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Abstract 16 

Background. Discrete Event Simulation (DES) and Lean Healthcare are management tools that 17 

are efficient and assist in the quality and efficiency of health services. In this sense, the purpose 18 

of the study is to use lean principles jointly with DES to plan the expansion of a Canadian 19 

emergency department and to the demand that comes from small closed care centers. 20 

Methods. For this, we used simulation and modeling method. We simulated the emergency 21 

department in FlexSim Healthcare® software and, with the Design of Experiments (DoE), we 22 

defined the optimal number of locations and resources for each shift. 23 

Results. The results show that the ED cannot meet expected demand in the current state. Only 24 

17.2% of the patients were completed treated, and the Length of Stay (LOS), on average, was 25 

2213.7, with a confidence interval of (2131.8 - 2295.6) minutes. However, after changing 26 

decision variables, the number of treated patients increased to 95.7% (approximately 600%). 27 

Average LOS decreased to 461.2, with a confidence interval of (453.7 - 468.7) minutes, about 28 

79.0%. In addition, the study shows that emergency department staff are balanced, according to 29 

Lean principles. 30 

Keywords: DES; Lean Healthcare; Design of Experiments; forecasting; expansion; demand  31 
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1. Introduction 32 

The improvement in the health services quality is extremely important because it directly affects 33 

the patient9s satisfaction and safety. In fact, the health industry is one of the largest in the world 34 

(Bhat, Gijo, and Jnanesh 2014). According to (World Bank 2019), in 2016, health spending in 35 

the world was around 10.0% of total GDP. The United States was the country that invested the 36 

most per capita, totaling US$ 9,869.74, followed by Switzerland. Canada is among the top 20 37 

countries that invest in health per capita, with a total of US$ 4,458.21, while the world average is 38 

1,025.29 (World Bank 2019).  39 

Given the importance of the health system in the world, decision-makers seek actions to make 40 

processes more efficient and agile. Despite this, financial resources and skilled labor are 41 

becoming scarce. Consequently, decision-makers use management tools for analysis and process 42 

improvements in forecasting, restructuring, and reduce costs. Indeed, (Brailsford et al. 2018) 43 

argue that many real problems are complex and, hardly, only one approach and tool helps in their 44 

resolutions.  45 

One of the tools used to improve and forecast process behavior is Discrete Event Simulation 46 

(DES). DES is the reproduction of a dynamic process, using a computer model to evaluate, 47 

measure and improve the performance of any system (Harrell, Ghosh, and Bowden 2012) 48 

without any physical risks and additional costs (Banks et al. 2010; Montevechi et al. 2007). 49 

Moreover, the literature defines as the model development process, being it hypothetical or real, 50 

aiming to perform experiments (Negahban and Yilmaz 2014). Hence, predicting the behaviour of 51 

real and complex systems becomes tough, because they are influenced by a set of internal and 52 

external factors and the experience are often unfeasible to perform (Budgaga et al. 2016). 53 

Therefore, SED is the first step in evaluating a change proposal, gaining insight into potential 54 

impacts, and supporting management to take decisions and implement real-world improvements 55 

(Bem-Tovim et al. 2016; Dengiz and Belgin 2014). 56 

In addition to DES, the use of Lean Manufacturing is also efficient in improving processes. Lean 57 

appeared in the 1950s, where the Japanese automotive industry faced an adverse scenario. The 58 

market was limited and demanded a wide variety of vehicles, which was in contrast to the 59 

current philosophy of mass production, with few varieties produced on a large scale. 60 

Furthermore, the country's economy was weak, with low capital availability and few 61 

international trade relations. Thus, the acquisition of modern Western production technologies 62 
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became difficult (Womack, Jones, and Roos 1990). To meet this challenge, the Japanese 63 

automaker Toyota began developing a new production system, the Toyota Production System 64 

(TPS). Taiichi Ohno, credited as the main mentor of the STP, aimed to serve customers in the 65 

shortest time, at the highest quality and the lowest possible cost. Thereby, it would be necessary 66 

to focus the effort on activities that add value to the customer (Graban 2016), eliminating wastes. 67 

Over time, Lean has expanded into other sectors, such as healthcare, where it has been renamed 68 

Lean Healthcare. 69 

Waste found in manufacturing has been converted to health services where Lean Healthcare 70 

applies. Defects correspond to poor administration of medications or incorrect doses. 71 

Overproduction characterizes as unnecessary diagnostic procedures. Inefficient transportation is 72 

inadequate layouts and laboratories away from collection points. The inappropriate layout may 73 

also link to the unnecessary movement of nurses and doctors. Waiting features idle employees 74 

with uneven workloads and patients waiting for service. The stock is characterized as expired 75 

supplies and super-processing, e.g., data in the patient's registry that will not be used later 76 

(Graban 2016). 77 

Finally, the use of experiments jointly with DES is essential for the analysis of the current state 78 

process and for proposing improvements to the future state. The experiment is indicated when it 79 

is desired to optimize the process under analysis (Banks et al. 2010), determining the 80 

configuration of the parameters that cause the responses to approaching the required values 81 

and/or have the lowest variability (Montgomery and Runger 2018). The best way to evaluate 82 

several factors involved in the process is the use of suitable techniques to plan the experiments, 83 

e.g., factorial experiments, Taguchi and Plackett-Burman (Montgomery and Runger 2018). In 84 

this case, the factors change simultaneously, allowing observing if there is an iteration between 85 

them. In addition, it generally requires fewer tests than the "best guess" strategy, where the 86 

expert performs random experiments. According to (Banks et al. 2010), with some adaptations in 87 

the factorial arrangements, we may evaluate the individual, interactions, and quadratic effects. 88 

Thus, the three techniques presented, when used together, show effective results in health 89 

processes. In this sense, the goal of this study is to plan the expansion of a Canadian emergency 90 

department (ED) and to meet the demand that comes from small closed care centers. Moreover, 91 

it is necessary to size, according to Lean Healthcare the principles, the ideal number of resources, 92 

beds for care and beds in the Short Stay Unit (SSU). Additionally, the scope of the project aims 93 
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to reduce the length of stay (LOS) of the patients in the ED and that they are taken care of as 94 

soon as possible after going through the triage. Furthermore, it is necessary to determine the 95 

ideal SSU number so that patients do not wait more than 180 minutes for their transfer. 96 

To contribute to the literature, the study uses Design of Experiments (DoE) to determine the 97 

influence of staffing on each shift, in addition to identifying the main limiting factors of physical 98 

resources for the expansion of the ED. The simulation also allows evaluate the influence of 99 

demand variation throughout the day and week in the future state. 100 

The paper is divided as follows: next section presents a review of the literature of DES and Lean 101 

in hospital environments, followed by the methodology. Subsequent section presents the results 102 

and discussions in order to draw the conclusions. 103 

2. Literature Background 104 

The use of DES in healthcare is not new, dating back to the 1960s (Pitt 2008). However, since 105 

then, there has been considerable growth for its interest. According to (Arisha and Rashwan 106 

2017), this growth is strong evidence that the use of simulation provides better decisions in the 107 

management of health services, without compromising patient safety. This advantage has 108 

increasingly attracted the attention of hospitals and health authorities (Cheng et al. 2017). 109 

However, experts in simulation applied to healthcare claim that its application is more 110 

complicated than in other areas (Tako 2015). The main problems are less evident structure; the 111 

system is complex; greater effort to collect and accessing the data; barriers due to ethical issues; 112 

influence of political issues; less availability of customer time; and more difficulty in ensuring 113 

implementation. 114 

Despite the mentioned difficulties, we can find studies with positive results in the health sector. 115 

These results link to costs, capacity, wait and stay time, and levels of service and losses. (Zhou 116 

and Olsen 2018) applied DES for medical supplies management and decreased the costs 117 

involved in the process by reducing expired drugs. Still in stock management, (Baesler et al. 118 

2014) reduced the lack and loss of blood components. (Hussein et al. 2017) presented effective 119 

results reducing overcrowding in a hospital. Similar results were shown by (Babashov et al. 120 

2017) and (Shim and Kumar 2010) by decreasing patients' waiting time in an emergency 121 

department. (Rau et al. 2013) and (Uriarte et al. 2017) also used DES to reduce patient waiting 122 

time in treatment centers and the radiotherapy sector, respectively. Furthermore, (Al-Araidah, 123 
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Boran, and Wahsheh 2012) applied the tool in an ophthalmology laboratory in order to reduce 124 

patients' waiting and appointment time. Regarding planning and capacity analysis, (Pinto et al. 125 

2015) defined the ideal number of beds for a Brazilian hospital. For the balancing of staff work 126 

(Reynolds et al. 2011) applied the simulation to reduce the workload of an English pharmacy and 127 

(Pongjetanapong et al. 2019) used the tool to evaluate the effect of changes to staff levels in a 128 

cytology department. 129 

We also found improvements using only Lean Healthcare. Even when not implemented 130 

systematically and comprehensively in the organization, Lean Healthcare can provide several 131 

benefits to health services (D9Andreamatteo et al. 2015). Among these benefits, the authors 132 

highlight improvements in productivity, costs, financial results, quality of service delivery, and 133 

patient and team safety and satisfaction. However, implementing Lean is long-lasting and 134 

challenging work in the health sector (Toussaint and Berry 2013). Lean transform the 135 

organizational culture from the inside out, requiring managers and leaders to become facilitators, 136 

mentors, and teachers and enable employees to take the initiative in making improvements. 137 

Studies that show Lean Healthcare implementation can be found for the elimination of processes 138 

that do not add value to the patient (Teichgräber and De Bucourt 2012) and reduction in the 139 

instrument collection stage (Kimsey 2010). (Laganga 2011) used lean methodology to increase 140 

patient care capacity, while (Papadopoulos, Radnor, and Merali 2011) used Lean Healthcare to 141 

reduce delays in receiving samples, prioritize urgent work, standardize processes and anticipate 142 

problems identification. 143 

When used jointly, Lean and DES have three goals: to teach, evaluate, and facilitate the process. 144 

In order to evaluate, it allows the execution of experiments and the evaluation of their results. It 145 

should be employed after holding the team meeting, testing ideas, and creating new solutions 146 

(Robinson et al. 2012). The use of DES and Lean Healthcare in hospital settings may bring more 147 

quality and efficiency to patients and management (Gaba 2004). In addition, the patient flow 148 

may be optimized and served as a motivational factor for employees (Salam and Khan 2016). 149 

(Swick et al. 2012) state that hospitals that integrate the tools offer an efficient method of 150 

strategic planning and provide employees with a privileged view of how to reduce waste and add 151 

value. Moreover, it is possible to reduce patients' waiting time, decreasing employees workload, 152 

and promoting resources reallocation (Haddad et al. 2016; Bhat, Gijo, and Jnanesh 2014). 153 
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Finally, (Do�an and Unutulmaz 2016) and (Robinson et al. 2014) used the tools to transform 154 

static mappings into dynamics. 155 

3. Materials & Methods 156 

Modeling and simulation, used in the study, comprises three main phases: design, 157 

implementation, and analysis (Montevechi et al. 2010). In the first phase, i.e., design, we should 158 

perform the problem formulation. In this step, we define the process to be modeled, to specify 159 

the actions and goals (Balci 2011). The second step is the construction, validation, and 160 

documentation of the conceptual model. We may use many languages, but opting for a 161 

simulation-oriented is ideal (Montevechi et al. 2010). The last stage is the input data modeling, 162 

e.g., time, cost, percentages, capacities, among others, varying according to the purpose of each 163 

study (Banks et al. 2010; Montevechi et al. 2010). 164 

The second major phase (implementation) covers the steps of construction, verification, and 165 

validation of the computer model. The modeler must use familiar software for computer model 166 

construction. Thus, we perform the verification, ensuring that the computer model programming 167 

corresponds to the conceptual model (Sargent 2013). Finally, we carry out the validation through 168 

hypothesis tests, confidence intervals, and comparison charts (Sargent 2013). 169 

For the analysis, the modeler starts the planning, construction, and analysis of the experiments. 170 

In this step, we elaborate possible scenarios, besides the use of experiment planning and 171 

statistical tests (Montgomery and Runger 2018). After the experiments, the scenarios are 172 

analyzed, obtaining the conclusions and the answers to the problem defined in the first phase. 173 

Based on the three major steps described, we conduct the study as follow: 174 

(1) Conceptual Modeling: we developed the conceptual model using the IDEF-SIM 175 

language. We chose because it is considered specific for DES, facilitating computer 176 

programming (Montevechi et al. 2010). 177 

(2) Computer Modeling: we used FlexSim Healthcare software.  178 

(3) Model Execution and initial analysis: we decided to perform replicas to confirm the 179 

patient and the hospital unit current state. These executions also allowed the choice of the 180 

first set of DoE decision variables.  181 

(4) Design and analysis of experiments: we chose a complete factorial arrangement for 182 

screening the most significant decision variables. Then, we adopted the Response Surface 183 
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Methodology (RSM), using the Composite Face Centered (CFC) design for site 184 

optimization. In addition, we carried out a DoE to find out the ideal number of employees 185 

at each shift. Some adjustments were made when needed.  186 

(5) Confirmation runs: the optimal values of the decision variables found in the experiments 187 

were used in the model to confirm the results. 188 

4 . Results and Discussion 189 

4.1. Case Study 190 

The Emergency Department (ED) studied aims to analyses its expansion to meet the increase of 191 

its demand. The DE is located in Canada and its expansion is due to the closure of four small 192 

units in nearby locations. Thus, the DE will absorb all this demand. 193 

Patients arrive at the ED alone or by ambulance. Both are triaged and ranked according to 194 

severity. This classification is given according to the Canadian Triage Acuity Scale (CTAS). 195 

CTAS level I corresponds to the most severe level, resuscitation (blue, to be seen immediately); 196 

level II is emergent (red, to be seen <15 minutes); level III is urgent (yellow, to be seen <30 197 

minutes); Level IV is less urgent (green, to be seen <60 minutes) and level V is nonurgent patient 198 

(white, to be seen <120 minutes). Patients arriving by ambulance, after triage, go straight to the 199 

care. Patients who arrive on their own go to the registry and expect the transfer to their 200 

appointment. CTAS level I, II and III patients go to a bed area (45 beds and 3 more for mental 201 

health), while those of CTAS IV and V follow to the vertical area (10 seats). 202 

When it arrives at the bed area (BA) or the vertical area (VA), the patient undergoes two 203 

evaluations made by the nurse and the physician. Then the ward clerk receives and records the 204 

patient's prescription. These prescriptions may include laboratory tests (blood, urine), medical 205 

procedures, and diagnostic imagining (DI). Such procedures are assigned according to the 206 

patient's category, shown in Table 1. If DI is required, a nurse and a porter must escort CTAS 207 

level I patients. For other patients, only the porter is required. 208 

 209 

 210 

 211 

 212 
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Table 1.  Patient9s category and specialist 213 

Treatment Category Specialist Proportion 

General/Minor issues - 17.7% 

Respiratory Respiratory Therapist 14.6% 

Gastroenterology Gastroenterologist or Internal Medicine 11.9% 

Orthopedic Orthopedist 10.3% 

Cardiology Cardiologist or Internal Medicine 9.7% 

Dermatology Dermatologist 8.3% 

Genitourinary 
Urologist and Nephrologist or Internal 

Medicine 
6.1% 

Ear, nose, and throat Otolaryngologist 4.9% 

Mental Health Crisis and Psychologist 4.3% 

Neurologic Neurologist 4.2% 

Ambulatory Return Visit - 4.0% 

Ophthalmology Ophthalmologist 1.8% 

Gynecology Gynecologist 1.1% 

Substance Misuse Crisis and Psychologist 0.9% 

 214 

After waiting for the exam results, the patient may go through an appointment with a specialist 215 

or move on to the next stage. If the patient goes through the appointment, he must wait until the 216 

specialist arrives, since they are not in the ED. In the next step, the patient may be discharged or 217 

go through monitoring. After monitoring, the patient goes to the SSU (10 available beds), where 218 

it can remain from one to three days. 219 

The ED Nurses divide into two teams. The first team is responsible for patients CTAS level I and 220 

II (EDN1), and the second is responsible for CTAS level III, IV, and V (EDN2). They work in 221 

four shifts: 07:00 a.m. to 07:00 p.m.; 09:00 a.m. to 09:00 p.m.; 11:00 a.m. to 11:00 p.m. and 222 

07:00 p.m. to 07:00: a.m. Physicians and Triage Nurse (TN) also start working on the shifts 223 

mentioned. In addition, three porters work in the following shifts: 07:00 a.m. to 07:00 p.m.; 224 

10:00 a.m. to 06:00 p.m. and 07:00 p.m. to 07:00 a.m. 225 

Faced with the expected expansion, the study aims to analyses whether ED can absorb the full 226 

demand of patients. Other issues to be solved are ideal numbers of resources (TN, EDN, 227 

physicians, and porters); ideal number of beds in BA, chairs in VA and beds in SSU; reduction in 228 

the time of care after going through the triage, in the time to transfer from BA/VA to SSU and 229 

LOS. 230 
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4.2. Conceptual Modeling 231 

We performed the conceptual modeling of the system through the IDEF-SIM language, 232 

developed by (Montevechi et al. 2010). The symbols used are directly translated from the 233 

conceptual model for the computer model, presenting elements of the simulation, e.g., entities, 234 

locations, resources, functions, controls, logical rules and transport (Pereira et al. 2015). Figure 1 235 

shows the patient flow. 236 

 237 

 238 

Figure 1. Conceptual Modeling 239 

 240 

We have validated conceptual modeling through face-to-face validation, where experts verify if 241 

the model matches the real system. Data collection and modeling were based on historical data. 242 

Additional information is presented in Appendix A, e.g., the processing time for each activity 243 

and resources. 244 
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4.3. Computer Modeling 245 

We built the computational model in FlexSim Healthcare® software, programming three 246 

different processes. First, we program patient flow according to CTAS levels, because each level 247 

may indicate different paths and require different resources. The second process involves the 248 

exams procedures, from collection to the result. It implies directly in the patient waiting time, 249 

since it can only follow through the flow after the results, characterizing a necessary time, but 250 

that does not add value for them. Finally, we construct other processes, such as staff meetings 251 

that affect patients' waiting time but do not add value to the flow and must be eliminated or 252 

reduced as much as possible. After the model was built, the experts performed the verification. 253 

Validation also occurred between the modeling team and the specialists. The model was 254 

validated for each flow constructed according to the CTAS level. 255 

4.4. Model Execution and Initial Analysis 256 

After validation, we obtain the metrics for the initial analyses. Thereby, according to the 257 

simulation, the ED cannot meet expected demand. Thus, the results obtained were: 258 

÷ On average, 1504 patients arrived in the model; 259 

÷ On average, 258 (17.2%) patients were completed treated in the simulated period; 260 

÷ Around 1157 patients (76.9%) did not even make it triage; 261 

÷ On average, LOS was 2213.7 minutes; 262 

÷ Patients wait about 404.3 minutes to be seen after triage; 263 

÷ Patients who need to go to SSU wait, on average, 367.4 minutes to be transferred. 264 

Regarding the results, the number of patients that do not go through the risk classification is 265 

alarming. In addition, after triage, the average waiting time is around 404.6 minutes, which 266 

corresponds to approximately 3.5 times what the patient with CTAS level V should wait at most. 267 

Moreover, patients expect to be attended after the risk classification on average 25.9, 164.6, 268 

332.2, 649.7 and 419.5 minutes for the CTAS levels I, II, III, IV, and V, respectively, which does 269 

not meet the specifications. 270 

For the initial analysis, much of the resources are idle, e.g., triage nurses and physicians. Most 271 

nurses and porters are waiting for empty locations. Consequently, the patient's flow is stuck. We 272 
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infer that the number of beds in the BA, mental bed area (MBA), SSU, and VA are occupied 273 

most of the time. 274 

In this sense, we proposed improvements by the principles of patient continuous flow. These 275 

improvements are intended to reduce patient waiting times, increasing the amount of time to add 276 

value. Thus, because sites are the limiting resources, we investigated the interaction between 277 

them and their influence on the model behavior. 278 

4.5. Design and Analysis of Experiments  279 

To design the experiments, we used DoE techniques, which studies the influence of factor 280 

variation on the events responses. Among DoE techniques, the 2k factorial design establishes the 281 

"level +" and "level -" of the experiments. The k value is the number of variables that presented 282 

the upper and lower level (Montgomery 2017). We choose the variables related to the number of 283 

locations and resources in each area since these were identified as the most model limiting 284 

characteristics. 285 

4.5.1. Design and Analysis of Experiments for Locations 286 

For the first set of experiments analyzed, we defined a complete factorial 24, and the variables 287 

are the number of locations. We estimated deterministically the required site and staff number 288 

due to the demand for each area using Equation (1). The results were rounded to the next integer 289 

value and are presented in Table 2. 290 

ýÿ = ýÿ7ýÿ60 ÿÿÿ (1) 291 

Where: 292 

Qi = Number of locations or staff per patient/hour; 293 

ti = Average time (minutes) that a patient stays in the area or needs a resource; 294 

pi = Daily average number of patients arriving in area i or needing the resource; 295 

To determine the levels of DoE, we used a 20% margin of Qi to define "level -" and "level +". 296 

The results were rounded down and up, respectively, and are shown in Table 2. 297 

 298 

 299 
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Table 2. Variables related to locations and DoE parameters 300 

Variable 
Number of location DoE Parameters 

Current Ideal Low Level Centre Point High Level 

SSU 10 30 10 20 30 

BA 45 49 45 49 53 

MBA 3 4 3 4 5 

VA 10 13 10 13 15 

 301 

The performance measures defined in response to DoE were:  302 

(i) Weekly treated patients; 303 

(ii) LOS; 304 

(iii) Time for the patient to be attended after triage; 305 

(iv) Time to transport the patient to SSU.  306 

We chose to use this order in all analyses, since the authors judged more important the number of 307 

treated patients, followed by the time spent in the hospital. 308 

The number of SSU beds was the variable that affects all the chosen metrics in a significant way. 309 

Based on the charts and the Lenth9s method, the number of beds and seats in SSU, BA, MBA, 310 

and VA, and some interactions were identified as statistically significant. Figure 2 shows the 311 

Pareto's graph for the analyzed metrics. The interaction of some variables hinders the 312 

performance of the ED since the locations are used together in some specific points of the model. 313 

In this way, we did not remove any variable from the analyses. 314 

In order to obtain more fit metamodels to the system and to identify eventual curvatures in the 315 

objective functions, we chose to perform an RSM, through the CFC, defining the minimum, 316 

maximum and central numbers for each site (Table 2). Using this design, we got seven central 317 

points and four axial points, resulting in another 31 experiments. We analyzed the same 318 

performance measures and we obtained an R2 fit of 90.6% for measure (i); 93.1% for (ii); 95.2% 319 

for (iii) and 98.6% for (iv) and a predicted R2 of 82.0%; 72.7%; 83.5% and 95.6%, respectively. 320 

The results indicated that the best combination of factors is: 321 

÷ 30 beds in SSU; 322 

÷ 45 beds in BA; 323 

÷ 5 beds in MBA; 324 
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÷ 15 seats in VA; 325 

 326 

Figure 2.  Pareto Chart for metrics (i), (ii), (iii) and (iv) 327 

 328 

To verify the result of the scenario, the model was replicated ten times under the same conditions 329 

as the current state. In this scenario, the resources do not have a set shift. Thus, analyzing the 330 

same parameter studied, we observe: 331 

÷ On average, 1505 patients arrived in the model; 332 

÷ On average, 1436 (95.4%) patients were completed treated in the simulated period; 333 

÷ All patients make it triage; 334 

÷ On average, LOS was 436.0 minutes; 335 

÷ Patients wait about 25.7 minutes to be seen after triage; 336 

÷ Patients who need to go to SSU wait, on average, 128.5 minutes to be transferred. 337 

Compared to the current state, all patients underwent triage, showing that patient flow became 338 

more continuous. Still, the number of treated patients increased by around 590%. On the other 339 

hand, waiting time to be attended after triage was an average of 25.7 minutes, 5.5 minutes for 340 
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CTAS I, 11.0 minutes for CTAS II, 19.6 minutes for CTAS III, 37.5 minutes for CTAS IV and 341 

40.9 CTAS V. 342 

Despite the increasing number of patients and the decreasing in LOS and waiting time to be 343 

attended after triage, the resources are not dimensioned. In other words, the staffs are still idle. 344 

Thus, the second scenario has as objective the sizing of resources in each group and shift. 345 

4.5.2. Design and Analysis of Experiments for Resources 346 

As mentioned, in the previous scenario, the resources were not defined. Then, we used Equation 347 

1 to define the ideal number of staff per hour. We performed a DoE design 24 to determine the 348 

influence of staffing on each shift for TN, EDN1, EDN2, and the physicians. Furthermore, we 349 

defined an arrangement 23 for the porters since they have only three start shift options. The 350 

maximum number of staff per hour was considered to define the "level +". Table 3 shows the 351 

level of each resource group. 352 

Table 3. DoE variables levels for resources 353 

 Shift 

Resource  07:00 a.m. 

07:00 p.m. 

09:00 a.m. 

09:00 p.m. 

11:00 a.m. 

11:00 p.m. 

07:00 p.m. 

07:00 a.m. 

Level- 1 0 1 1 
TN 

Level+ 2 1 2 2 

Level- 4 0 1 4 
EDN1 

Level+ 8 2 2 8 

Level- 3 1 1 3 
EDN2 

Level+ 6 2 2 6 

Level- 3 0 2 3 
Physician 

Level+ 6 2 1 6 

 07:00 a.m. 

07:00 p.m. 

10:00 a.m. 

06:00 p.m. 

07:00 a.m. 

07:00 p.m. 
  

Level- 2 2 2  
Porter 

Level+ 3 3 3  
 354 

The results presented by DoE show that the amount of staff in each shift is statistically 355 

significant for at least one of the chosen metrics. In this way, we did not remove any input 356 

variables. After the analysis and some adjustments, we determined the ideal number of resources 357 
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in each group and shift, presented in Table 4. In addition, we proposed a change in the shift of 358 

the porters to the same as the other staffs. 359 

Table 4. Resource number for shift and group 360 

Staff 

Shift 

07:00 a.m. 

07:00 p.m. 

09:00 a.m. 

09:00 p.m. 

11:00 a.m. 

11:00 p.m. 

07:00 p.m.  

07:00 a.m. 

TN 1 0 1 2 

ED1 4 2 0 3 

ED2 3 1 2 3 

Physician 3 2 2 3 

Porter 3 1 0 3 

 361 

"Level+" was chosen mostly in the shifts from 9:00 a.m. to 9:00 p.m., because the demand is 362 

higher at these times. Defining the ideal number of resources and executing the model with ten 363 

replicates, we have: 364 

÷ On average, 1504 patients arrived in the model; 365 

÷ On average, 1442 (95.8%) patients were completed treated in the simulated period; 366 

÷ All patients make it triage; 367 

÷ On average, LOS was 511.6 minutes; 368 

÷ Patients wait about 45.8 minutes to be seen after triage; 369 

÷ Patients who need to go to SSU wait, on average, 97.1 minutes to be transferred. 370 

With the resources dimensioning, the number of patients who completed the care continues the 371 

same as the first scenario. There was an increase in the LOS average, around 75 minutes. The 372 

waiting time to be attended after triage was on average 45.8 minutes, increasing about twice. The 373 

waiting time after screening for each CTAS was 6.6 minutes for CTAS I, 13.3 minutes for II, 374 

24.7 minutes for III, 74.0 minutes for IV and 138.0 for V. In addition, we noticed that staff 375 

workloads were balanced. For this reason, thinking of improvements that can make a continuous 376 

patient flow and avoiding the patient waiting for a long time, the last improvement proposed is 377 

related to the number and scales of the specialist. 378 
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4.5.3. Specialists in ED 379 

When the patients need a medical appointment, they must wait until the specialist arrives at ED, 380 

because they are not available in the unit. Among the specialists mentioned in Table 1, only the 381 

urologist, gynecologist, otolaryngologist, and ophthalmologist operate all the time. The other 382 

specialists work in shifts from 08:00 a.m. to 05:00 p.m. (on average). At other times, the internal 383 

medicine attends the patients who would be attended by the cardiologist, nephrologist, and 384 

gastroenterologist. Currently, there is only one specialist available for each specialty at each 385 

shift, except the Crisis Response, which has two doctors from 08:30 a.m. to 07:30 p.m. 386 

Moreover, it is necessary to consider the response time after calling the specialists. Psychiatrists 387 

take between 1 and 6 hours to reach the unit, while neurologists can take 15 to 90 minutes 388 

(according to CTAS level) and Crisis Response specialists take about 5 minutes. 389 

As the specialist's waiting is long, there is the possibility of reducing the patient's LOS through 390 

improvements that become the continuous flow proposed by the study. Among the 13 specialists, 391 

the most requested are psychiatrist, neurologist, and crisis response. Then, we have decided that 392 

these specialists need to be directly allocated to the ED. Thus, the patient could immediately be 393 

taken care of. In addition, we made some modifications in the shifts: 394 

÷ Psychiatrist: a specialist all the time in the unit (avoids the delay that can reach 6 hours); 395 

÷ Neurologist: a specialist in the same shift of the current state (08:00 a.m. - 05:00 p.m.), 396 

but allocated directly to the unit (avoiding a delay that can reach 90 minutes); 397 

÷ Crisis Response: An expert all the time on the unit rather than two on the predetermined 398 

shift (08:30 a.m. - 07:30 p.m.). Although this specialist's response time is relatively short, 399 

we chose to allocate it directly to the unit. 400 

After ten runs, we have:  401 

÷ On average, 1496 patients arrived in the model; 402 

÷ On average, 1441 (96.3%) patients were completed treated in the simulated period; 403 

÷ All patients make it triage; 404 

÷ On average, LOS was 450.7 minutes; 405 

÷ Patients wait about 19.0 minutes to be seen after triage; 406 

÷ Patients who need to go to SSU wait, on average, 137.2 minutes to be transferred. 407 
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As one of the actions that blocked the continuous patient flow is wait for the specialist, we 408 

observed that the LOS decreases by about 11.9%. In addition, the waiting time for patients 409 

requiring a transfer to SSU is, on average, 42.8 minutes below that requested. 410 

4.6. Confirmation Runs 411 

To confirm the proposed changes, we simulate the model with 30 replicas and a warm-up from 412 

Monday (00:00) to Tuesday (00:00). Data were collected from Tuesday to Tuesday. Table 5 413 

presents the final configuration. 414 

Table 5. Number of locations and resources 415 

Local Current Future Resource Current Future 

BA 45 45 TN 3 4 

MBA 3 5 EDN1 9 9 

SSU 10 30 EDN2 8 9 

VA 10 15 Physicians 12 10 

   Porters 3 7 

 416 

According to simulation results, we recommend that an additional two beds in the MBA and five 417 

chairs in the VA are required. Regarding the resources, it is necessary to hire one TN, one 418 

EDN2, four porters, and reduce two physicians. Table 4 lists the shift for each group. It was 419 

necessary to dimension the employees, avoiding, when possible, hire them. The number of beds 420 

in SSU directly affects patients' LOS. Then, the ideal number is 30 beds, which correspond, on 421 

average, 146.4 minutes of waiting for transfer to SSU. About the specialist, it is necessary to 422 

have a psychiatrist, a neurologist, and a mental health specialist directly assigned to the unit. 423 

With the proposed measures, the patient's LOS decreases by 1752.6 minutes. Table 6 presents 424 

the results of the current and future scenario. 425 

After the proposed changes, the number of treated patients increased considerably, making their 426 

flow continuous during the process. In addition, patients are seen as expected after triage, 427 

according to the CTAS classification level. 428 

 429 

 430 

 431 
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Table 6. Outputs for current and future scenario 432 

Metrics (min) 
Current Scenario Future Scenario Rate 

(mean) Mean Confidence Interval Mean Confidence Interval 

Patients 

Input 1504 - 1506 - - 

Output 258 - 1444 - 560% 

Treated (%) 17.2 - 95.7 - 556% 

Triage (%) 23.1 - 100.0 - 433% 

 Average  2213.7 (2131.8 - 2295.6) 461.2 (453.7 - 468.7) -79% 

 CTAS I 2809.9 (1381.3 - 4750.1) 1072.2 (787.6 - 1356.8) -62% 

LOS CTAS II 3077.2 (2778.8 - 3375.6) 918.2 (880.9 - 955.5) 70% 

 CTAS III 2219.3 (2051.2 - 2387.5) 452.7 (438.8 - 466.6) -80% 

 CTAS IV  1746.2 (1585.5 - 1907.9) 252.8 (246.1 - 259.5) -86% 

 CTAS V  1500.8 (903.5 - 2091.0) 299.9 (275.4 - 324.4) -80% 

Triage 

to Bed 

Average 404.3 (369.7 - 439.0) 20.8 (19.8 - 21.8) -95% 

CTAS I 25.9 (4.2 - 47.5) 11.2 (6.1 - 17.4) -57% 

CTAS II 164.6 (121.6 - 207.7) 10.4 (6.1 - 16.3) -94% 

CTAS III  332.2 (275.2 - 389.3) 13.7 (12.9 - 14.5) -96% 

CTAS IV 649.7 (559.9 - 739.5) 26.9 (25.2 - 28.7) -96% 

CTAS V 419.5 (131.0 - 707.9) 82.1 (64.6 - 99.7) -80% 

 Bed to SSU 367.4 (253.1 - 481.7) 146.4 (133.8 - 159.0) -60% 

 433 

 434 
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5. Conclusions 435 

The present study aimed to propose a future state aligned with Lean Manufacturing concepts for 436 

a Canadian ED expansion. The purpose was to increase the number of treated patients and reduce 437 

LOS, without, however, compromising the quality of services and patient safety. In this way, we 438 

dimensioned the optimal number of beds for SSU, BA, MBA, and VA; defined the ideal number 439 

of resources; reduced LOS, waiting time after triage phase, and transfer to SSU. Hence, we used 440 

the Modeling and Simulation method, proposed by (Montevechi et al. 2010). 441 

We constructed the conceptual model using the IDEF-SIM modeling technique and the input 442 

data we obtained through the ED's historical data. We used FlexSim Healthcare® software to 443 

build the computer model, and validate it with experts in the field. For the experiments, at first, 444 

we used DoE to verify the influence of the expansion of the area (BA, MBA, SSU, and VA) in 445 

the chosen metrics. We also use DoE to determine the optimal number of resources at each shift 446 

and its optimal scale to meet changing demand throughout the day and week. Finally, 447 

experiments were carried out to reduce patients' waiting time by specialists. Among the 448 

evaluated metrics, we chose to prioritize them as follow: (i) weekly treated patients; (ii) LOS; 449 

(iii) time for the patient to be attended after triage and (iv) time to transport patient to SSU.  450 

After the analysis, we can state that the model in its current state cannot meet the demand. For 451 

the future state, we observed that DES and Lean integrated into the DoE allowed increasing the 452 

number of patients that went through the triage process from 23.1% to 100.0%. The LOS of the 453 

patient reduced from 2231.8 to 461.2 minutes. Moreover, the waiting time after triage is by the 454 

CTAS level of Canadian law. In this way, all the questions proposed in the objective were 455 

answered and, using the principles of the continuous flow, there was a significant improvement 456 

in the process. 457 

Regarding the limitations of this study, we found difficulties in executing replicates due to the 458 

computational effort required. For this reason, the simulation warm-up was only one day, and the 459 

simulation performed for one week (Tuesday to Tuesday). Finally, for future work, we suggest 460 

investigating other resources, e.g., technicians, receptionist, and ward clerk. In addition, the 461 

economic viability of different layouts can be assessed for labs and DI, which are relatively 462 

distant from the beds where patients are treated. 463 
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Task 
Process Time 

(min) 

Staff Required 
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E
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 N
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P
h

y
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ci
a
n

 

A
d

m
in

 

P
o
rt

er
 

Triage T(4,7,10) x      

Escort to Bed T(0.5,1,2)   x    

Register Patient 3  x     

Nurse Assessment 

CTASIV/V: 5; 

CTASIII: 10; 

CTASII: 15 

  x    

Physician Assessment T(7,12,15)    x   

Write Patient Orders T(2,4,5)    x   

Initiate DI/Lab T(2,2.5,3)     x  

Prepare Patient for DI 3   x    

Receive/Add Tests to Chart 1   x  x  

Review Tests (Nurse) 1   x    

Review Tests (Physician) 2    x   

Take Specimen T(4,6,15)   x    

Medical Procedure* T(15,20,60)   x x   

Initiate Consult 2     x  

Arrange Consultant 2     x  

Discuss with Specialist 3    x   

Make Disposition 20% - 30; 80% - 3    x   

Admission Form 2   x    

Determine Care Plan T(7,10,12)    x   

Contact Specialist 5    x   

Transport Patient to SSU (I and II)* T(15,20,25)   x    x 

Care Plan and Final Orders T(2,4,10)    x   

Give Instruction T(2,5,12)   x    

Prepare Patient T(1,2,4)   x    

Shift Change Written/Verbal 5    x   

EHS Call 1 x  x    

EHS Triage T(4,7,10) x  x    

Prepare Room for Next Patient 1   x    

Huddle* 10 x x x x x  

*denotes a task which requires all staff indicated (x). 617 
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