Tissue-specific expression of *NANOG* gene in human eye

Yuliya Markitantova Corresponding author, **Yulia Smirnova** Equal first author, **Rina Zinovieva** Equal first author

1 Koltzov Institute of Developmental Biology Russian Academy of Science, Moscow, RF, Russia

Corresponding Author: Yuliya Markitantova
Email address: yuliya.mark@gmail.com

The genes associated with multipotency in the eye cells at different stages of differentiation continue to be in the focus of biomedical research. In this study we revealed the changes in the *NANOG* mRNA expression in the human eye tissues at the early developmental stages. Using *in situ* hybridization we have obtained the new evidence for *NANOG* transcriptional activity in the human eye tissues at 8–10.5 weeks of prenatal development. *NANOG* transcriptional activity was detected in ectodermal derivatives tissues (cornea epithelium and lens) as well as in neuroectodermal tissue (neural retina). The highest *NANOG* mRNA concentration has been registered in cornea epithelium. The differences in the *NANOG* mRNA expression pattern could relate to the eye cells properties and their microenvironment. It is known that even in definitive tissue the epithelium retains the self-renew ability, while the retinal cells self-maintenance potential *in vivo* is extremely limited. Our findings confirm the presence of *NANOG* mRNA in tissues derived from different germ layers and clarifies the cellular markers characteristic of various eye cell types. The data obtained could help facilitate the understanding the cell biology and cell differentiation mechanisms.
Tissue-Specific Expression of *NANOG* Gene in Human Eye

Yuliya V. Markitantova¹, Yulia A. Smirnova¹, Rina D. Zinovieva¹

¹ Koltzov Institute of Developmental Biology Russian Academy of Science, 26 Vavilova street, Moscow, 119334, RF

*Corresponding author: Yuliya V. Markitantova. Email: yuliya.mark@gmail.com; Tel.: +7(499)135-0052; Fax 7(499)135-8012

The authors contributed equally to this work.

Academic Editor: name

Received: date; Accepted: date; Published: date

Abstract

The genes associated with multipotency in the eye cells at different stages of differentiation continue to be in the focus of biomedical research. In this study we revealed the changes in the *NANOG* mRNA expression in the human eye tissues at the early developmental stages. Using in situ hybridization we have obtained the new evidence for *NANOG* transcriptional activity in the human eye tissues at 8−10.5 weeks of prenatal development. *NANOG* transcriptional activity was detected in ectodermal derivatives tissues (cornea epithelium and lens) as well as in neuroectodermal tissue (neural retina). The highest *NANOG* mRNA concentration has been registered in cornea epithelium. The differences in the *NANOG* mRNA expression pattern could relate to the eye cells properties and their microenvironment. It is known that even in definitive tissue the epithelium retains the self-renew ability, while the retinal cells self-maintenance potential *in vivo* is extremely limited. Our findings confirm the presence of *NANOG* mRNA in tissues derived from different germ layers and clarifies the cellular markers characteristic of various eye cell types. The data obtained could help facilitate the understanding the cell biology and cell differentiation mechanisms.
Keywords: Human eye; development, differentiation; in situ hybridization

Acknowledgments: The work was conducted under the IDB RAS Government basic research program, within the NIR topic № 0108-2018-0005; Russian Foundation for Basic Research, project no. 16-04-01114. The research was performed using equipment of the Core Centrum of Institute of Developmental Biology RAS. Authors thank Prof. Sukhikh G.T., PhD, Poltavzeva R.A., from the Research Center of Obstetrics, Gynecology and Perinatology, Russian Academy of Medical Sciences, Moscow, for providing the of post-operating eyes from different stages of human development for the study.

1. Introduction

In genetic regulation of mammal eye development the most intriguing question is the role of gene associated with pluripotency. The transcription factors Oct4, Sox2, Klf4, c-Myc, Nanog and Lin28 have previously been reported to form the core of a regulatory network controlling pluripotency of the embryonic stem cells (ESCs). ESCs have unlimited capacity for self-renewal and an ability to differentiate into more than 200 cell types (Boyer et al., 2005; Wang et al., 2006; Young, 2011). Stability of Oct4, Sox2, Nanog expression is provided by autoregulatory loops resulting from the activation of their intrinsic promoters, cross-activation of each other’s promoters and by binding to the regulatory elements of the specific genes sets (Kallas, Pook, Trei, & Maimets, 2014; Loh et al., 2006; Rodda et al., 2005). Mechanisms regulating stemness are determined by cell properties, cell interactions and influence of the numerous signaling pathways. (Mournetas, Sanderson, Fernig, Murray, & Nunes, 2014) Ectopic Oct4, Sox2, Klf4, c-Myc, Nanog, Lin28 genes expression is well-known to reprogramme the somatic cell genome into embryonic state and alters the differentiation program (Hu, Friedrich, Johnson, & Clegg, 2010; Kim et al., 2009; Wernig et al., 2007). It has been established that the transcriptional factor Oct4 plays a key role in pluripotency induction and reprogramming (Pesce & Schöler, 2004). As have been shown on eye models of various animals the functions of some of these regulators are not limited to the pluripotency/multipotency (Camp et al., 2009; Pauklin, Thomasen, Pester, Steuhl, & Meller, 2011).
Analysis of the undifferentiated cells markers expression in differentiated cells during various periods of vertebrate development is of great importance.

The subject of our interest is the multipotency genes expression, in particular the transcription factor NANOG expression (www.ncbi.nlm.nih.gov; Gene ID: 79923, HGNC: 20857) in human eye ontogenesis. NANOG contains a conservative DNA-binding homeo domain (Chambers et al., 2003; Hart, Hartley, Ibrahim, & Robb, 2004) and has several pseudogenes (Booth & Holland, 2004). The gene is expressed at highly level in the ESCs and testis, where the role of this gene in the cell’s pluripotent status maintaining have been proved (Hart et al., 2004; Hyslop et al., 2005; Mitsui et al., 2003). NANOG and OCT4 transcription activity significantly increases in tumor cells lines characterized by abnormal high proliferation, in embryonic carcinoma and human retinoblastoma (Hart et al., 2005; Jeter, Yang, Wang, Chao, & Tang, 2015; Seigel et al., 2007). A dual and sequential knockdown of OCT4 and NANOG in transformed human stem cells with features of cancer cells showed some functional divergence of transcription machinery from the normal SC self-renewing state. Reduction in NANOG level expression led to the loss of cancer stem cells (CSCs) self-renewal coupled with apoptosis (Ji, Werbowetski-Ogilvie, Zhong, Hong, & Bhatia, 2009).

As for human eye the information about the multipotency markers in different cell types of definitive tissues in vivo is poor and fragmentary. Expression of NANOG and other multipotency markers such as SOX2, OCT4, KLF4, NESTIN, PAX6 was revealed in the corneal limbus epithelial cells which retain the ability of self-renewal in the adult eye (Pauklin et al., 2011). However, in the adult corneal epithelium the level of NANOG transcriptional activity is extremely lower than in ESC. Earlier, the NANOG expression was detected in the human eye at 10.5 week of prenatal development in non-dissected tissues of cornea, total lens, retina, pigment epithelium with choroid, by PCR (Firsova et al., 2008). However, PCR can not show the NANOG mRNA distribution in different eye cell types. In this study we focused on a detail analysis of NANOG mRNA localization in the human eye tissues during the early prenatal development at 8–10.5 weeks of gestation.

2. Materials and Methods

2.1. Ocular tissues

The objects of the study were the eye tissues obtained from the human abortuses (post-operative material) after legal abortions from medical terminations from licensed institutions of the Ministry of Health of the Russian Federation, the Research Center of Obstetrics, Gynecology, and Perinatology, Russian Academy of Medical Sciences, acting within the framework of the law of the Russian Federation about protection of the health of citizens and according to the approved list of medical indications. The age of fetuses was determined by an obstetrician. Foetal human eye tissues were obtained according to ethics regard and appropriate measures to ensure biosafety, and accompanied with medical report on the absence of pathologies. All manipulations on postoperative human material were performed in accordance with European GTP (Good Tissue Practices) II Guidance (European Union Project in the framework of the Public Health Program, 2003-2008) and Directive 2004/23/EC of The European Parliament and of The Council of 31 March 2004 on setting standards of quality and safety for the donation, procurement, testing, processing, preservation, storage and distribution of human tissues and cells and approved by the Research Center of Obstetrics, Gynecology, and Perinatology, Russian Academy of Medical Sciences; Ethics Committee of the Koltzov Institute of Developmental Biology Russian Academy of Science (Ethical Application Ref: № 22, 15 March 2018). We have analysed the eyes of 8 human embryos at 8−10.5 weeks of gestation (8, 9.5, 10, 10.5 week), two embryos for each stage.

2.2. Histological analysis

The eyes of the embryos from 8 to 10.5 weeks of gestation were fixed in the Buen’s solution, washed in 70% ethanol, dehydrated in the series of alcohols of increasing concentrations and were embedded in paraffin according to the method used earlier (Markitantova et al., 2008). Sections of 7 microns were stained with hematoxylin followed by contrasting with eosin.

2.3 cDNA synthesis for RT-PCR and sequencing
Total RNA from the individual human retinas of 9.5 weeks was extracted by TRI Reagent (Sigma, USA). To avoid contamination by genomic DNA the DNase digestion was performed (Fermentas, LTU). The quantity and quality of the RNA were evaluated using NanoDrop system (Thermo Fisher Scientific, USA) and gel electrophoresis. First-strand of cDNA was synthesized with 50 ng total RNA using SuperScript RT (Gibco-BRL, USA) and random hexamer oligonucleotide primers (Sileks, RF). Expression of well-known eye regulator \textit{PAX6} was estimated as a control. Gene-specific primers for RT-PCR were designed on the data of human genes structure from NCBI: \textit{NANOG} (GenBank: AB093576.1), \textit{PAX6} (Gene ID: 5080) using Lasergene (DNAStar software, USA). RT-PCR was performed using a master kit (Sileks, RF). To exclude amplification from genomic DNA primers were synthesized from flank intron/exon junctions and from different exons: for \textit{NANOG}, 5’-CCTCCTCTTCTCTATACTAA-3’ (from the boundary of the exon 1) and 5’-CTGCGTCACACCATTGCTATTC-3’ (from exon 4). Primers for \textit{PAX6} were: 5’-gtcatcaataaacagagttcttc-3’ (exon 7); 5’-cgattagaaaaccatacctgtat-3’ (exon 10).

We had only one product 523 bp specific for \textit{NANOG} and one product 424 bp specific for \textit{PAX6}. The cDNA was normalized by housekeeping gene \textit{RPL19} (Gene ID: 6143). Primers for housekeeping \textit{RPL19} gene were: 5’-AGGGTACAGCCAATGCCCGA-3’ (exon 4) and 5’-CCTTGGATAAAGTCTTGATGATC-3’ (exon 6), the fragment length was 326 bp. RT-PCR was performed in thermocycler (Eppendorf, DE) according to the design. The reaction without cDNA template was performed as the control for primers contamination. PCR products were visualized on 1.5% agarose gel using DNA ladder 100 bp (Sileks M, RF). Gene’s expression was estimated by a gel-analyzer Quantity One (BioRad, USA). The identity of the amplified nucleotide sequences to the studied genes was proved by sequencing on ABI PRIZM-3100 (Applied Biosystems, USA) system with BigDye 1.1 reagents (Thermo Fisher Scientific, USA) before cloning.

2.4 \textbf{PCR fragments Cloning and RNA probes synthesis for in situ hybridization}

The PCR fragments of \textit{NANOG} (523 bp) and \textit{PAX6} (424 bp) amplified on template of the human retina of 9.5 week of gestation were cloned into the transcription vector using a TOPO TA cloning kit (Invitrogen, USA). RNA probes were generated and labeled by \textit{in vitro} transcription procedures. We
synthesized antisense RNA probes complementary to \textit{NANOG} mRNA and \textit{PAX6} mRNA and sense RNA probes (negative controls) labeled with digoxigenin using Dig-labeling RNA kit (Roche, CHE). Subsequent colorimetric reaction was performed using Dig RNA detection kit (Roche, CHE). The efficiency of the probes labeled was assessed by direct hybridization signals detection on filters. The probes concentration was 200 ng per 65 mkl hybridization buffer optimal for the clear hybridization signal without the non-specific background staining. Corresponding sense probes used as negative controls gave no hybridization signal.

2.5 Preparation of cryosections and \textit{in situ} hybridization

Human eyes at 8, 9.5, 10, 10.5 weeks of prenatal development were fixed in 4% paraformaldehyde on the 0.1 M PBS (pH 7.4), at +4°C for cryosections. Six sections were stained for each eye in each experiment. We didn’t find out any significant biological variability. The eyes were washed in several changes of 100 mM phosphate buffer (pH 7.5), incubated in 20% sucrose on 100 mM phosphate buffer, at +4°C for 24 hours, embedded and frozen in TissueTec OCT (Leica, DE). Sections of 12 mm thickness were prepared for \textit{in situ} hybridization on a Leica CM1900 UV cryostat and were attached on Super frost-Plus glass slides (Thermo Fisher Scientific, USA). Samples preparation and \textit{in situ} hybridization procedures were performed as described for the fish, and adapted for the human eye (Barthel & Raymond, 2004; Markitantova et al., 2008). The labeled antisense RNA probes were detected with an anti-digoxigenin antibody that has been linked with the enzyme alkaline phosphatase (AP). After incubating the antibody with the samples we detected the mRNA by adding the substrate BCIP (bromo-chloro-indolyl-phosphate) and NBT (nitro blue tetrazolium). Slides were mounted in Immu-Mount (Thermo Scientific™, USA) and then analyzed by microscopes Olympus DP70, DM RXA2 (Leica, DE). All the experiments were repeated at least three times.

3. Results

We took into account the fact that \textit{NANOG} gene has two highly homologous isoforms and 11 pseudogenes to design highly specific primers (Booth & Holland, 2004; Das, Jena, & Levasseur, 2011).
Human retina at the stage of 9.5 week served as a template for cDNA which was used for \textit{NANOG} and \textit{PAX6} RNA probes synthesis for \textit{in situ} hybridization (Figure 1).

We performed cDNA sequencing of PCR fragments completely overlapping the coding part of the gene in order to avoid misinterpretation of the results of PCR analysis. The nucleotide sequence of human \textit{NANOG} gene (Gene ID: 79923) have been confirmed. PCR products of \textit{NANOG} and \textit{PAX6} were cloned into the transcription vector pCRII-TOPO with dual promoters T7 and SP6 for DIG labeled-antisense and sense riboprobes synthesis and were used for \textit{NANOG} mRNA localization in the human eye during 8–10.5 weeks of development by \textit{in situ} hybridization.

Histological analysis showed that at the stages studied the rudiments of all eye tissues had already been represented in the germinative form except the ciliary body (Figure 2A). Cornea epithelium differentiates into the outer layer consisting of flattened cells and the inner layer consisting of cuboidal cells. In the retina, cells from the densely packed outer neuroblastic layer (ONbL) migrated to the newly formed and more loosely packed inner neuroblastic layer (INbL).

We have found for the first time the \textit{NANOG} transcripts localization in the eye tissues of ectodermal origin (cornea and conjunctive epithelium, lens epithelium) and in the tissues of neuroectodermal origin, retinal neuroblast layers in human fetuses of 8–10.5 weeks of development. \textit{NANOG} was not detected in the mesenchymal eye tissues.

According to our data the pattern of \textit{NANOG} mRNA expression in the retina during these stages of the eye development undergoes a change. The \textit{NANOG} transcripts were localized predominantly in the cells of the retina marginal area at 10.5 week of human gestation (Figure 2B,C). It was shown that cells differentiation from this region of neural retina is delayed significantly relative to the central part. Proliferating cells population of the retina marginal region was larger compared with the central area at all time-points examined (Markitantova & Zinovieva, 2012) It has been shown that stem-like cells were localized among the retina peripheral region cells which may be a potential source for retina restoration (Bhatia, 2010). The distinct hybridization signal with \textit{NANOG} mRNA was observed at the stage of 9.5-10, 10.5 weeks in both inner and outer retina neuroblast layers (Figure 2B,C). The data about \textit{NANOG}
mRNA distribution obtained by in situ hybridization in this study are consistent with the immunoassay (Firsova et al., 2008).

In parallel we have studied the PAX6 mRNA localization at the same eye developmental stages as a positive control, because this transcription factor is well-known to be in control of the eye tissues morphogenesis in vertebrates (Gehring, 1996; Nishina et al., 1999). The PAX6 transcripts were revealed in corneal as well as in lens epithelium of human eye at the all analyzed stages of gestation. We have registered the most intensive hybridization signal to PAX6 mRNA throughout the retinal neuroblasts at 8-10.5 weeks and in the marginal area of the forming retina (Figure 3A,B). No hybridization signal was observed in the mesenchymal eye cells (corneal endothelium, corneal and iris stroma) at all the studied stages of the human eye development. Earlier PAX6 protein was localized in the same eye tissues of ectodermal (corneal and lens epithelium) and neuroectodermal (retina, ciliary body epithelium) origins, but was not detected in mesenchymal tissues according to the data of fluorescent and non-fluorescent immunochemistry (Firsova et al., 2009; Nishina et al., 1999). Functions of Pax6 as a main regulator of the multipotent cells proliferation in peripheral retina and of the exit of the retinal progenitor cells from the cell cycle during differentiation of ganglion and amacrin cells in the mammal's eye have been proved (Hsieh & Yang, 2009; Marquardt et al., 2001). Thus, our results on the analysis of the NANOG and PAX6 by in situ hybridization are in good agreement with the data obtained previously by others methods (Firsova et al., 2009; Nishina et al., 1999) and confirm the transcriptional activity of the both genes in the eye tissues studied. The transcription activity of the gene was also detected in the adult eye cells. Using the reverse transcription PCR analysis, the minor amount of NANOG mRNA transcripts were also found in the retina of the adult human (Firsova et al., 2008). Although, it is logical to assume that in mature cells the level of gene expression can decrease and their role is not exclusively related to the cells multipotency.

The NANOG in differentiated human eye cells can perform other function than maintenance of pluripotency state. The previous reports demonstrated that Oct4 and Nanog transcription must be silenced...
when human ES cells differentiate, so that the developmentally important genes are activated. These
events during the early stages of embryogenesis are accompanied by accumulation of repressive
epigentic marks such as DNA methylation, H3K9me3, and H3K27me3 while the neural genes Pax6, N-Oct3 acquired histone marks H3K4me3 associated with transcriptional activation (Das et al., 2011; Deb-

4. Discussion

Recent researches of the multipotency genes have raised the question about their expression and
possibility to perform regulatory functions in the differentiating cells. The transcriptional factor
NANOG/Nanog has been considered only as a cell pluripotency marker for a long time. NANOG/Nanog
exhibited stage-specific activity in early mammalian embryogenesis similar to OCT4/Oct4 (Chambers et
al., 2003; Kallas et al., 2014; Pesce & Schöler, 2004). Blocking the expression of pluripotency factors in
early period of mammalian embryos development is considered to be a necessary step for realization of
the molecular programs of specific cell type differentiation (Liang et al., 2008). In light of recent studies
the range of Nanog functions is much wider (Camp et al., 2009; Hu et al., 2010; Jeter et al., 2015).

In the present study we first have obtained the data on the Nanog mRNA distribution in the human
eye tissues development at 8–10.5 weeks (Figure 2B,C) in comparison to PAX6 mRNA (Figure 2D,E).
We have found the similar pattern of tissue-specific mRNA distribution for both regulatory genes in the
eye tissues. Our results on NANOG mRNA localization in the corneal epithelium during the early
embryogenesis confirm the data obtained in the adult human eye by other authors (Pauklin et al., 2011).
The Nanog expression level increases in the epithelium cells of esophagus, oral cavity, skin (Piazzolla et
al., 2014), that led to the suggestion about high selective activity Nanog in self-renewal epithelial tissues.
Functions of NANOG gene during the early eye development are not clear yet they may be related to the
regulation of the proliferative activity of eye progenitor cells.

However, we have determined the Nanog mRNA localization not only in forming human
cornea, but also in the neural retina. Previously, the high expression levels of other cells multipotency
regulatory gene-marker GNL3 and Ki67 (cell cycle marker) in proliferating retinal neuroblasts had been
determined at 9–11 weeks (Markitantova & Zinovieva, 2012). GNL3 controls the proliferative activity and cells multipotent state in ESC, neural SC and some cancer cell lines (Ma & Pederson, 2008; Nomura et al., 2009). In general, there is a similarity in the expression pattern of regulatory genes NANOG, PAX6, GNL3 and Ki67 in the analyzed human eye tissues at the early stages of development. The functional relationship of Nanog and the cell cycle machinery in mammal embryogenesis have been established: the high level of Nanog/NANOG expression in mouse and human ESCs is necessary not only to maintain undifferentiated cell status (Chang, Wang, Knott, Chen, & Cibelli, 2009), but to trigger the G1-S transition in the cell cycle as well (Zhang et al., 2009). Nanog is able to suppress directly the p27KIP1 expression after transduction of mouse fibroblasts in somatic cells as was shown by high-resolution massive DNA sequencing of chromatin immunoprecipitation (ChIP-seq) (Münst et al., 2016). It is well-known that the continuous ESCs cell cycle is provided by the coordinated operation of signaling pathways STAT3, LIF, PI3 kinase pathway, WNT, TGF, BMP, FGF and others (Kemp, Willems, Abdo, Lambiv, & Leyns, 2005; Li et al., 2004; Loh et al., 2006). The same signaling molecules are involved in the control of specific cell differentiation that can be maintained through alternative molecular components. The increase in the NANOG expression level in tumor stem cells and certain types of cancer cells is also accompanied by reactivation of molecular mechanisms leading to cell proliferation increasing (Jeter et al., 2015). Nanog overexpression synergizes with gene AURKA, critical mitosis marker, to induce proliferation, neoplastic growth, chromosomal aberrations (Jeter et al., 2015). RNA interference-mediated silencing of NANOG reduced cells proliferative activity and CyclinD1 expression in the same chain by ChIP data (Han et al., 2012). NANOG increases the cell proliferation in liver cancer through the Nodal/Smad3 pathway (Sun et al., 2013). We have found the transcriptional activity of the gene NANOG in somatic differentiating cells of the eye tissues of various origins in human ontogenesis (Firsova et al., 2008). Wide pattern localization of NANOG mRNA in the eye tissues suggests its multifunctional role in special cellular and molecular niches. The eye tissues at the studied stages are still developing and mostly undifferentiated. The current evidence in the field, together with NANOG’s mRNA pattern similar to that of Pax6 as we have indicated, would rather support the hypothesis that NANOG and PAX6 transcripts are
present in proliferating progenitors in the developing ocular tissues and that it is then down-regulated as
the cells exit the cell cycle and commit to differentiating into specific cell types.

It should be noticed that each cell type is characterized by a certain epigenetic status of the genome
that programs gene expression (Melcer et al., 2012). The analysis of the ESC and tumor stem cells shows
that regardless of their origin the promoters of Nanog and Oct4 are hypomethylated, and a high level of
expression of these genes is observed. In somatic cells, trophoblast stem cells and NIH/3T3 cells (mouse
embryonic fibroblast cells) Nanog promoter is hypermethylated, and transcription is repressed (Hattori et
al., 2007). However, histone modification, DNA methylation and acetylation are only some aspects of the
epigenetic mechanisms regulating the genes transcription through a complicated step-by-step process.
Recent findings have demonstrated the role of endogenous non-coding RNA molecules, including long
noncoding RNAs (lncRNAs) in the cell choice to self-renewal or differentiation into any lineage. In
mouse embryonic stem cells the specific sets of the lncRNAs modulate developmental state: knockdown
and overexpression of these transcripts lead to the substantial changes in Oct4 and Nanog mRNA levels
and to the shifts in cellular lineage-specific gene expression and in pluripotency mouse ESCs (Mohamed,
Gaughwin, Lim, Robson, & Lipovich, 2010). At least 20 lncRNA inducing the expression of Nanog and
Oct4 are known (Ghosal, Das, & Chakrabarti, 2013). In addition to non-coding RNAs, the highly
homologous isoforms and pseudogenes may contribute to differential regulation and tissue-specific
NANOG and OCT4 expression (Das et al., 2011; Lin, Shabbir, Molnar, & Lee, 2007; Pain, Chirn,
Strassel, & Kemp, 2005). For example, cell type-specific NANOG and its pseudogene NANOGP8
expression were revealed in both undifferentiated and differentiated human cells. It is supposed that
rapidly dividing cells such as neonatal fibroblasts, cell line human epitheloid cervix carcinoma (HeLa),
cell line human neuroblast from neural tissue (SH-SY5Y), human mesenchymal stem cells (MSCs),
human ESCs express NANOG while relatively slow dividing cells such as adult fibroblasts, heart tissue,
human umbilical vein endothelial cells (HUVECs) have both NANOG and NANOGP8 (Ambady et al.,
2011). In terminally differentiated smooth muscle cells known as the slowest cycling cells only
NANOGP8 is expressed. Nevertheless, it was reported that all the analyzed cell types were potentially capable of binding a NANOG consensus sequence \textit{in vitro} system (Ambady et al., 2011).

Despite of considerable interest to epigenetic regulation the data for the human eye tissues are fragmentary, contradictory, dealing with a limited number of regulatory genes (Bonnin, Belville, Chiambaretta, Sapin, & Blanchon, 2014; Qu et al., 2010; Rai et al., 2006). Eye cells differentiation is not only accompanied by specific changes in the DNA, histones modification, but also non-coding RNAs expression, nucleolar reorganization. The main aspects of epigenetic regulation in the eye are summarized in detail in review (Cvekl & Mitton, 2010). Unfortunately, there are no comprehensive data on regulation of the multipotency genes in the human eye in this regard.

Data obtained showed that \textit{NANOG} expressed selectively in both ectodermal and neuroectodermal human eye tissues in embryogenesis. The expression of \textit{NANOG} in human eye in development may be related to the cells proliferation and differentiation and can be explained by the cells type peculiarities: cell cycle kinetics, the differentiation state in specific cellular and molecular niche that undergoes dynamics in ontogenesis.

5. Conclusions

The results obtained extend the dataset currently available for the developing human retina (Tian et al., 2015; Hoshino et al., 2017; Mellough et al., 2019) and open up the new prospects for future investigation of the transcriptional factor NANOG role in genetic regulation of human eye tissues differentiation. Data on \textit{NANOG} expression in the eye tissues of different embryonic origins contribute to the clarification of genetic processes in the human eye cells and may be taken into account for the development of differential cell and tissue therapy methods. Such approaches are being developed for other system to differential cancer therapy based on selective regulation \textit{Nanog}, \textit{Oct-4}, \textit{Sox2}, \textit{Klf4} expression in P19 embryonic carcinoma stem cells through transcriptional factor decoys (TFDs) thus downregulating the genes expression in a specific manner (Rad et al., 2015). Knowledge of the multipotency genes expression specificity and their role in regulatory networks in the human eye tissues
is a prerequisite for the successful application of biotechnological approaches to solve a number of problems associated with the eye pathologies.

Conflicts of Interest: The authors report no conflicts of interest.

References

Lineage-restricted function of the pluripotency factor NANOG in stratified epithelia. *Nature Communications* 5:4226

Overexpression of DNA methyltransferases 1, 3a, and 3b significantly correlates with retinoblastoma tumorigenesis. *American Journal of Clinical Pathology* 134:826–34

Zebra fish Dnmt1 and Suv39h1 regulate organ-specific terminal differentiation during development. *Molecular and Cellular Biology* 26:7077–85

Transcriptional regulation of NANOG by OCT4 and SOX2. *Journal of Biological Chemistry* 280:24731–37

Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. *RNA* 16:324–37

Transcriptome of the human retina, retinal pigmented epithelium and choroid. *Genomics* 105:253-264

Control of the embryonic stem cell state. *Cell* 144:940–54

Figure Legends

Figure 1. Electrophoresis of PCR fragments, corresponding to the genes *NANOG* and *PAX6*, on the cDNA template from the human retina (9.5 week of gestation). The length of the nucleotide sequences after amplification cDNA with gene-specific primers were: housekeeping gene RPL19, 326 bp (1), NANOG, 523 bp (2), PAX6, 424 bp (3), M – DNA ladder 1000 bp (Siλeks M), marker for the PCR products length; RT(-) – negative control without the template of cDNA; bp – base pair.

Figure 2. Localization of the *NANOG* mRNA in human eye at early stages of prenatal development: analysis by chromogenic *in situ* hybridization. Hematoxylin an eosin staining of the human eye sections at the 8 to 10.5 weeks of gestation (column A). Hybridization signals with anti-sense RNA probes show the *NANOG* mRNA transcripts in the corneal and lens epithelium, both outer and inner retinal neuroblastic layers (column B) (column B). No hybridization signals with sense RNA probe used as negative control for *NANOG* mRNA (column C) are observed. Abbreviations: PR, peripheral retina; CR, central retina; LEC, lens epithelium cells; CE, corneal epithelium; ON, optic nerve; GCL, ganglion cell layer; INbl, inner neuroblastic layer; ONbl, outer neuroblastic layer; RPE, retinal pigmented epithelium. Scale bars: 500 μm eye histology (A), 500 μm *NANOG*, 8–10.5 weeks (B), (C).

Figure 3. Localization of the *PAX6* mRNA in human eye at the same stages of early prenatal development: analysis by chromogenic *in situ* hybridization. Strong hybridization signals for *PAX6* mRNA are detected in both corneal and lens epithelium, in inner and outer neuroblastic retinal layers.
Positive staining is more prominent in peripheral area of retina and is absent in optic nerve (column A). No hybridization signals with sense RNA probe used as negative controls for PAX6 mRNA (column B) are observed. Abbreviations: PR, peripheral retina; CR, central retina; LEC, lens epithelium cells; CE, corneal epithelium; ON, optic nerve; GCL, ganglion cell layer; INbl, inner neuroblastic layer; ONbl, outer neuroblastic layer; RPE, retinal pigmented epithelium. Scale bars: 500 µm PAX6, 10.5 weeks (A); 100 µm PAX6, 9.5–10 weeks (A), (B).
Figure 1

Electrophoresis of PCR fragments, corresponding to the genes *NANOG* and *PAX6*, on the cDNA template from the human retina (9.5 week of gestation)
Figure 2

Localization of the *NANOG* mRNA in human eye at early stages of prenatal development: analysis by chromogenic *in situ* hybridization
Figure 3

Localization of the *PAX6* mRNA in human eye at the same stages of early prenatal development: analysis by chromogenic *in situ* hybridization