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Background. Microbial source tracking methods are used to determine the origin of contaminating
bacteria and other microorganisms, particularly in contaminated water systems. The Bayesian
SourceTracker approach uses deep-sequencing marker gene libraries (16S ribosomal RNA) to determine
the proportional contributions of bacteria from many potential source environments to a given sink
environment simultaneously. Since its development, SourceTracker has been applied to an extensive
diversity of studies, from beach contamination to studying human behavior.

Methods. Here, we developed metagenomic-SourceTracker (mSourceTracker), an expanded
SourceTracker approach for shotgun metagenomic datasets. We tested mSourceTracker using sink
samples from coastal marine environment metagenomes and source environment metagenomes
collected from freshwater, marine, soil, sand and gut environments. We also implemented features for
determining the stability of source proportion estimates using new techniques that split metagenomic
data for domain-speciûc analyses (i.e., Bacteria, Archaea, Eukarya and viruses). The added features allow
users to visualize the precision of mSourceTracker and assess ways to optimize performance.

Results.Our results found mSourceTracker to be highly eûective at predicting the composition of known
sources using shotgun metagenomic libraries. In addition, we showed that diûerent taxonomic domains
sometimes presented highly divergent pictures of source origins. These ûndings indicated that applying
mSourceTracker to separate domains may provide a deeper understanding of the microbial origins of
complex, mixed-source environments, and further suggested that certain domains may be preferable for
tracking speciûc sources of contamination.
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24 Abstract

25

26 Background. Microbial source tracking methods are used to determine the origin of 
27 contaminating bacteria and other microorganisms, particularly in contaminated water systems. 
28 The Bayesian SourceTracker approach uses deep-sequencing marker gene libraries (16S 
29 ribosomal RNA) to determine the proportional contributions of bacteria from many potential 
30 source environments to a given sink environment simultaneously. Since its development, 
31 SourceTracker has been applied to an extensive diversity of studies, from beach contamination to 
32 studying human behavior.  
33

34 Methods. Here, we developed metagenomic-SourceTracker (mSourceTracker), an expanded 
35 SourceTracker approach for shotgun metagenomic datasets. We tested mSourceTracker using 
36 sink samples from coastal marine environment metagenomes and source environment 
37 metagenomes collected from freshwater, marine, soil, sand and gut environments. We also 
38 implemented features for determining the stability of source proportion estimates using new 
39 techniques that split metagenomic data for domain-specific analyses (i.e., Bacteria, Archaea, 
40 Eukarya and viruses). The added features allow users to visualize the precision of 
41 mSourceTracker and assess ways to optimize performance. 
42

43 Results. Our results found mSourceTracker to be highly effective at predicting the composition 
44 of known sources using shotgun metagenomic libraries. In addition, we showed that different 
45 taxonomic domains sometimes presented highly divergent pictures of source origins. These 
46 findings indicated that applying mSourceTracker to separate domains may provide a deeper 
47 understanding of the microbial origins of complex, mixed-source environments, and further 
48 suggested that certain domains may be preferable for tracking specific sources of contamination.
49
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50 Introduction

51 Microbes are found in every environment, from the depths of the Pacific Ocean to the hostile 
52 conditions of the Atacama Desert. Most microbes co-exist with other microbes in biofilms or in 
53 complex dynamic communities referred to as 8microbiomes9 (e.g., the gut microbiome) that 
54 include hundreds or thousands of different microbial species, many of which play critical roles in 
55 animal health and ecosystem function. While much is known about the species composition of 
56 microbial communities, less is understood about how they form in the first place and how 
57 microbes move among different ecosystems. Understanding the origins of microbial 
58 communities is particular important for tracking routes of contamination, such as polluted water 
59 systems, but also has important implications for understanding microbiome development and 
60 ecosystem function. 
61

62 Microbial source tracking (MST) approaches have been developed to determine the source 
63 origins of particular microbes, with their primary use being the study of bacterial contamination 
64 of municipal water (Liu et al., 2018) and freshwater (streams, rivers and lakes) (Newton et al., 
65 2013; Staley et al., 2018) and coastal ocean waters.  Standard MST approaches track microbial 
66 sources via one or more key bacterial strains or species previously linked to a specific source 
67 (e.g., E. coli strains only found in cow feces). Traditional MST methods rely on techniques such 
68 as culture isolation and PCR with species-specific primers. Other MST approaches have relied 
69 on patterns of multiple antibiotic-resistance and carbon utilization profiles (Joyce M.  Simpson, 
70 Jorge W.  Santo Domingo & Reasoner, 2002; Scott et al., 2002). More recently, improvements in 
71 next-generation sequencing (NGS) technologies has resulted in NGS being widely in all aspects 
72 of microbiology including MST (van Dijk et al., 2014; Martin et al., 2018). 
73

74 The widely-used SourceTracker program has provided one of the most powerful and effective 
75 methods for using NGS data to perform MST. This program uses a combination of Bayes9 
76 theorem and Gibb9s sampling to analyze data from large bacterial 16S rRNA marker-gene NGS 
77 libraries. Unlike previous MST methods which use individual microbes to identify routes of 
78 colonization and contamination, SourceTracker uses data from hundreds or thousands of species, 
79 and allows simultaneous estimation of the proportion of multiple source environments 
80 contributing to a given sink environment, including an estimate of unknown sources (Knights et 
81 al., 2011). For example, in a study of bacterial assemblages on restroom surfaces, the researchers 
82 used SourceTracker to estimate the relative proportion of skin, feces and soil contributing to each 
83 specific sink sample (Flores et al., 2011). At the time of this writing, SourceTracker had been 
84 cited over 300 times with a surprising diversity of applications, including identifying individual 
85 organisms within the same species based on their microbiomes, determining which body sites 
86 contribute most to contamination of built environments and detecting sources of early gut 
87 colonization among others (Flores et al., 2011; Hewitt et al., 2013; Hyde et al., 2016; Chen et al., 
88 2018; Kapono et al., 2018). Other applications included applying SourceTracker to forensic 
89 analysis and to study human behavior (Lax et al., 2015; Bik et al., 2016). SourceTracker was 
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90 designed for use with bacterial 16S rRNA marker genes and has primarily been used with these 
91 data. However, it has been applied to a few shotgun metagenomic studies, including one that 
92 tracked the source origins of antibiotic resistance gene markers (Baral et al., 2018). While more 
93 expensive and computationally intensive, shotgun metagenomic data allows for a much broader 
94 potential array of microbial diversity (bacteria, archaea, eukaryotes and viruses) to be used in 
95 microbial source tracking. 
96

97 In this study, we developed and tested a metagenomic-SourceTracker (mSourceTracker) 
98 approach to determine the source origins of microbial samples. The goal was to test the utility of 
99 mSourceTracker for shotgun metagenomic datasets with samples of known origins and provide 

100 tools for determining the reliability of proportion estimates. Specifically, we used samples 
101 collected from coastal marine environments, which are commonly a mix of different sources due 
102 to runoff from freshwater environments and contamination from land debris. In addition, we 
103 applied mSourceTracker to entire metagenomes but also to each organismal group separately. 
104 Our results showed that mSourceTracker provides a robust approach for microbial source 
105 tracking with metagenomic datasets and also demonstrated how mSourceTracker could provide 
106 deeper taxon-specific biological insights into the movements of microbes among ecosystems.
107

108 Materials & Methods

109

110 Data Collection

111 Metagenome sequence libraries were obtained from samples collected from coastal marine 
112 water, fresh water, human gut (feces), sand and soil environments from multiple studies. These 
113 environments were chosen as likely sources of microorganisms to be found in coastal marine 
114 waters which tend to have runoff from rivers and possibly contaminated with sewage.  A total of 
115 223 samples were used for this study; 110 coastal marine samples, 30 freshwater samples, 64 
116 soil samples, 6 sand samples, and 13 gut samples (see Supplemental Table 1 for details). 
117

118 Taxonomic separation of metagenomic data

119 Taxonomic abundances were generated for all samples using the k-mer approach implemented in 
120 the Kaiju ver. 1.5.0 program (Menzel, Ng & Krogh, 2016). Kaiju produces estimated taxonomic 
121 abundances primarily at the genus level. To determine the domain of each genus (Archaea, 
122 Bacteria, Eukarya or virus), we wrote a programming script in python3.6 using the URL:
123

124 http://taxonomy.jgi-psf.org/tax/sc_name/{}
125

126 to extract the full taxonomic lineage information given the genus name. 
127

128 For example, given the genus Salmonella, the URL:
129
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130 http://taxonomy.jgi-psf.org/tax/sc_name/Salmonella 
131

132 returns the string:
133

134 sk:Bacteria;p:Proteobacteria;c:Gammaproteobacteria;o:Enterobacterales;f:Enterobacteriaceae;g:
135 Salmonella
136

137 The <genus= names within the Kaiju output that did not return a lineage from the URL were 
138 manually searched in NCBI. The domain information was then added to a dictionary within our 
139 script and later compiled into a single data frame. For domain specific source tracking analysis, 
140 the taxonomic abundances for each sample were separated by domain and written into 
141 corresponding data frames. Species and count numbers from each sample were merged using 
142 species name with all previously processed samples within each domain-specific data frame. 
143 Once all samples were processed through our pipeline, the assembled data frames for each 
144 domain were then written to an output table formatted to be used with mSourceTracker.
145

146 Simulation data for mSourceTracker analysis

147 To test the prediction accuracy of mSourceTracker, 14 samples from the coastal marine 
148 environment were defined as sinks and all remaining samples from every environment defined as 
149 sources. The analysis was performed on the combined dataset and each domain separately, with a 
150 default rarefaction limit of 1000. Samples which did not have a minimum count of 1000 for any 
151 given kingdom file were removed from all datasets. Proportions for sink samples were compared 
152 using 10 and 100 draws. The number of chains was set at 5 for all comparisons. The same 
153 mapping file was used for comparing differences in proportions between kingdom datasets. The 
154 number of chains was held at 5 and the number of draws were variable so as to keep the chain 
155 differences below 5%. 
156

157 mSourceTracker: diagnostic add-on feature

158 Gibbs sampling data computed from the SourceTracker 8envcounts9 array was written to a 
159 temporary output file along with source and sink ID9s. When the diagnostic function was called 
160 using the command 8--diagnostics9, the Gibbs data file was read and placed into an array using 
161 numpy (van der Walt, Colbert & Varoquaux, 2011). The array was split based on the number of 
162 chains and number of draws defined by user inputs. Here, we use the standard Markov Chain 
163 Monte Carlo terminology of <draw= and <chain=. However, it should be noted that the original 
164 SourceTracker codebase uses the term <restart= to refer to an MCMC draw, and <draw= for an 
165 MCMC chain. Array data was multiplied by the alpha1 preset to convert numbers into respective 
166 proportion values. Each chain produces a moving average via Gibbs sampling over the number 
167 of draws selected. The script then calculates the difference between the maximum and minimum 
168 chains. If the proportion value of any two chains differs by a default value of 5%, or by user 
169 defined parameters, all chains are exported onto a single line graph per sample for each 
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170 environment. Each line represents a single chain and the legend displays the proportion estimate 
171 of each chain for the given sample and environment. A single text output table displays the 
172 absolute differences between the maximum and minimum chains for all samples in each 
173 environment.
174

175 Random Forest classifier

176 Sample names in the feature tables used for mSourceTracker analysis were converted to name of 
177 the source for which they were collected. One source was then selected to be tested with all other 
178 sources being categorized as 8other9 to identify features important in classifying the selected 
179 environment. Training and testing sets were randomly created at approximately a 3:1 ratio 
180 respectively. Random Forest is an ensemble learning method which classifies by the votes of its 
181 component trees. Using scikit-learn Random Forest classifier (Pedregosa et al., 2011) we fit and 
182 classified the data using 500 trees. Random state was set at 0 and the out-of-bag score was made 
183 True. The classifier was run multiple times to ensure there were no important features returned 
184 due to overfitting or other errors. The 10 most important features were graphed for each 
185 environment based on relative importance utilizing pandas (McKinney, 2010) and matplotlib 
186 (Hunter, 2007). Confusion matrices and statistics for the Random Forest classifier were also 
187 produced using scikit-learn modules. This process was performed for each of the organismal 
188 domains.

189
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190 Results
191

192 Effects of parameter adjustments on the accuracy and precision of mSourceTracker

193 In order to apply the Bayesian approach of mSourceTracker to metagenomics data, we 
194 downloaded a total of 223 samples from 5 clearly identified environments (Table A1). These 
195 sources include 110 coastal marine samples, 30 freshwater samples, 64 soil samples, 6 sand 
196 samples, and 13 gut samples. Fourteen of the coastal marine samples were chosen to be used as 
197 <sink= samples. The k-mer based Kaiju analysis identified a total of 5725 taxa across all sample 
198 from the four major taxonomic domains of life. Of these, 88.8% of them were bacteria 
199 sequences, while eukaryotes and archaea comprised ~9.0% and ~1.9% of our metagenomic 
200 sequences, respectively. Virus-matching sequences comprised just ~0.3% of all the samples.
201

202 Since previous studies indicated that adjusting SourceTracker9s default parameters (e.g., number 
203 of restarts) with 16S data led to more stable estimates of source proportions (Henry et al., 2016), 
204 we determined how the proportional composition for our sink samples would be affected if we 
205 adjusted the default parameters for metagenomic samples. Fig. 1A shows an example of how the 
206 number of draws can affect proportion estimates. Because the estimates are a moving average, 
207 increasing the number of draws to 100 resulted in a decreased variability between each chain. 
208 Longer chains converge to a more stable estimate over time. We also increased the number of 
209 chains to 5 so we could compare multiple independent proportional estimates in a single run. As 
210 indicated in Fig. 1B, with only 10 draws, source proportion estimates among the different chains 
211 could vary considerably but increasing the number of draws to 100 resulted in convergence of 
212 the chains. Analysis of 14 source proportion estimate from 223 samples using 5 chains with 10 
213 draws per chain, found an average of 3±2% difference between the two most different estimates. 
214 However, there were instances in which proportion estimates of the most different draws even 
215 after 10 draws, in some samples, were as much as 15-20% different (data not shown). Increasing 
216 the number of restarts to 100 dramatically minimized the differences among chains.
217

218 Figure 1C and D show the dramatic improvement and how increasing the number of draws and 
219 chains reduces the variability in the source proportion estimates for metagenomic samples. As 
220 mentioned previously, each draw is dependent on prior draws and a single chain runs the risk of 
221 getting caught in a local-maxima in the target distribution and returning an inaccurate estimation. 
222 More draws reduce the likelihood this phenomenon could affect the final estimations because 
223 draws are averaged together for each environment. For all subsequent testing we adjusted the 
224 default parameters in mSourceTracker to minimize the range between chains such that the 
225 biggest difference between chains would be less than 5%.
226

227

228

229
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230 mSourceTracker analysis of separated domains

231 Once we established the best general parameters for mSouceTracker, we then compared the 
232 results of combined mSourceTacker analysis to single-domain analyses of the same samples. 
233 Figure 2 shows the results for a single coastal marine sink sample in which mSourceTracker had 
234 been run on the combined species and each specific domain. The results of the bacteria alone 
235 most closely resemble the proportions we get from the combined metagenomic data. This is 
236 likely because the Gibbs sampling approach used to estimate the proportions would tend to pick 
237 bacteria taxa, since the bulk of the sequences from the metagenomic data (88.4%) were bacterial. 
238 In this particular sample <coastal marine= comprised the largest source proportion in both the 
239 combined and bacteria fractions. Archaea and eukaryotes also indicated a high level of coastal 
240 marine, but the proportions were much lower. In contrast, the overwhelming majority of our viral 
241 sequences were determined to be from a freshwater environment, while the archaea indicated a 
242 high proportion of sand and gut sources and the eukaryotes were almost evenly split in this 
243 particular sample between the coastal marine, freshwater, sand and soil origins. 
244

245 Figure 3 shows the estimated proportions for all 14 of the coastal marine sink samples broken 
246 down by domain. In these 14 samples, bacteria averaged 50.2% from the coastal marine 
247 environment. Eukaryote samples averaged 42.8% coastal marine with the remaining composition 
248 being evenly distribute among the other 4 environments. Archaea samples were approximately 
249 split between the coastal marine (38.6%) and sand (30.4%) environments. Most virus samples 
250 were dominantly estimated to be from freshwater despite being coastal marine samples. Virus 
251 samples average composition was 77.6% freshwater and just 0.075% coastal marine. 
252

253 Random Forest of environments by domain

254 We used Random Forest to determine, which organisms were best at classifying samples into 
255 each environment seen in figure 4. Confusion matrices for Random Forest performed on each 
256 environmental condition are seen in figure 5.  Accuracy scores remained above 95% for all 
257 classifications and the out-of-bag error was below 5% for most samples (Table 1). Several of 
258 these organisms which were determined to be an important feature were found in literature to be 
259 closely associated with that environment. This further demonstrates how mSourceTracker can be 
260 advantageous as certain taxa may be better suited for determining particular sources of 
261 contamination. 
262

263

264
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265 Discussion

266 Our results demonstrated not only the effectiveness of mSourceTracker with metagenomic 
267 datasets but also that the taxonomic diversity of metagenomic samples can potentially lend 
268 deeper insight into the mixed-source origins of complex environmental samples. The 
269 mSourceTracker analysis of the complete 14 test sink metagenomic libraries consistently 
270 revealed the biggest sources to be coastal marine, though the proportions varied considerably 
271 from sample to sample (Fig. 2; data not shown). Domain-specific mSourceTracker analysis, on 
272 the other hand, often revealed patterns remarkably distinct from the combined taxa set (Fig. 2, 3). 
273 The bacterial source origins typically mirrored the full libraries, likely because the bacteria were 
274 the most abundant in all the samples. However, the other domains could be unique. For instance, 
275 mSourceTracker analysis of just the identified viruses mainly identified freshwater as the 
276 primary contributor to the sink diversity; according to the virus data, freshwater contributed as 
277 much as 94% of the diversity in some samples (Fig. 3). Archaea-specific analysis typically 
278 identified both coastal marine and sand as more or less equal contributors, while the eukarotic 
279 suggested more even distribution among coastal marine, freshwater, sand, soil and even gut 
280 (22% in one sample). 
281

282 The fact that domain-specific mSourceTracker analysis resulted in different source proportion 
283 estimates has two important ramifications. First, it shows that mSourceTracker can be used to 
284 identify the environmental sources of a particular group of organisms. For instance, one may 
285 conclude that, for a given sample, 75% of the viruses present originated from freshwater, while 
286 half of the bacteria were marine in origin, and 28% of the Eukarya came from soil runoff. Such 
287 results provide novel, sample-specific insight into the movement and origins of the organisms in 
288 that environment, which could be especially useful in understanding the complexity of 
289 contamination patterns or dispersal among biomes. One could also easily imagine splitting not 
290 only by domain, but also by specific phylogenetic groups (e.g., methanogens or the 
291 proteobacteria) or even multiple independent datasets (e.g., untargeted chemical or metabolic 
292 datasets). This is similar in principle to the approach taken by previous research to study the 
293 origins of antibiotic resistance markers (Gou et al., 2018; Baral et al., 2018; Li, Yin & Zhang, 
294 2018). The identification of distinct origin sources for different taxonomic groups in the same 
295 <sink= samples is not without precedent in the literature. For example, a previous marker-gene 
296 study of restroom environments found that the fungi appeared to have radically different origins 
297 (plants and soils) than the bacteria from the same samples (human skin and gut) (Gibbons et al., 
298 2015; Fouquier, Schwartz & Kelley, 2016). Other studies have shown very different patterns of 
299 diversity and abundance among different 8omics datasets, indicating this is a rule rather than the 
300 exception (Bikel et al., 2015; Guirro et al., 2018; Cocolin et al., 2018). 
301

302 The second important ramification is that the diversity of environmental origins among the 
303 taxonomic domains indicates that particular taxonomic lineages may be better than others for 
304 tracking particular sources of contamination. For example, to study the input of freshwater into 
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305 the coastal marine environment the viruses may be superior to the bacteria, while eukaryotes 
306 may be better for tracking soil inputs. The Random Forest analysis identified a significant 
307 number of new taxa that were highly indicative of particular environments (Fig. 4). For every 
308 domain in every environment, we were able to identify certain features (taxa) that contributed 
309 significantly to the classification of the environment. In the future, such taxa could be used 
310 singly or in combination to detect particular types of contamination. This is the same principle 
311 used by culture-based source-tracking that tracks fecal contamination using strains of E. coli 
312 (Ravaliya et al., 2014). Recently, Stachler and Bibby (2014) proposed using sequences of 
313 crASSphage as a highly specific indicator of human fecal contamination (Stachler & Bibby, 
314 2014).
315

316 One important caveat of mSourceTracker method is the general challenge of identifying taxa 
317 from metagenomic datasets. It is well known that much of the sequences from metagenomic 
318 datasets are not currently identifiable because databases are incomplete. Unlike 16S, it is not 
319 possible to put all the sequences from a library into a phylogenetic context, so many of them 
320 remain unknown and not currently useful in mSourceTracker analysis. As databases grow, this 
321 problem should diminish. The other issue is one of identification itself. There are many methods 
322 of identifying reads from metagenomic libraries, both alignment and k-mer based, and 
323 sometimes they can give very different results for the same samples (Quince et al., 2017). We 
324 expect that this may have a profound effect in some cases, and future research should look at the 
325 importance identification algorithms and databases on mSourceTracker results. Finally, in order 
326 for mSourceTracker to be broadly applicable, it will be critical to have many more metagenomes 
327 from <pure= environmental datasets. Large environmental collections such as the Earth 
328 Microbiome Project make it easy to find 16S ribosomal RNA libraries for any given 
329 environment, and it is relatively cheap to create many libraries in any given study and the 
330 analysis is easy to perform on a laptop. As the costs of sequencing continues to decline and the 
331 computational power and number of available data sets increases, the mSourceTracker approach 
332 will become increasingly tractable and commonplace. 
333

334 Conclusions

335

336 In this study, we demonstrated three findings: (1) mSourceTracker is a straightforward and 
337 effective method for determining source proportions using shotgun metagenomic datasets; (2) 
338 Our chain convergence tests and visualizations allow researcher to identify when estimates do 
339 not converge, which mainly occurred when source datasets had poor taxonomic coverage; and 
340 (3) The purposeful domain-specific subdivision of metagenomic datasets has the potential to lend 
341 powerful new biological insights into the source and movement of microorganisms among 
342 environments. While our analyses demonstrated mSourceTracker9s utility and potential, the 
343 results are only as good as the input data allow (the <garbage in, garbage out= rule). All 
344 inferences based on metagenomics data are dependent on the extent and quality of existing 
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345 databases and the effectiveness on taxonomic identification approaches. Methods other than 
346 Kaiju and more extensive databases could certainly produce different results and hopefully 
347 reduce the proportion of unknowns in the estimates. We also note that some of our source sample 
348 sets of metagenomes were small; increasing the sample size, purity and number of source 
349 datasets could also have a significant impact on interpretations. Investigation of all these 
350 parameters is beyond the scope of this study, which is focused on mSourceTracker development 
351 and proof of principle. However, such factors should be taken into account in future studies.
352
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363 Figure Legends

364

365 Figure 1. Effects of increasing Markov chain length and number on estimating source 
366 proportions. (A) Comparison between ten and one-hundred draws for a single Markov 
367 chain. The same coastal marine sample was used to create both chains. (B) Convergence 
368 of five independent Markov chains for a single sample using either ten or one-hundred 
369 draws per chain. Chains represent the estimated proportions for a given <sink= from a 
370 single environment or <source=. (C) Absolute percent differences between the two 
371 Markov chains with the highest and lowest average proportions over all draws for each 
372 environment or <source=. The same coastal marine sample was used with five chains and 
373 either 10 or 100 draws. (D) Proportions per source for the same single sink sample after 
374 10 and 100 draws respectively.

375

376 Figure 2. Taxon-dependent source proportion estimates in a single metagenome sample. Graphs 
377 represent the estimated proportions from each <source= or environment for a single coastal 
378 marine <sink=. The middle pie chart <Meta= represents the estimated proportion contributed by 5 
379 potential source environments and unknown based on the entire metagenome. The other pie 
380 charts depict the estimated proportions based on the bacterial, viral, archaea and eukaryal 
381 members of the sample (see Methods). The number of chains was held at 5 and the number of 
382 draws were variable so as to keep the chain differences below 5%. 
383  

384

385 Figure 3. Taxon-dependent source proportion estimates for 14 different coastal marine 
386 samples. Metagenome data was separated into taxa groups (see Methods) and multiple 
387 coastal marine samples were designated as <sinks=. Heatmaps produced by 
388 SourceTracker represent the proportions from each of the source environments for sink 
389 samples. SourceTracker default number of chains was changed to 5, and number of draws 
390 were adjusted per taxa group so absolute values between any 2 Markov chains did not 
391 exceed 5%.

392

393 Figure 4. Random Forest analysis of each organismal group across 4 environments. 
394 Random Forest was used to determine which species were important in classifying 
395 samples as belonging to a certain environment. Each source was run against all other 
396 source classified as <other= and the data was randomly divided into testing and training 
397 subsets at approximately a 3:1 ratio. 500 estimators were used each time and the 10 most 
398 important features were graphed based on relative importance. 

399

400 Figure 5. Confusion matrix for organismal groups across 4 environments. Heat map of 
401 confusion matrices for Random Forest analysis for each domain. Data was randomly split 
402 into training and testing set at approximately a 3:1 and run using 500 estimators. Graphs 
403 display predicted source (x-axis) vs. the true source for (y-axis) for each sample in the 
404 testing data set. The magnitude of the color represents the number of samples tested for 
405 that condition.
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Figure 1
Eûects of increasing Markov chain length and number on estimating source proportions.

(A) Comparison between ten and one-hundred draws for a single Markov chain. The same
coastal marine sample was used to create both chains. (B) Convergence of ûve independent
Markov chains for a single sample using either ten or one-hundred draws per chain. Chains
represent the estimated proportions for a given <sink= from a single environment or
<source=. (C) Absolute percent diûerences between the two Markov chains with the highest
and lowest average proportions over all draws for each environment or <source=. The same
coastal marine sample was used with ûve chains and either 10 or 100 draws. (D) Proportions
per source for the same single sink sample after 10 and 100 draws respectively.
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Figure 2
Taxon-dependent source proportion estimates in a single metagenome sample.

Graphs represent the estimated proportions from each <source= or environment for a single
coastal marine <sink=. The middle pie chart <Meta= represents the estimated proportion
contributed by 5 potential source environments and unknown based on the entire
metagenome. The other pie charts depict the estimated proportions based on the bacterial,
viral, archaea and eukaryal members of the sample (see Methods). The number of chains
was held at 5 and the number of draws were variable so as to keep the chain diûerences
below 5%.
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Figure 3
Taxon-dependent source proportion estimates for 14 diûerent coastal marine samples.

Metagenome data was separated into taxa groups (see Methods) and multiple coastal marine
samples were designated as <sinks=. Heatmaps produced by SourceTracker represent the
proportions from each of the source environments for sink samples. SourceTracker default
number of chains was changed to 5, and number of draws were adjusted per taxa group so
absolute values between any 2 Markov chains did not exceed 5%.
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Figure 4
Random Forest analysis of each organismal group across 4 environments. Random
Forest was used to determine which species were important in classifying samples as
belonging to a certain environment.

Each source was run against all other source classiûed as <other= and the data was randomly
divided into testing and training subsets at approximately a 3:1 ratio. 500 estimators were
used each time and the 10 most important features were graphed based on relative
importance.
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Figure 5
Confusion matrix for organismal groups across 4 environments. Heat map of confusion
matrices for Random Forest analysis for each domain.

Data was randomly split into training and testing set at approximately a 3:1 and run using
500 estimators. Graphs display predicted source (x-axis) vs. the true source for (y-axis) for
each sample in the testing data set. The magnitude of the color represents the number of
samples tested for that condition.
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Table 1(on next page)

Random Forest results by taxonomic group and environment type.

The columns show the accuracy and out-of-bag error for predicting each environment type.
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Table 1. Random Forest results by taxonomic group and environment type.

 Environment Type  

Domain Gut Coastal Marine Freshwater Soil

Bacteria     

Accuracy 0.982 0.984 0.97 0.985

OOB error 0.022 0.026 0.052 0.0174

     

Archaea     

Accuracy 0.966 0.977 0.966 0.98

OOB error 0.0497 0.062 0.049 0.021

     

Eukaryota     

Accuracy 0.955 0.967 0.959 0.984

OOB error 0.047 0.062 0.066 0.034

     

Viruses     

Accuracy 0.964 0.927 0.96 0.965

OOB error 0.054 0.061 0.058 0.027
1

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27869v1 | CC BY 4.0 Open Access | rec: 23 Jul 2019, publ: 23 Jul 2019


