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Abstract

Phylosymbiosis was recently formulated to support a hypothesis-driven framework for the
characterization of an emerging trend in host-associated microbiomes. Defining phylosymbiosis
as “microbial community relationships that recapitulate the phylogeny of their host”, we review
the relevant literature and data in the last decade, emphasizing frequently used methods and
regular patterns observed in the analyses. Quantitative support for phylosymbiosis is provided by
statistical methods evaluating the distinguishability of microbiomes between hosts, topological
congruency between the host phylogeny and microbiome dendrogram, and a positive association
between host genetic relationships and microbiome beta diversity. Significant degrees of
phylosymbiosis are prevalent in gut and surface microbiomes of plants and animals from
terrestrial and aquatic habitats. Consistent with natural selection underpinning phylosymbiosis,
microbiome transplant experiments demonstrate reduced host performance and/or fitness upon
host-microbiome mismatches. The pervasiveness of phylosymbiosis carries several important
implications for analyses of host-microbiome interactions, evolutionary biology, personalized
microbiology, and conservation biology. Important future steps will be to apply evolutionary
modelling for an increasingly sophisticated understanding of phylosymbiosis and to unravel the
host and microbial mechanisms that contribute to the pattern. This review serves as a gateway to
experimental, conceptual, and quantitative themes of phylosymbiosis and outlines opportunities
ripe for investigations from a diversity of disciplines, scholars, and students.

Introduction

The last decade has brought renewed interest in the complexity of microorganisms living in
association with hosts, yielding a number of new empirical results, philosophical concepts, and
research opportunities (McFall-Ngai et al., 2013; Theis et al., 2016). Any discussion on the study
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of host-microbiome interactions must begin with clear definitions. Here, we use the terms
symbiotic and symbiosis (sym — “together”, bios — “life” in Greek) to encompass associations
between two or more organisms of different species and without restriction to the length of time
of association or phenotypes produced by the interacting species. Since temporal and functional
variation in symbiosis is context-dependent, symbiotic interactions can include a range of
obligatory, facultative, transient, and permanent associations with varying degrees of specificity
and functional costs and benefits.

The last two decades of technology developments and research have placed microbial symbiosis
as a nexus of many biological subdisciplines. Researchers now have a full suite of tools and
increased awareness of the major questions to be answered. These include holistic approaches
useful for the identification of ecological (Bletz et al., 2017) and host (Ley et al., 2008; Colman,
Toolson & Takacs-Vesbach, 2012; Franzenburg et al., 2013; Bost et al., 2018) drivers of
microbial taxonomic and functional diversity in symbiotic systems, as well as reductionist
approaches that provide mechanistic insights into transmission processes (Bright & Bulgheresi,
2010; Funkhouser & Bordenstein, 2013) and phenotypical outcomes of symbiosis (McFall-Ngai
et al., 2013). The abundance of empirical and theoretical investigations on the ecology and
evolution of simple symbioses also comprise fertile ground to build a foundation for the
microbiome field that studies frequently complex associations between hosts and their multiple
microbial associates. One emerging and new principle in this area of research is the recently
defined pattern of phylosymbiosis (Brucker & Bordenstein, 2013).

Despite burgeoning research interest in phylosymbiosis and proliferating evidence of the trend in
a diverse spectrum of systems, phylosymbiosis is a new topic. This review therefore aims to
synthesize the topic for newcomers, students, and experts alike to focus on (a) a long-lasting
definition of the term phylosymbiosis; (b) a practical guide on measuring phylosymbiosis; (c) an
overview of the prevalence of phylosymbiosis in nature; (d) a discourse on the significance of
phylosymbiosis; and (e) future directions in phylosymbiosis research.

What is phylosymbiosis?

We use the following quote to describe our initial and basic definition of phylosymbiosis,
namely “microbial community relationships that recapitulate the phylogeny of their host”
(Brucker & Bordenstein, 2013). Phylosymbiosis is first and foremost a host phylogenetic effect
on host-associated microbiomes wherein “phylo” refers to host clade and “symbiosis” refers to
the microbial community in or on the host. It is to be used in an analogous way to
phylogeography - the study of evolutionary processes that shape geographic or ecological
distributions of organisms (Avise et al., 1987; Knowles, 2009). While studying speciation in the
genus of Nasonia parasitoid wasps, the use of the term phylosymbiosis arose from a need to
distinguish a host phylogenetic effect on microbiome relationships (phylosymbiosis) from other
evolutionary processes such as reciprocal evolutionary genetic changes between symbiotic
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organisms (coevolution) or the ancestral splitting of host and symbiont lineages (cospeciation,
codivergence; Brucker & Bordenstein, 2013) . The basic reason, and a source of early confusion,
was that a positive association between host phylogenetic and microbial community relationships
does not a priori imply a shared and ancestral evolutionary history between hosts and their
microbiomes (Brucker & Bordenstein, 2012; Brucker & Bordenstein, 2013). Rather,
phylosymbiosis is an eco-evolutionary pattern observed at a snapshot in time and space, and it
may or may not reflect long-term associations or co-adaptations that can be subsequently
evaluated by empirical analyses.

A brief history of phylosymbiosis research

Prior to the formal definition of phylosymbiosis, examples existed in a variety of host-microbe
systems. The first integrative analysis of microbiome data and host phylogeny was performed on
fecal samples from humans and 59 other wild and captive mammalian species (Ley et al., 2008).
The study revealed a prominent influence of diet in structuring gut bacteria-by-host associations,
as well as a smaller effect of host taxonomy in shaping these associations (Ley et al., 2008).
Comparisons of beta diversity-derived clusters with randomized and non-randomized
mammalian phylogenies suggested a weak phylosymbiotic association that is localized to
specific host clades (Ley et al., 2008). A subsequent study on fecal specimens from humans, four
great ape species, and three subspecies of chimpanzees in their native habitats found topological
congruency between host mitochondrial DNA (mtDNA) phylogeny and a microbial tree
generated from relative abundance differences (Ochman et al., 2010).

In insects, a meta-analysis on subsets of data generated from 62 insect species spanning seven
orders and nine diet categories reported statistically significant influences of host diet and host
taxonomy on gut community composition (Colman, Toolson & Takas-Vesbach, 2012). However,
the authors did not observe statistical congruency between topologies of the beta diversity
dendrogram and insect host phylogeny (Colman, Toolson & Takacs-Vesbach, 2012). A plant-
based study hypothesized a statistical correlation between rhizobacterial beta diversity and
microsatellite genetic distances of ten inbred maize lines grown in a controlled greenhouse
experiment (Bouffaud et al., 2012). Nonetheless, the results showed a non-linear and non-
significant relationship between both components, suggested to be due to the relatively short
post-domestication diversification history of maize and/or rhizobial profiling of seedling roots
instead of mature plant roots (Bouffaud et al., 2012). The first functional genetic study of
phylosymbiosis showed that while closely-related Hydra species harbor phylosymbiotic bacterial
communities in freshwater and lab conditions (Fraune & Bosch, 2007), Hydra-microbiome
specificity was altered upon knockdown of the armenin antimicrobial peptide secreted by the
host (Franzenburg et al., 2013).
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Early work on bacterial 16S rRNA genes cloned and sequenced from males of three Nasonia
parasitoid wasp species maintained in identical conditions demonstrated that the closely related
sister species N. giraulti and N. longicornis, which diverged 0.4 million years ago, harbored
more similar adult, pupal, and 2" jnstar larval microbiomes compared to the microbiome in their
outgroup species N. vitripennis (Brucker & Bordenstein, 2012), which diverged from the two
sister species about 1.0 million years ago (Werren et al., 2010). In contrast, 1% instar larvae did
not exhibit phylosymbiosis due to limited microbial diversity at this stage of development.

One hypothesis for why different host species harbor phylosymbiotic microbiomes is that hosts
are adapted to the functions of their resident microbiomes and may exert an influence on the
types of microbes that colonize. Microbiome transplant studies have demonstrated that resident
microbes can preferentially colonize some host taxa, likely through host-specific biofilm
formation (Frese et al., 2013), virulence (Sarkar et al., 2006), and colonization (Cowles &
Goodrich-Blair, 2008). Likewise, a variety of host taxa have been shown to select for specific
symbionts through non-immune and immune factors (Bevins & Salzman, 2011), such as
oxidative signals (Damiani et al., 2016), mucus barriers (Nyholm & McFall-Ngai, 2003), and
antimicrobial peptides (Franzenburg et al., 2013). Functional phylosymbiosis can be evaluated
empirically in at least two ways. First, hybridization between closely related host species could
disrupt host-microbiome associations in parental species and lead to hybrid maladies. Consistent
with the above hypothesis, crosses between the more divergent species pair of N. vitripennis and
N. giraulti produced a non-phylosymbiotic larval microbiome in F2 hybrid male 2™ instars, a
hyperactive host immune response, and severe larval lethality (Brucker & Bordenstein, 2013). F2
hybrid male lethality is rescued by germ-free rearing, and conversely restored by feeding a 1:1
inoculum of the resident Nasonia bacteria species Providencia rettgeri and Proteus mirabilis to
germ-free hybrids (Brucker & Bordenstein, 2013). This implies that non-phylosymbiotic
relationships can lead to adverse functional and evolutionary consequences over time. Second, if
hosts are adapted to their microbiomes, then microbiome transplant experiments between related
species/lineages will lead to host fitness reductions in recipients with a non-resident microbiome
relative to recipients with a transplanted resident microbiome. We discuss the performance and
fitness costs of interspecific microbiome transplants in the following section.

Formalizing phylosymbiosis: from pattern to evolutionary process
With growing prominence of phylosymbiosis, we proposed an initial, methodological workflow
to statistically evaluate its strength and significance in a large-scale investigation spanning 24
species across four different host clades (Nasonia wasps, Drosophila flies, mosquitoes, and
Peromyscus deer mice; Brooks et al., 2016). Females from each clade were reared in laboratory
conditions that controlled for temperature, housing, developmental stage, sex, food, and parasitic
infections to minimize environmental effects on measured outcomes (Brooks et al., 2016).
Analyses of bacterial 16S rRNA gene sequence data, together with a previous hominid fecal
microbiome dataset (Ley et al., 2008), revealed varying degrees of phylosymbiosis in each of the
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five animal clades (Brooks et al., 2016). Notably, host divergence levels spanning 1-108 million
years of evolution did not limit statistical detection of phylosymbiosis (Brooks et al., 2016). The
strength of microbiome distinguishability between related host species of the same host clade
positively associated with host divergence levels, as expected (Brooks et al., 2016). Another
study on mammalian gut microbiomes demonstrated that the strength of phylosymbiosis is
significant and strong within clades, but the signal decays over the course of 100 million years of
mammalian evolution (Groussin et al., 2017). The consensus of both studies is that
phylosymbiosis can arise early in the evolution of new species and persist to varying degrees
after host ancestors split into different, but related genera.

If different host species are adapted to their phylosymbiotic microbiome, then not only will
hybridization disrupt phylosymbiosis and host functions, but transfers of another species’
microbiome into a recipient species will reduce host performance and/or fitness. Indeed,
interspecific transplants of gut microbial communities between Peromyscus species decreased
dry matter digestibility and increased food intake, while transplants between Nasonia species
crucially lowered survival to adulthood by up to 43% (Brooks et al., 2016). Another study
showed that reciprocal maternal symbiont transplant between two sympatric Ontophagus dung
beetle species caused a developmental delay and elevated mortality in non-native hosts that
persisted to the next generation (Parker, Dury & Moczek, 2019). Collectively, specialized host-
microbe associations indicate that hosts are adapted to their native microbiomes rather than non-
native microbiomes. Therefore, phylosymbiosis can arise due to natural selection as opposed to
neutral evolutionary forces shaping host-microbiome associations.

What is not phylosymbiosis

Having now defined phylosymbiosis, we emphasize in this section what phylosymbiosis is not.
Although various physiological and evolutionary processes may lead to and underpin
phylosymbiosis, without empirical investigations, the pattern itself does not a priori assume that
any one process has occurred. While vertical transmission of host-associated microbial
communities and/or long-lasting host-microbiome associations are possible contributors ripe for
investigation, phylosymbiosis does not necessarily imply exclusive vertical transmission, nor
evolutionary splitting from a common ancestor via co-evolution, co-speciation, co-
diversification, or co-cladogenesis (Theis et al., 2016). Early misconceptions confused the term
with these evolutionary processes. Instead, phylosymbiosis first and foremost distinguishes a
host phylogenetic from non-phylogenetic effect on microbiome variation. It is a testable and
nullifiable observation, and it can appear at any given time and space. Once observed, more
specific questions about transmission routes and evolutionary modes should be assessed. It is
also important to note that phylosymbiosis outcomes can be variable and subject to temporal and
spatial shifts facilitated by processes such as environmental perturbations, environmental
symbiont acquisition, and host hybridization. Phylosymbiosis is unlikely to be detected in host-
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microbiome associations in which microbial communities are predominantly assembled
stochastically from the environment.

A practical guide to studying phylosymbiosis

Investigations of phylosymbiosis vary in approach (qualitative vs quantitative), methodology,
and statistical power (Mazel et al., 2018). Thus, a clear, consistent, and robust workflow to detect
phylosymbiosis is desirable for newcomers and experts alike. Here, we outline an updated
workflow for examining phylosymbiosis that will be discussed in detail below (Figure 1).

Host input data. To begin, we recommend identification of a host clade with at least four related
lineages and an actual/hypothetical species outgroup. Studies with more lineages will increase
statistical sensitivity and enable interpretations in a broader evolutionary context. Marker
sequence(s) from host species can be used to generate a phylogenetic or phylogenomic tree that
is confidently supported at branching nodes with bootstrap (Felsenstein, 1985a) or other
measures (Anisimova & Gascuel, 2006) and across several phylogenetic inference methods (e.g.
maximum likelihood (Guindon et al., 2010) and Bayesian inference (Mau & Newton, 1997)).
Because an accurate host phylogenetic topology is essential for evaluating phylosymbiosis, the
tree should be free from systematic artefacts such as long branch attraction. While not always
possible, polytomies should be resolved in the host phylogeny. As methods used to reconstruct a
host phylogeny from a sequence alignment have been extensively reviewed (Wiley &
Lieberman, 2012), we will not discuss them further here. With a phylogenetic tree, pairwise host
distances can also be represented as cophenetic distances, computed as the sum of branch lengths
connecting a pair of terminal nodes on a phylogenetic tree (Sokal & Rohlf, 1962).

Microbiome input data. Phylosymbiosis assessment requires sequence data and microbial
diversity analyses from each host species. For robust replication of phylosymbiotic host-microbe
associations, we recommend sequencing at least ten samples per host lineage. Short-read
sequencing of microbial phylogenetic marker genes (e.g. 16S rRNA gene) is the most common
and economical method for microbial profiling. Processed sequenced reads can be analyzed by
one of two current methods. First, they can be clustered into operational taxonomic units (OTUs)
at different sequence cutoffs (e.g. 97% and 99%) with and/or without reference sequence
database (Rideout et al., 2014; Kopylova et al., 2016). Second, they can be resolved into
amplicon sequence variants (ASVs) without clustering, which may offer single-nucleotide
resolution, though sequencing error rates should be accounted for (Callahan, McMurdie &
Holmes, 2017). For the greatest sensitivity in phylosymbiosis assessment, meta-omics datasets
are advantageous because finer-scale taxonomic and functional profiling can be achieved
(Medina & Sachs, 2010).
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Microbial beta diversity measures. Microbial beta diversity indices, which measure
dissimilarities in microbial composition and structure across host samples, are conventionally
used to measure phylosymbiosis. Compared to binary descriptors calculated based on OTU
presence/absence data (e.g. Jaccard distance), quantitative descriptors of OTU abundances (e.g.
Bray-Curtis dissimilarity; Bray & Curtis, 1957) and the phylogenetically informed unique
fraction (UniFrac) distance (Lozupone & Knight, 2005) are preferred estimators of beta
diversity.

In our 2016 study across animal clades, Bray-Curtis distance showed higher sensitivity than
weighted and unweighted UniFrac distances in detecting phylosymbiosis (Brooks et al., 2016).
Another study did not observe marked differences in phylosymbiosis among Jaccard, Bray-
Curtis, unweighted UniFrac and weighted UniFrac measures (Mazel et al., 2018). Nevertheless,
the authors noticed a slight performance advantage of weighted over unweighted UniFrac
distances in detecting phylosymbiosis, and proposed that abundance-weighted measures may
reduce noise arising from chance colonization of an individual OTU in a specific sample (Mazel
et al., 2018). Because of this performance variability, we strongly recommend reporting results
from different OTU cutoffs, ASV analyses, and beta diversity indices for phylosymbiosis
detection. Our recent study on Nasonia-viral phylosymbiosis used metagenomic reads mapped
to assembled viral contigs to calculate Bray-Curtis beta diversity (Leigh et al., 2018). As meta-
omics tools and datasets become increasingly accessible, new methods of inferring microbial
beta diversity from these data will improve the sensitivity of phylosymbiosis assessment.

Assessing microbiome distinguishability. In the study of phylosymbiosis, microbial beta
diversity differences within and between host species are important indicators of microbiome
distinguishability (e.g. Brooks et al., 2016; Pollock et al., 2018; Ross et al., 2018; Kohl et al.,
2018; Kohl, Dearing & Bordenstein, 2018). Microbiome distinguishability across samples can be
visualized from beta diversity data and categorical sample grouping data using ordination plots,
such as principle coordinate analysis (PCoA) and non-metric multidimensional scaling (NMDS)
plots (Legendre & Legendre, 1998). Microbiome distinguishability can also be further
statistically evaluated using typically non-parametric multivariable analyses, such as analysis of
similarities (ANOSIM; Clarke, 1993) and variants of permutational multivariate analysis of
variance (PERMANOVA; McArdle, Anderson, 2001). Specific pairwise comparisons of
intraspecific and interspecific microbial beta diversity distances can also be performed with an
appropriate non-parametric two-sample test, as implemented in our 2016 study (Brooks et al.,
2016). As with beta diversity measures, we recommend reporting results of multiple statistical
tests for microbiome distinguishability.

Quantifying phylosymbiosis. Because phylosymbiosis is a host phylogenetic effect on

microbiome variation, topological congruency tests can be used to directly compare the host
phylogenetic tree topology to the microbiome dendrogram topology (e.g. Brooks et al., 2016;
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Novakova et al., 2017; Leigh et al., 2018; Kohl et al., 2018; Kohl, Dearing & Bordenstein, 2018;
Ross et al., 2018). Microbiome dendrograms are often hierarchically clustered from microbial
beta diversity data using the unweighted pair group method with arithmetic mean (UPGMA)
method (Michener & Sokal, 1957). One commonly used topological comparison metric, the
Robinson-Foulds metric, computes the distance between two trees as the smallest number of
operations required to convert one topology to the other (Robinson & Foulds, 1981). Another
metric, the Matching Cluster distance, is more robust and sensitive than the Robinson-Foulds
metric because it considers congruency at the clade level (Bogdanowicz & Giaro, 2013; Brooks
et al., 2016). Using scripts available at https://github.com/awbrooks19/phylosymbiosis, statistical
significance of both metrics can be evaluated by a computed p value representing the probability
of obtaining a microbiota dendrogram that is topologically congruent with the host phylogenetic
tree by chance (Brooks et al., 2016).Topological comparison metrics crucially do not use branch
length information as there is no a priori reason to assume evolutionary host rates of evolution
equals rates of ecological community change in the microbiome. As such, these topology tests
are conservative relative to matrix correlation methods (e.g. Mantel test, see below) that directly
compare host genetic divergence with microbial community dissimilarity numerically.
Nevertheless, Robinson-Foulds calculations can be computationally intensive as the size of the
input data increases (Pattengale, Gottlieb & Moret, 2007). Although the type I error rates of
topological comparison methods in detecting phylosymbiosis have not been systematically
evaluated, we recommend further scrutiny of predicted topological congruency by re-analyzing
relevant subsets of large data, evaluating statistical significance, and comparing results with
those produced by matrix correlation methods.

Matrix correlation methods identify phylosymbiosis by comparing the similarities between host-
derived and microbial-derived distance matrices. Methods including the Mantel test (Mantel,
1967) and the more powerful Procrustean superimposition approach (Peres-Neto & Jackson,
2001) have been implemented in phylosymbiosis studies (e.g. Schottne et al., 2013; Easson &
Thacker, 2014; Reveillaud et al., 2014; Sanders et al., 2014; Thomas et al., 2016; Groussin et al.,
2017; Kropackova et al., 2017; Kwong et al., 2017; Gaulke et al., 2018; Pollock et al., 2018;
Javurkova et al., 2019). Partial Mantel tests (Smouse, Long & Sokal, 1986) measuring
correlations between two matrices while controlling for the effects of a third variable described
in another matrix have also been utilized (e.g. Easson & Thacker, 2014; Sanders et al., 2014;
Thomas et al., 2016; Kwong et al., 2017). Despite their utility, the main challenge of
phylosymbiosis measurement methods lies in meaningful comparisons of input data derived
from different characters (Dietz, 1983) and the detection of clade-specific, non-linear
relationships (Legendre & Legendre, 1998).

Emerging tools. In parallel with phylosymbiosis, research interest in evaluating phylogenetic

signal, originally defined as “a tendency for related species to resemble each other more than
they resemble species drawn at random from the tree” (Blomberg, S. P. & Garland Jr, 2002),

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.27879v1 | CC BY 4.0 Open Access | rec: 30 Jul 2019, publ: 30 Jul 2019




322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

from microbial diversity data is budding. Indices for measuring phylogenetic signal in univariate
traits in ecology studies have been applied to examine the phylogenetic signal on alpha diversity
(e.g. in sponges (Easson & Thacker, 2014; Thomas et al., 2016)). Phylogenetic signal indices
like Pagel’s A (Pagel, 1999), and Blomberg’s K (Blomberg, Simon P., Garland JR. & Ives, 2003)
are based on a random Brownian model of trait evolution (Felsenstein, 1985b), but can also be
used with more complex models. Although these methods are less commonly used on
multivariable data and have not yet been applied to evaluate phylosymbiosis, they are promising
alternatives for not only examining host phylogenetic signal on microbial beta diversity, but also
testing evolutionary models relevant to phylosymbiosis.

Phylogenetic comparative methods, such as phylogenetic independent contrasts (Felsenstein,
1985b) and phylogenetic generalized linear mixed models (pGLMMs; Ives, Helmus, 2011), that
predict the evolutionary correlation between two or more discrete or continuous traits given a
known phylogeny and an evolutionary model can also be integrated into phylosymbiosis studies.
pGLMMs have recently been implemented in coral microbiome (Pollock et al., 2018) and
passerine feather microbiome studies (Javurkova et al., 2019) to examine the effects of latitude
and colony size on coral alpha diversity, cophylogenetic coral-bacteria relationships, and
relationships between alpha diversity and relative abundances of bacteriocin-producing bacteria
and keratinolytic feather damaging bacteria. These methods can be useful in detecting ecological
interactions, such as predator-prey relationships, mutualism, competition, and habitat filtering, as
well as environmental interactions, that affect microbial community structure and possibly
underpin phylosymbiosis.

Overall, as meta-omics and trait evolution analyses become more widely applicable to
phylosymbiosis, one compelling direction of future phylosymbiosis investigations in silico is to
venture beyond host phylogenetic effects on microbial diversity to encompass linkages between
host phylogeny, host functions, microbial diversity, microbial functions, and environmental
factors.
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Figure 2. Representative diversity of phylosymbiosis across host species, tissues, habitats, and
functions.

The prevalence of phylosymbiosis

The phylosymbiosis term has its roots in insect-microbiome studies, and investigations into the
trend in insects continue to this day (Figure 2). Phylosymbiosis has also been reported in viromes
of Nasonia parasitoid jewel wasps (Leigh et al., 2018), as well as gut microbiomes of
cockroaches, lower termites, and high termites at a broad taxonomic level (Dietrich, Kohler &
Brune, 2014), lab-reared (Brooks et al., 2016) and wild mosquitoes (Novakova et al., 2017),
Cephalotes turtle ants (Sanders et al., 2014), and Apis social corbiculate bees (Kwong et al.,
2017). In Drosophila flies, evidence or phylosymbiosis is mixed. The trend was not detected
qualitatively in gut or whole microbiomes of two independent lab collections (Wong, Chaston &
Douglas, 2013), but weakly documented in our 2016 quantitative analysis on whole microbiomes
from six lab-reared Drosophila species that were controlled for endosymbiont status and gender
(Brooks et al., 2016); five of which overlapped with species in the first lab collection in Wong,
Chaston & Douglas, 2013. Recent gut microbiome analyses on wild Drosophila populations did
not observe host trait- or species-specific partitioning of microbial beta diversity (Martinson,
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Douglas & Jaenike, 2017; Bost et al., 2018). Despite this, clusters of bacterial OTUs and
metagenomes that covary in relative abundances across samples were shown to correlate with
both microbial taxonomic order and the expression of certain host genes (Bost et al., 2018),
implying functional host-microbe interactions.

The first phylosymbiosis study on mammalian gut microbiomes (Ley et al., 2008) led to similar
investigations examining the effects of animal phylogeny and diet on gut microbial community
dissimilarity (Ochman et al., 2010; Sanders et al., 2014; Brooks et al., 2016; Moeller et al., 2016;
Groussin et al., 2017; Gaulke et al., 2018). Studies focusing on gut microbiomes of specific
animal groups have confirmed phylosymbiosis in hominids (Gaulke et al., 2018), American
pikas (Kohl et al., 2018), bats from 23 genera (Phillips et al., 2012), passerine birds (Kropackova
et al., 2017), and lab-maintained Peromyscus deer mice (Brooks et al., 2016; Kohl, Dearing &
Bordenstein, 2018). In contrast, qualitative phylosymbiosis analyses in birds did not observe the
trend in the gut microbiomes of 59 neotropical bird species, including passerines (Hird et al.,
2015) and nine captive parrot species (Liu et al., 2019). Another quantitative study on the fecal
microbiomes of 14 wild baboon populations across an African hybrid zone revealed statistically
significant correlations between microbial community dissimilarity and several environmental
parameters, but not host genetic distance (Grieneisen et al., 2019). Moreover, the authors did not
identify any host species-specific signature on microbial abundance and composition (Grieneisen
et al., 2019). Besides gut or fecal microbiomes, animal surface microbiomes have also been
analyzed for phylosymbiotic associations (Ross, Rodrigues Hoffmann & Neufeld, 2019). Such
associations have been confirmed in mammalian skin (Ross et al., 2018) and passerine feathers
(Javurkova et al., 2019), but not in amphibian skin (Bletz et al., 2017). A meta-analysis of
phylosymbiosis literature has highlighted an increased prevalence of the trend in microbiomes
inhabiting internal host compartments in relation to those inhabiting external host compartments
(Magzel et al., 2018). However, the finding may be inherently biased due to the larger number of
studies investigating phylosymbiosis in the gut in relation to other external host compartments.

Beyond terrestrial and associated habitats, research interest in phylosymbiotic associations in
aquatic habitats has been steadily growing (Figure 2). The pattern is an area of continuous study
in sponges, where global microbiome surveys (Schmitt et al., 2012; Thomas et al., 2016; Lurgi et
al., 2019) and taxon-specific surveys (Schottner et al, 2013; Easson & Thacker, 2014; Reveillaud
et al., 201) have yielded mixed results on the extent of phylosymbiosis. Two previous studies
have shown that the host phylogenetic signal on microbial beta diversity was reduced but still
significant when host phylogeny is examined given host identity (Easson & Thacker, 2014;
Thomas et al., 2016). In Australian scleractinian corals, phylosymbiosis was observed in tissue
and skeleton compartments, but not mucus specimens that are predominantly influenced by the
environment (Pollock et al., 2018). Four bacterial families exhibited co-phylogeny with corals in
various compartments, implying long-term associations likely arising from coevolution or
codiversification (Pollock et al., 2018). Similar to sponge-by-microbe associations (Easson &
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Thacker, 2014; Thomas et al., 2016), microbial richness (alpha diversity) in all three coral
compartments correlated with host phylogenetic distances (Pollock et al., 2018). In reef fishes,
co-phylogeny between surgeonfishes from the Red Sea and their intestinal giant bacteria
Eplopiscium (Miyake, Ngugi & Stingl, 2016), as well as phylosymbiosis and host dietary
impacts on the skin microbiomes of 44 fish species from the Western Indian Ocean (Chiarello et
al., 2018), have been reported. In contrast, phylosymbiosis was not detected in sympatric kelp
species and their surface bacterial bacteriomes (Lemay et al., 2018).

Phylosymbiosis has also been assessed in plant hosts and their microbiomes, mainly to
distinguish host phylogenetic effects from other soil determinants structuring plant-associated
microbial communities (Figure 2). A comparative analysis of lycopods, ferns, gymnosperms, and
angiosperms across a coastal tropical soil chronosequence indicated host phylogeny to be a
secondary but statistically significant factor shaping root-associated bacterial community
structure, after soil age (Yeoh et al., 2017). More taxonomically- and/or spatially-restricted
surveys have also revealed phylosymbiosis between rhizobacterial communities and Poaceae
crop plants (Bouffaud et al., 2014), endosphere bacterial communities and 30 plant species
(Fitzpatrick et al., 2018), rhizosphere-associated fungal communities and willows from
hydrocarbon-contaminated soils (Bell et al., 2014), root-associated eumycotan fungal
communities and Asteraceae flowering plants in a dry grassland (Wehner et al., 2014),
ectomycorrhizal fungal communities and conifer-broadleaf forest trees (Ishida, Nara & Hogetsu,
2007), and ectomycorrhizal fungal communities and Estonian Salicaceae willows (Tedersoo et
al. 2013). Contrarily, qualitative incongruency between Brassicaceae host phylogeny and their
root microbiomes has been observed (Schlaeppi et al., 2014), whereas non-statistically
significant phylosymbiotic correlations have been reported between soil microbial (archaeal,
bacterial, and fungal) communities and 14 Salicaceae species in a common garden experiment
(Erlandso et al., 2018), and fungal endophyte communities and New Guinea rainforest trees
(Vincent, Weiblen & May, 2016).

The significance of phylosymbiosis

Symbiosis research has arguably been revolutionized by the multi-omics era, where a deluge of
data has enabled unprecedented insights into the extensive taxonomic, genetic, and functional
composition of microbial communities and their associated hosts. Such large-scale accumulation
of empirical and theoretical results can potentiate the development of new unifying concepts and
frameworks that summarize and/or explain observations across diverse host-microbiome
systems. In this vein, phylosymbiosis is maturing as a bona fide trend in the microbiome field
spanning various kingdoms of life and their ecological niches (Figure 2).

Because phylosymbiosis assessments can be readily integrated into conventional microbiome

analysis pipelines, it provides a quantitative and empirical research framework to distinguish
phylogenetic effects from non-phylogenetic effects on host-microbiome associations. As such,
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phylosymbiosis provides testable eco-evolutionary predictions that guide hypothesis-driven
experimental investigation, where the absence or presence of the trend informs more precise
downstream hypotheses on ecology, evolution and functional interactions that can be further
tested. This holistic view can be useful in the identification of host-by-microbe association
patterns across the tree of life that could eventually illuminate intrinsic ecology, evolutionary,
and physiological mechanisms shaping these interactions.

Phylosymbiosis also contributes to a growing school of thought that calls for systems-level views
of host biology in light of the microbiome (Theis et al., 2016). Phenotypes of the hologenome
(host and microbiome genomes) may arise from interactions within the holobiont (host and
associated microbes), and these phenotypes may or may not contribute to various aspects of
holobiont performance or fitness. It’s important to note here that members of the microbial
community contributing to holobiont function can be transient or stable, vertically or
horizontally transmitted, and neutral or selected. Determining the magnitude of each of these
traits and forces is an important area of future research.

Future directions

As surveys of bacterial, archaeal and/or viral communities in diverse host tissues continue to
expand the knowledge inventory of phylosymbiotic relationships in natural and laboratory
conditions, the next major goal in phylosymbiosis research will be to elucidate the causes and
effects of this pattern with computational and laboratory approaches. Computational analyses
showed that divergence in mammalian gut microbial beta diversity can be accelerated by
physical barriers and, inversely, reduced by predator-prey interactions between host species
(Moeller et al., 2017). In coral, coevolution or codiversification with members of the microbiome
is a potential driver of phylosymbiosis (Pollock et al., 2018). Another future research area is
disentangling effects of transmission routes and host vs. environmental influences on microbial
community structure and functions not only in silico (Yeoh et al., 2017; Pollock et al., 2018), but
also in vivo. Reductionist approaches using tractable model organism with germ-free rearing and
the capacity to transplant microbiomes will be crucial to assessing functionally consequential
host-microbiome interactions (Brooks et al., 2016; Parker, Dury & Moczek, 2019). Such
experiments have also been successfully coupled with comparative genomics and
microarray/transcriptomics methods to identify candidate host determinants affecting symbiont
selection (Rawls et al., 2006), specificity (Rawls, Samuel & Gordon, 2004; Kwong et al., 2014),
and hybrid lethality (Brucker & Bordenstein, 2013). As metagenomics sequencing depth
increases for phylosymbiotic microbiomes and viromes (Leigh et al., 2018), integrative multi-
omic approaches can also concurrently screen for microbial genes affecting host functions and
fitness. Phenotypic effects of candidate host and microbial genes can be further validated using
reverse genetics to determine specific cause-and-effect phylosymbiotic relationships at the
genetic level. With the repertoire of computational and experimental methods currently available
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for the dissection of host-microbe interactions, future research possibilities in the field of
phylosymbiosis and real-world applications in species conservation are copious and exciting.

Conclusions

Phylosymbiosis defines a link between host phylogeny and microbial diversity that is
quantifiable and applicable across living systems. As research in this area proliferates, a
definition and standardized workflow for assessing phylosymbiosis will ultimately produce and
substantiate rules and themes. Future cause-and-effect validation of phylosymbiosis will bring us
closer to a mechanistic understanding of the evolutionary, genetic, and molecular bases. Just as
no mature theory of evolutionary genetics was possible until we understood the mode of
inheritance, no mature principle of evolutionary symbiosis seems possible until we understand
the mechanisms establishing host-microbiome associations.
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