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ABSTRACT 25 

Phylosymbiosis was recently formulated to support a hypothesis-driven framework for the 26 

characterization of a new, cross-system trend in host-associated microbiomes. Defining 27 

phylosymbiosis as “microbial community relationships that recapitulate the phylogeny of their 28 

host”, we review the relevant literature and data in the last decade, emphasizing frequently used 29 

methods and regular patterns observed in analyses. Quantitative support for phylosymbiosis is 30 

provided by statistical methods evaluating higher microbiome variation between host species 31 

than within host species, topological similarities between the host phylogeny and microbiome 32 

dendrogram, and a positive association between host genetic relationships and microbiome beta 33 

diversity. Significant degrees of phylosymbiosis are prevalent, but not universal, in microbiomes 34 

of plants and animals from terrestrial and aquatic habitats. Consistent with natural selection 35 

shaping phylosymbiosis, microbiome transplant experiments demonstrate reduced host 36 

performance and/or fitness upon host-microbiome mismatches. Hybridization can also disrupt 37 

phylosymbiotic microbiomes and cause hybrid pathologies. The pervasiveness of 38 

phylosymbiosis carries several important implications for advancing knowledge of eco-39 

evolutionary processes that impact host-microbiome interactions and future applications of 40 

precision microbiology. Important future steps will be to examine phylosymbiosis beyond 41 

bacterial communities, apply evolutionary modeling for an increasingly sophisticated 42 

understanding of phylosymbiosis, and unravel the host and microbial mechanisms that contribute 43 

to the pattern. This review serves as a gateway to experimental, conceptual, and quantitative 44 

themes of phylosymbiosis and outlines opportunities ripe for investigations from a diversity of 45 

disciplines.  46 
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1. INTRODUCTION  49 

The last decade has brought renewed interest in the complexity of microorganisms living in 50 

association with hosts, yielding a number of new empirical results, philosophical concepts, and 51 

research opportunities (1,2). Any discussion on the study of host-microbiome interactions must 52 

begin with clear definitions. Here, we use the term symbiosis (sym – “together”, bios – “life” in 53 

Greek) to encompass associations between two or more organisms of different species and without 54 

restriction to the length of time of the association or phenotypes produced by the interacting 55 

species. Since temporal and functional variation in symbiosis is context-dependent, symbiotic 56 

interactions can include a range of obligatory, facultative, transient, and permanent associations 57 

with varying degrees of specificity and functional costs and benefits.  58 

 59 

The last two decades of research and technological advances have placed microbial symbiosis as 60 

a nexus of many subdisciplines within and beyond biology. Scholars now have a suite of tools and 61 

increased awareness of the major questions to be answered. These include holistic approaches for 62 

the identification of ecological (3) and host (4-7) drivers of microbial taxonomic and functional 63 

diversity, as well as reductionist approaches that provide evolutionary and mechanistic insights 64 

into transmission processes (8) and phenotypic outcomes of symbiosis (1). The abundance of 65 

empirical and theoretical investigations on the ecology and evolution of simple symbioses also 66 

comprise fertile ground to build a foundation for the microbiome field that studies frequently 67 

complex associations between hosts and their multiple microbial associates. One rapidly growing 68 

research area across diverse systems is the recently defined pattern of phylosymbiosis (9). This 69 

review aims to synthesize the topic to provide: (a) a long-lasting definition of the term; (b) a 70 

practical guide to test phylosymbiosis; (c) an overview of the prevalence of phylosymbiosis; (d) a 71 
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discourse on the biological significance of phylosymbiosis; and (e) future directions in 72 

phylosymbiosis research.  73 

 74 

2. WHAT IS PHYLOSYMBIOSIS?  75 

We use the following quote to describe our initial and basic definition of phylosymbiosis, namely 76 

“microbial community relationships that recapitulate the phylogeny of their host” (9). 77 

Phylosymbiosis is first and foremost a significant association between host phylogenetic 78 

relationships and host-associated microbial community relationships wherein “phylo” refers to 79 

host clade and “symbiosis” refers to the microbial community in or on the host.  80 

 81 

Prior to the introduction of the term phylosymbiosis in a study of Nasonia parasitoid wasp species 82 

(9), early investigations specified relationships between host phylogenies or genetic distances with 83 

microbial beta diversity in maize (10), insects (5,11), and mammals (4,12). These studies utilized 84 

bacterial 16S rRNA gene sequencing across multiple host species to demonstrate that closely-85 

related species harbor more similar microbiomes than distantly-related species. For example, the 86 

sister species N. giraulti and N. longicornis diverged ~0.4 million years ago and harbor more 87 

similar 2nd instar larval, pupal, and adult microbiomes compared to the microbiome in their 88 

outgroup species N. vitripennis (9,11), which diverged ~1.0 million years ago from the two sister 89 

species (13).  90 

 91 

Phylosymbiosis may arise from stochastic and/or deterministic evolutionary and ecological forces. 92 

For example, stochastic effects include dispersal fluctuations in microbial communities (ecological 93 

drift) or shifts in host geographic ranges (14). Phylosymbiosis can also be shaped by ecological 94 

(15-17) and dietary (4) niche variation across host lineages. Deterministic effects include microbial 95 
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colonization preferences for certain host backgrounds or host regulation in which microbial 96 

community composition is influenced by host trait(s) (18). The first study linking phylosymbiotic 97 

patterns to the function of specific host genes found that knockdown of the Hydra armenin 98 

antimicrobial peptide disrupted phylosymbiosis (6) commonly observed in several freshwater and 99 

laboratory Hydra species (19). Although phylosymbiosis can potentially arise from long-term, 100 

intimate host-microbe associations over evolutionary time, such as through host-microbe co-101 

evolution, co-diversification (20), and co-speciation (21), importantly it may also be driven by 102 

relatively short-term changes in microbiome composition. Indeed, a recent Drosophila 103 

melanogaster study revealed the effects of gut microbiome changes on host genomic divergence 104 

in as little as five generations (22).  105 

 106 

While phylosymbiosis distinguishes itself from non-phylosymbiosis by a significant degree of 107 

association between host phylogenetic and microbiome community relationships, it is not 108 

universal (Section 5) and therefore provides a testable hypothesis. Determining the presence of 109 

phylosymbiosis is a first step preceding further investigations into eco-evolutionary mechanisms, 110 

such as the nature of species-species associations, selective or neutral forces driving 111 

phylosymbiosis, and the (in)consequences of the pattern on host and microbial phenotypes. If 112 

phylosymbiosis results from an evolutionary selective pressure, then decreases in host or microbial 113 

fitness are expected upon host exposure to microbiomes from different host lineages in an 114 

evolutionary-informed manner. Evolutionary selective pressures for phylosymbiosis could drive 115 

the spread of host traits that regulate microbiome composition or microbial traits that enhance host 116 

colonization. In this general light, we refer to “functional phylosymbiosis” when host and/or 117 

microbial phenotypes impact or are impacted by phylosymbiotic associations. 118 
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 119 

Interspecific microbiome transplant experiments are useful in elucidating functional 120 

phylosymbiosis. A large-scale phylosymbiosis investigation spanning 24 species across four 121 

laboratory-reared host clades (Nasonia wasps, Drosophila flies, mosquitoes, and Peromyscus deer 122 

mice) demonstrated that interspecific transplants of gut microbial communities between 123 

Peromyscus species decreased dry matter digestibility and increased food intake, while transplants 124 

between Nasonia species markedly lowered survival to adulthood by nearly half (23). In addition, 125 

interspecific microbiomes are more costly to Nasonia larval growth and pupation than intraspecific 126 

microbiomes (24). Similarly, reciprocal maternal symbiont transplants between two wild, 127 

sympatric Ontophagus dung beetle species caused developmental delay and elevated mortality in 128 

non-native hosts that persisted to the next generation (25). Collectively, phylosymbiotic 129 

associations that impact host fitness support the premise that hosts are adapted to their native 130 

microbiomes rather than non-native microbiomes, although more studies are needed to confirm 131 

these associations and effects in captive and wild host populations. 132 

 133 

Hybridization between host species causes host-microbiome mismatches since combining 134 

independently-evolved host genotypes in a hybrid may cause a breakdown in either microbial 135 

colonization preferences for certain hosts or host control of the microbiome. As demonstrated in 136 

Nasonia (9), house mice (26), and whitefish (27), hybrids have an altered microbiome relative to 137 

the parental microbiome, suggesting a reduced capacity for hosts to regulate their microbiomes 138 

and an increased capacity for pathogenic microbes to bloom. These breakdowns in host-139 

microbiome interactions can associate with maladaptive phenotypes in hybrids including immune 140 

dysfunction, pathology, inviability, and sterility (9,26) that can reduce interbreeding between 141 
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species or populations. In Nasonia, lethality of hybrids between the older species pair was rescued 142 

by germ-free rearing and restored by feeding an inoculum of select, resident gut bacterial species 143 

from parents to germ-free hybrids (9). In contrast, hybrids between a younger Nasonia species pair 144 

did not have an altered microbiome nor suffer functional costs. Collectively, the results from 145 

interspecific microbiome transplant experiments and host hybridization studies illustrate that host-146 

microbiome interactions across host species can have important functional consequences that 147 

impact evolutionary events within and between species, including wedging host populations into 148 

species. 149 

 150 

3. WHAT IS NOT PHYLOSYMBIOSIS 151 

Having now summarized phylosymbiosis, we briefly accentuate what phylosymbiosis is not for 152 

clarity. Early misconceptions associated the term with strictly narrow presumptions such as 153 

vertical transmission, mutualistic interactions, or evolutionary splitting from a common ancestor 154 

via co-evolution, co-speciation, co-diversification, or co-cladogenesis. Although these processes 155 

may lead to phylosymbiosis, the pattern may alternatively arise by antagonistic interactions and/or 156 

horizontal microbial transmission whereby interactions between hosts and environmental 157 

microbes establish phylosymbiosis anew each generation. As such, phylosymbiosis has varied 158 

underpinnings subject to empirical investigation, and it may appear at certain points of time and 159 

space rather than be stable throughout a host’s entire lifespan.  160 

 161 

4. A PRACTICAL GUIDE TO STUDYING PHYLOSYMBIOSIS  162 

Investigations of phylosymbiosis vary in approach (qualitative vs quantitative), methodology, and 163 

statistical power (18). Thus, a clear, consistent, and robust workflow to detect phylosymbiosis is 164 
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desirable for newcomers and experts alike. Here, we suggest a comprehensive workflow for 165 

examining phylosymbiosis (Figure 1).  166 

 167 
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Figure 1. Sequential overview of bioinformatic methods commonly used for phylosymbiosis 168 

analyses. 169 

 170 

Host taxa and input data. Because phylosymbiosis detection involves the collection of replicated 171 

samples across multiple taxa, both optimization of statistical sensitivity (28) and specificity (18) 172 

as well as minimization of sequencing batch effects are crucial for differentiating between noise 173 

and signal. Although our 2016 study showed that rooted trees with four Nasonia species are 174 

sufficient to detect phylosymbiosis within the clade (23), we suggest the use of appropriate power 175 

and effect size analyses (reviewed in (29) for microbiome data) to determine sufficient replicates 176 

and taxa for the optimization of statistical power (28). Sampling multiple individuals per species 177 

will help resolve noise from signal in microbial community relationships, but further study is 178 

required on how replicates of inter- and intraspecies samples are best utilized in studying 179 

phylosymbiosis across host clades that can vary in divergence times. If available, experimental 180 

designs of successful phylosymbiosis studies with similar sample types can also be adapted 181 

accordingly (30). Previous studies have successfully detected phylosymbiosis in host taxa 182 

spanning ~0.3-100 million years of evolutionary history (21,23), and whether longer times since a 183 

last common ancestor impacts phylosymbiosis detection requires further study. Nucleotide or 184 

amino acid sequence(s) from host species can be used to generate a phylogenetic or phylogenomic 185 

tree that is confidently supported at branching nodes with bootstrap (31) or other measures (32) 186 

and across several phylogenetic inference methods (e.g., maximum likelihood (33) and Bayesian 187 

inference (34)). Because an accurate host phylogenetic topology is essential for evaluating 188 

phylosymbiosis, the tree should be free from systematic artifacts such as long branch attraction; 189 

polytomies should be resolved in the host phylogeny when possible. As methods used to 190 
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reconstruct a host phylogeny from a sequence alignment have been extensively reviewed (35), we 191 

will not discuss them further here. With a host evolutionary tree, pairwise host distances can also 192 

be represented as cophenetic distances, computed as the sum of branch lengths connecting a pair 193 

of terminal nodes on a phylogenetic tree (36).  194 

 195 

Microbiome input data. Phylosymbiosis analysis requires microbial diversity data from each host 196 

lineage. Short-read sequencing of microbial phylogenetic marker genes (e.g 16S rRNA gene) is 197 

common and economical for microbial profiling. Processed sequenced reads can be analyzed by 198 

one of two current methods. First, they can be clustered into operational taxonomic units (OTUs) 199 

at different sequence cutoffs (e.g., 97% and 99%) with and/or without reference sequence database 200 

(37,38). OTU clustering cutoffs reflect genetic distances between taxa over evolutionary time and 201 

may affect phylosymbiosis detection (39); such variability has also been observed in practice 202 

(reviewed in (18)). Second, reads can be resolved into amplicon sequence variants (ASVs) without 203 

clustering, which may offer single-nucleotide resolution, though sequencing error rates should be 204 

accounted for (40). For the greatest sensitivity in phylosymbiosis assessment, meta-omics datasets 205 

are advantageous because finer-scale taxonomic and functional profiling can be achieved (41). 206 

Metagenomic sequence data were used to demonstrate viral phylosymbiosis in Nasonia (42) as 207 

well as the varying effects of host phylogeny and ecology on the composition and functions of 208 

non-human, primate gut microbiomes (43,44).  209 

 210 

Microbial beta diversity measures. Microbial beta diversity, which measures dissimilarities in 211 

microbial composition and structure across host samples, is conventionally used to measure 212 

phylosymbiosis. Binary measures, such as Jaccard distance and Sørensen-Dice distance (45,46), 213 
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are calculated with OTU presence/absence data. Quantitative descriptors of OTU abundances can 214 

also compute beta diversity, including the Bray-Curtis dissimilarity (47) derived from Motyka et 215 

al.’s coefficient (48). It simplifies as 1-[2w/(a+b)], in which w is the sum of the minimum 216 

abundances of common species across two host samples, a is the sum of the abundance of all 217 

OTUs/species in one sample, and b is the sum of the abundance of all OTUs/species in the other. 218 

Phylogeny-based metrics, such as weighted and unweighted unique fraction (UniFrac), use 219 

phylogenetic distances between communities (samples) to calculate microbial community 220 

differences, necessitating the use of a phylogenetic tree as input (49).  221 

 222 

Because beta diversity metrics reflect different aspects of dissimilarity, the choice of metric is 223 

study specific and depends partly on the microbial composition and evolutionary history of the 224 

lineages studied. Binary metrics based on presence/absence are more sensitive to variations in rare 225 

taxa and were implemented to study host specificity of sponge microbiomes, where rare taxa 226 

comprised more than 90% of distinct OTUs (50). Binary metrics may also be sensitive to recent 227 

microbial diversification because recently diverged OTUs/ASVs will exert the same effect as 228 

OTUs/ASVs with a longer divergence history (39). In contrast, quantitative metrics are more 229 

sensitive to variations in abundant taxa. Besides taxonomy-based phylosymbiosis studies (23,51-230 

53), quantitative metrics have also been applied to metagenomics data (42,43). Metrics that 231 

consider phylogenetic relationships between OTUs, such as UniFrac distances, (54) are applied in 232 

many other phylosymbiosis studies, including bats (55), corals (20), and mammals (4,43).  233 

 234 

Microbiome distinguishability, representative of microbial beta diversity differences between host 235 

lineages under evaluation, is a prerequisite for phylosymbiosis (20,23,51-53). Microbiome 236 
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distinguishability can be visualized from beta diversity data and categorical sample grouping data 237 

using ordination plots, such as principle coordinate analysis (PCoA) and non-metric 238 

multidimensional scaling (NMDS) plots (56). In addition, microbiome distinguishability can be 239 

further evaluated using typically non-parametric multivariable analyses, such as analysis of 240 

similarities (ANOSIM) (57) and variants of permutational multivariate analysis of variance 241 

(PERMANOVA) (58). Specific pairwise comparisons of intra- and interspecific microbial beta 242 

diversity distances can also be performed with an appropriate non-parametric two-sample test (23).  243 

 244 

Quantifying phylosymbiosis. The determination of phylosymbiosis relies on evaluating a 245 

significant association between host phylogenetic relationships and host-associated microbial 246 

community distances. To this end, topological congruency tests directly compare topologies of a 247 

host phylogenetic tree and a microbiome dendrogram (23,42,51-53,59). To generate a hierarchical 248 

dendrogram, several agglomerative hierarchical clustering methods (reviewed in (56)) can cluster 249 

microbial beta diversity distances. The most commonly used method, unweighted pair group 250 

method with arithmetic mean (UPGMA), performs pairwise sample clustering from their average 251 

dissimilarity values and gives all samples equal weights (60). Compared to linkage clustering 252 

approaches, UPGMA prioritizes relationships among groups over individual samples (56). By 253 

assigning equal weights to all samples, UPGMA assumes that samples in each group are 254 

representative of groups in the larger reference population (56). As such, it may be sensitive to 255 

sample sizes and may generate unstable topologies with imbalanced data where some groups are 256 

oversampled while some are undersampled. Newer clustering methods, such as the 257 

phylogenetically-aware squash clustering method, directly compute distances between samples 258 

(rather than differences between beta diversity distances) based on their positions on a 259 
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phylogenetic tree (61). In general, the effects of clustering methods on phylosymbiosis detection 260 

require further study.  261 

 262 

Topological comparison metrics, such as the Robinson-Foulds metric and the more robust and 263 

sensitive Matching Cluster metric, are frequently used to detect phylosymbiosis 264 

(23,42,51,52,59,62). Robinson-Foulds analyzes the distance between two trees as the smallest 265 

number of operations required to convert one topology to the other (63), while Matching Cluster 266 

considers congruency at the subtree level and is therefore a more refined evaluation of small 267 

topological changes that affect incongruence (64). We strongly recommend the use of both metrics. 268 

Statistical significance (p-values) is typically evaluated by determining the probability of 100,000 269 

randomized bifurcating dendrogram topologies yielding equivalent or more congruent 270 

phylosymbiotic patterns than the microbiome dendrogram (23); normalized Robinson–Foulds and 271 

Matching Cluster scores can be calculated as the number of differences between the two topologies 272 

divided by the total possible congruency scores for the two trees, with normalized distances 273 

ranging from 0 (complete congruence) to 1 (complete incongruence) (23). 274 

 275 

Matrix correlation methods identify phylosymbiosis by comparing the similarities between host-276 

derived and microbial-derived distance matrices. Methods implemented in phylosymbiosis studies 277 

(20,21,39,50,65-71) include the Mantel test, which statistically evaluates the linear correlation 278 

between all corresponding elements from two independent matrices by permutation (72), and the 279 

more powerful Procrustean superimposition approach, which rotates and fits two matrices to 280 

minimize their differences association. Partial Mantel tests (73) measuring correlations between 281 

two matrices while controlling for the effects of a third variable described in another matrix are 282 
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also used to evaluate associations between microbial communities and multiple aspects of host 283 

characteristics, such as phylogeny, identity, genetic distances, and geographic distances 284 

(39,66,67,69).  285 

 286 

Although both topology-based and matrix-based tests are specific and sensitive enough to detect 287 

phylosymbiosis in a variety of empirical cases, there are several differences between them. 288 

Topological comparison metrics do not use branch length information as there is no a priori reason 289 

to assume rates of host evolution in each lineage should equal rates of ecological community 290 

change in the microbiome. Indeed, rates of microbiome change may be expected to be far more 291 

rapid than gradual evolution of host genetic changes. As such, tests of topology without relative 292 

branch lengths are conservative relative to matrix correlation methods that directly rely on 293 

comparisons of host genetic divergence with microbial community dissimilarity. A simulation 294 

analysis suggested that the Mantel test has higher sensitivity and power than the Robinson-Foulds 295 

metric when phylosymbiosis is based on the assumption of microbial preferences for a host trait 296 

(19). The practical relevance of this conclusion is not clear because phylosymbiosis will arise from 297 

reasons other than microbial colonization preferences, such as host preferences, neutral processes, 298 

and microbe-microbe interactions. Moreover, the performance between Mantel test and the more 299 

sensitive topology-based Matching Cluster distance was not evaluated in this simulation, and such 300 

comparisons are likely to yield different insights. Systematic benchmarking of type I and II error 301 

rates of phylosymbiosis measurement methods across various possible scenarios will aid 302 

experimental design and result interpretation. As such, research opportunities for the development 303 

and implementation of improved phylosymbiosis detection methods are ample.  304 

 305 
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Parameter selection. Phylosymbiosis detection involves selection of various parameters, such as 306 

OTU identity cutoff, beta diversity metric, clustering method, and congruency test, each with their 307 

strengths and limitations that will vary with study design and questions. Although various 308 

parameter combinations can be tested and compared simultaneously (39), in the case when only a 309 

few of all possible parameter combinations detect phylosymbiosis, we recommend cautious 310 

interpretation of results with respect to the chosen parameters. If available, results should also be 311 

compared to those from previous phylosymbiosis studies with similar sample types using the same 312 

parameter combinations. Experimental replication is also necessary to confirm phylosymbiosis, 313 

especially when it is not consistently detected. 314 

 315 

Phylogenetic comparative methods. The effects of phylogenetic signal, defined as “a tendency for 316 

related species to resemble each other more than they resemble species drawn at random from the 317 

tree” (74), on univariate traits (e.g., microbial alpha diversity) have been examined in parallel with 318 

phylosymbiosis studies (66,67). Phylogenetic signal indices like Pagel’s λ (75), and Blomberg’s 319 

K (76) are based on a random Brownian model of trait evolution (77), but can also be used with 320 

and compared to more complex models that take into account natural selection. Although these 321 

methods are less commonly used on multivariable data and have not yet been applied to evaluate 322 

phylosymbiosis explicitly, they are promising alternatives for not only examining host 323 

phylogenetic signal on microbial beta diversity, but also testing evolutionary models relevant to 324 

phylosymbiosis.  325 

 326 

Phylogenetic comparative methods, such as phylogenetic independent contrasts (77) and 327 

phylogenetic generalized linear mixed models (pGLMMs) (78), predict the evolutionary 328 
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correlation between two or more discrete or continuous traits given a known phylogeny and an 329 

evolutionary model. These can also be integrated into phylosymbiosis studies. pGLMMs were 330 

recently implemented in coral microbiome (20) and passerine feather microbiome studies (71) to 331 

examine the effects of latitude and colony size on coral alpha diversity, cophylogenetic coral-332 

bacteria relationships, and relationships between alpha diversity and relative abundances of 333 

bacteriocin-producing bacteria and keratinolytic feather damaging bacteria. These methods can be 334 

useful in predicting ecological interactions, such as predator-prey relationships, mutualism, 335 

competition, and habitat filtering, as well as environmental interactions, all of which can affect 336 

microbial community structure and therefore phylosymbiosis. 337 

 338 

Overall, as meta-omics and trait evolution analyses become more widely applicable to 339 

phylosymbiosis, one compelling direction of future phylosymbiosis investigations in silico is to 340 

venture beyond host phylogenetic effects on microbial diversity to resolve linkages between host 341 

phylogeny, host functions, microbial diversity, microbial functions, selective forces, and 342 

environmental factors.  343 

 344 

5. THE PREVALENCE OF PHYLOSYMBIOSIS 345 

A major goal of microbiome science is to find general paradigms and rules, if any, that are 346 

comparable across varied systems. In this light, phylosymbiosis is emerging as a bona fide trend 347 

because of its frequent recurrence across insect, animal, and plant systems. (Figure 2). 348 

Phylosymbiosis in insects include viromes of Nasonia parasitoid jewel wasps (42) and gut 349 

microbiomes of cockroaches, termites (79), lab-reared (23) and wild mosquitoes (59), Cephalotes 350 

turtle ants (39), and Apis social corbiculate bees (69). In Drosophila flies, phylosymbiosis patterns 351 

are either weakly supported (23) or not detected (80)  in lab strains and wild populations.  352 
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 353 

Figure 2. Representative diversity of phylosymbiosis across host species, tissues, habitats, and 354 

functions. The * symbol denotes taxa with mixed evidence for phylosymbiosis.  355 

 356 

The first phylosymbiosis study on mammalian gut microbiomes (4) demonstrated effects of animal 357 

phylogeny and diet on gut microbial community dissimilarity (12,21,23,39,70,81). Studies 358 

focusing on gut microbiomes of specific animal groups detected phylosymbiosis in American 359 

pikas (51) and Peromyscus deer mice (23,52), no phylosymbiosis in western chipmunks (82), and 360 

mixed evidence of phylosymbiosis in primates (17,43,44,70), bats (55,83), and birds 361 

(62,68,84,85). Besides gut or fecal microbiomes, animal surface microbiomes have also been 362 

analyzed for phylosymbiotic associations (86), which for example occur on mammalian skin (53) 363 

and passerine feathers (71), but not on amphibian skin (3). A meta-analysis of phylosymbiosis 364 
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literature highlighted an increased prevalence of the trend in microbiomes inhabiting internal host 365 

compartments in relation to those inhabiting external host compartments (18). However, the 366 

finding may be inherently biased due to the larger number of studies investigating phylosymbiosis 367 

in the gut in relation to other external host compartments.  368 

 369 

Beyond terrestrial and associated habitats, research interest in phylosymbiotic associations in 370 

aquatic habitats is steadily growing (Figure 2), spanning global sponge microbiome surveys 371 

(67,87,88) and taxon-specific sponge surveys (50,65,66) with mixed results. Two previous studies 372 

in sponges showed that the host phylogenetic signal on microbial beta diversity was reduced but 373 

still significant when host phylogeny is examined given host identity (66,67). In Australian 374 

scleractinian corals, phylosymbiosis was generally observed in tissue and skeleton compartments, 375 

but not mucus specimens that are predominantly influenced by the environment (20), suggesting 376 

different anatomical impacts on the pattern. Phylosymbiosis and host dietary impacts also occur 377 

on the skin microbiomes of 44 fish species from the Western Indian Ocean (89), but do not exist 378 

on the surface microbiomes of sympatric kelp species (90). 379 

 380 

Phylosymbiosis has been assessed in plants, mainly to distinguish the effects of host phylogeny 381 

and soil determinants on microbial beta diversity. A comparative analysis of lycopods, ferns, 382 

gymnosperms, and angiosperms across a coastal tropical soil chronosequence indicated host 383 

phylogeny is a secondary but statistically significant factor shaping root-associated bacterial 384 

community structure, after soil age (15). More taxonomically- and/or spatially-restricted surveys 385 

have also revealed phylosymbiosis between rhizobacterial communities and Poaceae crop plants 386 

(91), endosphere bacterial communities and 30 plant species (92), rhizosphere-associated fungal 387 
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communities and willows from hydrocarbon-contaminated soils (93), root-associated eumycotan 388 

fungal communities and Asteraceae flowering plants in a dry grassland (94), ectomycorrhizal 389 

fungal communities and conifer-broadleaf forest trees (95), and ectomycorrhizal fungal 390 

communities and Estonian Salicaceae willows (96). Contrarily, qualitative incongruency between 391 

Brassicaceae host phylogeny and their root microbiomes has been observed (97), whereas non-392 

statistically significant phylosymbiotic correlations have been reported in other plant microbiome 393 

studies (16,98).  394 

 395 

6. SIGNIFICANCE AND FUTURE DIRECTIONS OF PHYLOSYMBIOSIS  396 

Microbiome research will continue to be revolutionized by the multi-omics era, where a deluge of 397 

data has enabled unprecedented insights into the extensive taxonomic, genetic, and functional 398 

composition of microbial communities and their associated hosts. Such large-scale accumulation 399 

of empirical and theoretical findings can potentiate the development of new hypotheses, unifying 400 

concepts, and frameworks across diverse host-microbiome systems. Indeed, the recurrence of 401 

phylosymbiosis across host systems lends itself to large comparative surveys across kingdoms of 402 

life that may uncover taxonomic range restrictions of phylosymbiosis as well as the environmental 403 

parameters (e.g., soil and water properties) and ecological interactions (e.g., diet and predator-prey 404 

relationships) that determine the boundaries of where and when phylosymbiosis occurs. If the 405 

microbiome field will have general trends to test in new systems, phylosymbiosis is well-poised 406 

for this circumstance. 407 

Phylosymbiosis distinguishes itself from non-phylosymbiosis by characterizing a significant 408 

degree of association between host phylogenetic and microbiome community relationships. It is 409 

not universal, and thus provides a testable hypothesis, reflects the variation likely to be seen in 410 

nature, and is amenable to explanation by mechanisms that require further investigation. The 411 
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determination of whether phylosymbiosis is present or not is a first step preceding further 412 

investigations into mechanistic details, such as the nature of species-species associations and the 413 

type(s) of ecological and evolutionary genetic processes underpinning phylosymbiosis. Given the 414 

growing evidence for the pattern and increasingly sophisticated tools available to detect 415 

phylosymbiosis, phylosymbiosis is relatively clearer and more specific than other terms such as 416 

dysbiosis. 417 

 418 

Phylosymbiosis also engenders a holistic view of ecology and evolution in which hosts are 419 

communities or holobionts whose microbial members can contribute to genetic and phenotypic 420 

variation subject to natural selection. Several questions that have been conventionally overlooked 421 

include what are the microbial effects on host allele frequencies? Does host gene flow in natural 422 

populations impact microbiome variation and phylosymbiosis? Does phylosymbiosis accelerate or 423 

decelerate host speciation? What are the genetic and mechanistic factors that regulate 424 

phylosymbiosis, and how do these factors vary across populations or species? Collectively, studies 425 

determining the magnitude of ecological, evolutionary, and genetic forces in structuring 426 

phylosymbiosis is an important area of future research.  427 

 428 

CONCLUSIONS 429 

Phylosymbiosis defines a link between host evolutionary relationships and microbial diversity that 430 

is quantifiable and applicable across living systems. As research in this area proliferates, a 431 

definition, conceptual framework, and workflow for assessing phylosymbiosis will facilitate 432 

identification of phylosymbiotic host-microbe interactions. Future cause-and-effect studies of 433 

phylosymbiosis will bring a mechanistic understanding of the evolutionary, genetic, and molecular 434 

bases. Just as no mature theory of evolutionary genetics was possible until we understood the mode 435 
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of inheritance, no mature principle of evolutionary ecology for host-associated microbiomes seems 436 

possible until we understand the general mechanisms establishing host-microbiome associations.  437 
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