tree cover 

change 2000-

2010 

-0.00 -0.03 – 0.02 0.822 -1470.524 

  

Body mass 0.00 0.00 – 0.01 0.021 -1472.199 

Exploitation (Y) 0.02 -0.01 – 0.04 0.244 -1472.025 

HPD 0.01 0.00 – 0.02 0.023 -1473.445 

Road density 0.00 -0.00 – 0.00 0.607 -1463.679 

Mean travel 

time 

-0.01 -0.02 – 0.00 0.234 -1470.392 
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Appendix S8. Model results from mixed effects models of average rate of population change of 834 

forest specialists regressed on fixed predictor effects with a random effect of location. Populations 835 

had at least 2 years of data covering at least a 5 year period from 2000-2015. Tree cover variables 836 

calculated using the Hansen dataset. N = 74. 837 

  838 

Fixed effect Estimate CI p-value AIC 

NULL NA NA NA -158.048 

Tree cover 

2000 

-0.02 -0.07 – 0.03 0.445 -151.075 

Total tree loss 0.00 -0.01 – 0.02 0.735 -148.242 

Tree cover 

change 2000-

2010 

0.06 -0.27 – 0.40 0.719 -154.474 

Body mass -0.00 -0.01 – 0.01 0.832 -147.690 

Exploitation (Y) -0.05 -0.12 – 0.01 0.091 -153.850 

HPD -0.00 -0.02 – 0.02 0.981 -148.417 

Road density -0.00 -0.00 – 0.00 0.374 -145.234 

Mean travel 

time 

0.00 -0.03 – 0.03 0.925 -149.413 

 839 

 840 

 841 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27882v1 | CC BY 4.0 Open Access | rec: 1 Aug 2019, publ: 1 Aug 2019



44 
 

Appendix S9. Abundance index for 74 species from the FSI with data present throughout all 842 

decades from 1970 to 2014 (these are primarily birds from the Nearctic)  843 
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