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Abstract 23 

Natural history collections (NHCs) are the foundation of historical baselines for assessing 24 

anthropogenic impacts on biodiversity. Along these lines, the online mobilization of 25 

specimens via digitization–the conversion of specimen data into accessible digital 26 

content–has greatly expanded the use of NHC collections across a diversity of 27 

disciplines. We broaden the current vision of digitization (Digitization 1.0)–whereby 28 

specimens are digitized within NHCs–to include new approaches that rely on digitized 29 

products rather than the physical specimen (Digitization 2.0). Digitization 2.0 builds upon 30 

the data, workflows, and infrastructure produced by Digitization 1.0 to create digital-only 31 

workflows that facilitate digitization, curation, and data linkages, thus returning value to 32 

physical specimens by creating new layers of annotation, empowering a global 33 

community, and developing automated approaches to advance biodiversity discovery and 34 

conservation. These efforts will transform large-scale biodiversity assessments to address 35 

fundamental questions including those pertaining to critical modern issues of global 36 

change.37 
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I. The relevance and importance of digitization 38 

Anthropogenic impacts, including urbanization, globalization, and climate change, are 39 

rapidly transforming our world. Despite our best efforts, however, quantifying the biotic 40 

impacts of human activity has been challenging, as evidenced by the difficulty of 41 

delimiting the onset of the Anthropocene (Lewis and Maslin 2015). Part of this 42 

uncertainty stems from a lack of historical data that track biotic change over time. 43 

However, natural history collections (NHCs), with their broad taxonomic, geographic, 44 

and temporal scope, offer a key solution to this impasse. In the past twenty years, there 45 

has been a dramatic increase in the use of NHCs for assessing a wide variety of scientific 46 

questions (Suarez and Tsutsui 2004, Pyke and Ehrlich 2010, Park and Potter 2015, 47 

Meineke et al. 2018, 2019). Indeed, they have emerged as one of the best resources for 48 

establishing biological baselines to understand the impacts of, for example, the origins of 49 

agriculture, the industrial revolution, the development of nuclear armaments, and more 50 

generally the influence and acceleration of anthropogenic change on biodiversity (Moritz 51 

et al. 2008, Johnson et al. 2011, Lister 2011, Funk 2018, Nelson and Ellis 2018).  52 

 53 

Most large NHCs provide specimen data to researchers and the public by mobilizing 54 

searchable collection databases online. We assert that these mobilized collections are 55 

among the most important advances in museum curation in the past century, significantly 56 

opening access to NHCs and greatly stimulating large-scale analyses that span novel 57 

academic and societal enterprises. These resources are connecting diverse scholarly 58 

domains, propelling a new generation of scientists forward, and removing financial, 59 

sociological, institutional, and academic obstacles preventing access to these materials 60 
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(Drew et al. 2017, Sweeney et al. 2018). In short, digitizing a specimen–translating 61 

metadata associated with a physical specimen object into flexible digital data formats–62 

increases the value of the physical specimen exponentially. 63 

 64 

Here, we present an ambitious, two-pronged vision for digitization, which we term 65 

Digitization 1.0 and Digitization 2.0. Digitization 1.0 represents the ongoing push to 66 

create digital images and related content directly from physical voucher specimens; 67 

Digitization 2.0, in contrast, relates exclusively to data gathering, tasks, or workflows 68 

derived from digitized products of Digitization 1.0 rather than from the physical 69 

specimens themselves (figure 1). In addition to the vast expansion and online aggregation 70 

of these mobilized collections to create a truly global digital NHC, Digitization 2.0 offers 71 

the promise of also shifting and growing the workforce and public who interface with 72 

these objects to accelerate the progress of digitization.  73 

 74 

II. Digitization 1.0: The Past, Present, and Future 75 

Digitization of NHCs began with the overarching goal of documenting specimen 76 

inventory and facilitating research by transcribing label information into centralized, 77 

searchable databases as described recently by Nelson and Ellis (2018). These efforts have 78 

given rise to Digitization 1.0, which has been widely embraced and continues to be 79 

infused with innovation. Digital representations generated through Digitization 1.0 80 

include specimen images and direct transcriptions of specimen metadata from 81 

handwritten or printed collection catalogs or labels, including for example details on 82 

coloration or measurements. As part of this effort, NHCs have generated millions of 83 
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digital representations of physical vouchers and have devised numerous technological 84 

innovations to facilitate efficient data generation, including conveyor belt and robotic 85 

imaging techniques for mass digitization of specimens (Tegelberg et al. 2014, Sweeney et 86 

al. 2018). More recent next generation technologies, including photogrammetry, laser-87 

scanning, and computed tomography, create far richer digital representations of 88 

specimens than can be visualized by eye or with standard microscopy (figure 2). Given 89 

that large portions of most NHCs still remain unavailable in digital format, the 90 

innovations and efforts within Digitization 1.0 will continue well into the future, likely 91 

for decades. In the subsections below, we outline Digitization 1.0 through the lens of 92 

digitization workflows, strategic prioritization, and solutions to impediments.  93 

 94 

Digitization workflows and linking data–The practice of digitization is broadly 95 

consistent among projects and organismal groups, in so much as each specimen is 96 

represented by textual metadata from labels or catalogs and typically digital two-97 

dimensional images, but increasingly also three-dimensional representations and audio or 98 

video recordings where relevant. There exists great variation in specimen size, storage 99 

conditions (e.g., fluid-preserved, microscope slides, dry storage), dimensionality (2D 100 

versus 3D representation), and detail associated with specimens, not to mention widely 101 

varying practices in specimen collection and curation across taxonomic domains and 102 

institutions. This heterogeneity of collections and institutional policies and priorities thus 103 

creates challenges to efficient mass imaging and gathering of metadata. However, at 104 

minimum, digitization workflows should attempt to integrate all available specimen 105 

metadata into digitization efforts and appropriately link these data to their associated 106 
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physical voucher specimens. Beyond traditional linkages, non-traditional metadata 107 

associated with the specimen include biotic (e.g., mass) and abiotic data (e.g., climate), 108 

media (e.g., video and audio recordings), community- and population-level metadata 109 

(e.g., abundance), species observations in the field, and genetic samples (i.e., the 110 

“extended specimen” sensu Webster 2017). Much of these digital data are served in part 111 

or in their entirety via online collection databases (e.g., Arctos, Specify, Symbiota, EMu) 112 

or in data aggregators (e.g., iDigBio, Global Biodiversity Information Facility–GBIF, 113 

Botanical Information and Ecology Network–BIEN). Linking voucher specimens to these 114 

new data layers generated post collection is important and has been facilitated by 115 

associating URLs, data accession numbers, digital object identifiers (DOI), or ARKs with 116 

specimen records in collection databases. In addition, trait data can be incorporated into 117 

specimen records using extensions to the Darwin Core Archives (Yost et al. 2018). For 118 

the next generation of collections, protocols are under development to expand the 119 

digitization workflow to the collecting event itself (Heberling and Issac 2018).  120 

 121 

Developing digitization priorities–Given the limited resources available to many NHCs, 122 

it is necessary to establish priorities for specimen digitization. Specimens at risk of 123 

degradation, such as rare or fragile fossils, and those representing rare or threatened 124 

species and habitats are candidates for high priority digitization. Further, efforts should 125 

focus on specimens with rich associated metadata from the collection event. A growing 126 

number of species are imperiled, and conservation biologists are increasingly reliant on 127 

NHCs for baseline data to understand species ranges and climatic tolerances for assessing 128 

future changes (Lister 2011). Distributing information for these rare or threatened taxa to 129 
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conservation biologists is increasingly critical to these species’ management and survival 130 

(MacDougall et al. 1998, Nualart et al. 2017). Finally, taxa representing a breadth of 131 

evolutionary history or unique adaptations are important for research on phenotypic 132 

evolution, community ecology, and biologically inspired design. We suggest that such 133 

specimens have high priority for digitization.  134 

 135 

Owing to the varying effort required by different digitization strategies (e.g., label data, 136 

images, 3D reconstructions), data types that serve the largest diversity of use cases should 137 

also be prioritized. For instance, key information including taxon name, collection 138 

locality, and date can be captured relatively efficiently and can facilitate assessments of 139 

species distributions through time. Rapidly expanding areas of research including 140 

phenology (e.g., Primack et al. 2004, Willis et al. 2017), large-scale taxonomic 141 

inventories (e.g., Cardoso et al. 2017), and morphometric investigations (e.g., Hedrick et 142 

al. 2015), rely on such label data and data from post-digitization enhancement (Sweeney 143 

et al. 2018). For example, in one of the first studies to demonstrate how historic 144 

specimens can be used to quantify the biotic effects of climate change, Primack et al. 145 

(2004) used flowering plant specimens collected between 1885 and 2003 in the greater 146 

Boston (USA) area to demonstrate that plants were flowering up to eight days earlier in 147 

recent years than in the early years of the 20th century. The utility of such diverse data 148 

(e.g., geographic location, flowering date, anatomical measurements) is important to a 149 

wide array of researchers and should be prioritized. Additionally, we feel it is best to only 150 

apply more complex, holistic digitization methods on a key subset of data-rich specimens 151 

as has been recently demonstrated in the openVertebrate (oVert) Thematic Collection 152 
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Network (Blackburn et al., NSF Abstract #1701714). Increasing the magnitude of the 153 

collection of media files (e.g., photogrammetry of bird skins, nuts, etc.) for this subset of 154 

data via new pipelines and technological advances will be critical to this effort. 155 

 156 

Past impediments and future solutions–Despite the success of Digitization 1.0, this 157 

initiative has identified three issues that must be addressed to maximize efficiency of 158 

information retention and distribution. First, museums are obligated to manage, store, and 159 

steward additional digital data associated with their physical collections. However, the 160 

act of digitization entails significant challenges since it requires sustainably curating both 161 

the physical objects and rapidly emerging digital datasets. This issue will necessitate the 162 

development of new tools, that centralized aggregators assume increasing responsibility, 163 

and will require increased funding in the near future (see Digitization 2.0 below).  164 

 165 

Second, there is concern that large aggregators aimed at connecting researchers with 166 

NHCs (e.g., GBIF, iDigBio) (Edwards 2004) remove NHCs from the attribution chain. 167 

NHCs are frequently funded on their research relevance, which is determined both from 168 

within and outside institutions. When researchers view specimen images or harvest 169 

metadata from aggregators, NHCs that contribute these data often receive little to no 170 

credit (Rouhan et al., 2017). A mechanism for referencing these source collections needs 171 

to be embedded in the publication process that requires that NHCs be acknowledged and 172 

notified when publications incorporate their data. A viable solution to this problem is to 173 

mint a digital object identifier (DOI) for a digitized specimen and establish a reporting 174 

mechanism for collections to be alerted when their specimens have been cited. 175 
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Automating this attribution pipeline as part of the digitization workflow better ensures 176 

that NHCs receive credit for stewarding both voucher specimens and also digitized data, 177 

which is likely to stimulate NHCs to embrace open-access policies for their data.  178 

 179 

Third, digitized data are inconsistently and redundantly spread across multiple databases 180 

at different scales. NHCs often have their own databases, but some data are additionally 181 

deposited in regional databases, taxon-specific databases, and national and international 182 

data aggregators. This data dispersion causes information to be input/archived 183 

redundantly such that each database has a variant of the post-digitization metadata, 184 

leading aggregators to archive either inconsistent or duplicated copies of the same 185 

primary data. This problem can be partially circumvented by more communication 186 

among data aggregators, as well as between NHCs and aggregators. Algorithms linking 187 

specimen numbers between aggregators could ensure that post-digitization enhancement 188 

metadata are transferred to all aggregators mentioning particular specimens by unique 189 

identifiers such as the specimen-based occurrenceID. This is done internally at iDigBio 190 

through the iDigBio Record API, which retains current and previous iterations of a 191 

specimen’s data.  192 

 193 

III. Digitization 2.0: charting a road map for the future  194 

Unlike Digitization 1.0, which directly utilizes the physical specimen, Digitization 2.0 195 

instead utilizes the digitized product from Digitization 1.0 for generating additional data 196 

and metadata (figure 1). Digitization 2.0 is powered by the online aggregation of these 197 

resources and enables digitization to assume new forms and engage vast new workforces. 198 
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As we outline below, Digitization 2.0 is already well underway and holds tremendous 199 

promise. It includes semi- or fully automated data recording from digitized specimens, 200 

which stimulates research and returns value to the physical specimen. Additionally, 201 

Digitization 2.0 entails a shift in the workforce engaged in collections science and 202 

stewardship. Finally, Digitization 2.0 leverages NHC resources to create trait databases, 203 

either from aggregating and better indexing existing metadata or by allowing researchers 204 

or citizen scientists to associate trait annotations with images served from NHC 205 

databases. 206 

 207 

Innovative tools for automating digitization: machine learning and neural networks–208 

Given the massive number of specimen images in digital databases with minimal data, an 209 

important first step is to better automate data transcription to augment these skeletal 210 

records. The enormity of this task is quickly becoming impossibly large for collections 211 

staff to manage without automation, especially considering that funding for NHCs has 212 

been decreasing (Thiers 2018). In recent years, machine learning applications utilizing 213 

convolutional neural networks have achieved stunning levels of performance in computer 214 

vision tasks including image detection and classification (Sudholt and Fink 2016). Neural 215 

networks have previously demonstrated promising results for handwriting recognition 216 

systems, which could easily be applied to automated label transcription. These forms of 217 

innovative technology, which have been applied to medical diagnoses, speech 218 

recognition, and driverless cars, are now permeating NHCs (Schuettpelz et al. 2017) and 219 

are likely to be enormously useful when trained on existing databases of handwriting 220 

samples (Krishnan et al. 2016), as well as those from transcribed labels generated through 221 
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Digitization 1.0. These models can be further trained using existing semantic field 222 

constraints to much more effectively parse specimen metadata into appropriate database 223 

fields. Beyond capturing essential minimal data records in an automated manner, neural 224 

networks have recently been implemented to accomplish far more sophisticated tasks 225 

than text transcription (Wilf et al. 2016, Schuettpelz et al. 2017, Funk 2018). Wilf et al. 226 

(2016), for example, used computer vision to classify fossil leaf images based on leaf 227 

shape and venation with high accuracy. This proved not only to be an efficient protocol 228 

for classifying images, but also discovered previously unidentified morphological 229 

landmarks potentially useful for species identification and for understanding important 230 

evolutionary and ecological innovations not previously documented. The community is 231 

now ready for deeper exploration of minimal metadata capture using semi- to total 232 

automation. 233 

 234 

Further, the declining number of taxonomists in the global workforce severely impacts 235 

our ability to address key questions concerning biodiversity in the face of global change 236 

(Hopkins and Freckleton 2002). Combining taxonomists’ expertise (past and present) 237 

with student and public training and increased automation will facilitate enhanced 238 

specimen curation, and greatly enable biodiversity discovery. Continued robust support 239 

for taxonomic research and training is essential. However, given the enormity of the task 240 

at hand, and the limited time for this effort, we believe that addressing many taxonomic 241 

problems of identification, particularly for well-known groups of organisms, could be 242 

greatly facilitated by automation, such as has been demonstrated through Kurator (Dou et 243 

al. 2012). Reasonably successful early efforts are underway to machine-learn and 244 
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automatically identify large sub-collections of insects (e.g., butterflies) (Schermer and 245 

Hogeweg 2018). Although simple taxonomic identification may seem rudimentary, it is 246 

the foundation of all biological research, and in many groups remains problematic. For 247 

example, it is estimated that more than 50% of tropical plant specimens in NHCs are 248 

incorrectly identified (Goodwin et al. 2015). Together with the training of more expert 249 

taxonomists and organismal biologists, the widespread use of neural networks to identify 250 

specimens and target groups that need attention would enhance collection utility for 251 

research, teaching, and management and further motivate the discovery and description 252 

of new species.  253 

 254 

Expansion of the digitization workforce–Expanding digitization to involve a global 255 

workforce is now possible and is a major advancement of Digitization 2.0 and is 256 

motivated by the increasingly global accessibility of NHCs. These new workforces can 257 

be developed to supplement existing NHC staff, especially to include enhanced 258 

digitization from the millions of images in databases that have limited associated 259 

metadata. One obvious group to engage in this effort are citizen scientists. NHCs 260 

associated with museums typically have departments devoted to public outreach, which 261 

can easily be tapped for aid, helping collections staff with the task of digitization while 262 

simultaneously providing the public with ownership and agency. Using citizen science in 263 

this manner has been fruitful in numerous contexts including the transcriptions of label 264 

data, georeferencing, and physical specimen annotations (Hill et al. 2012, Ballard et al. 265 

2017, Ellwood et al. 2015, 2017). For example, CrowdCurio–Thoreau’s Field Notes, an 266 

online crowdsourcing platform has successfully facilitated climate change studies from 267 
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thousands of herbarium specimens utilizing thousands of non-expert crowdsourcers 268 

(Willis et al. 2017). Quality control is always a concern in large-scale citizen science 269 

projects (Willis et al. 2017, Zhou et al. 2018) and thus an easy-to-use graphical user 270 

interface clearly demonstrating to the public how and what to digitize will be necessary 271 

(e.g., Notes for Nature), as has been accomplished in several research-based projects 272 

(Chang and Alfaro 2016, Cooney et al. 2017, Willis et al. 2017). Increasingly, such 273 

citizen science efforts are being supplemented by machine-based learning as well (Unger 274 

et al. 2016, Wilf et al. 2016, Schuettpelz et al. 2017). For instance, crowdsourced data can 275 

potentially provide reliable and rapid data for training and testing machine learning 276 

models, creating a positive feedback loop propelling digitization forward.  277 

 278 

Layers of trait annotations–Traits of organisms are fundamental for documenting 279 

biodiversity but also for understanding how organisms evolve and respond to changing 280 

environments. Building on investments in creating digital NHCs, there is now increasing 281 

demand for creating and associating new layers of trait data to these collections. For 282 

some taxa, these biological data are already captured in the digitized text of a specimen 283 

record (e.g., Darwin Core fields: “organismRemarks”). In mammals and birds, it is 284 

common to have measurements on the mass and length of both the whole specimen and 285 

parts of the specimen (e.g., testes length, wing length). The aggregation of traits from 286 

both the initial collecting event and new annotations will stimulate a wealth of questions 287 

and generate a better understanding of global biodiversity through the development of 288 

standardized trait vocabularies (Kissling et al. 2018). For example, recently developed 289 

data-processing tools for the data aggregator VertNet standardized more than 1.5 million 290 
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measurements for vertebrates using digital data from collections (Guralnick et al. 2016). 291 

Users can now search those specimen records by mass and length, as well as download 292 

harmonized trait data associated with individual specimens. The latter allows for new 293 

explorations of trait variation within and across species, including spatial and temporal 294 

patterns in traits associated with specimens that have collecting dates and georeferenced 295 

localities (Riemer et a. 2018). By expanding this framework to annotate traits to 296 

specimens and utilizing online platforms for even 3D representations of specimens, 297 

NHCs can facilitate the capture of not only simple traits, ranging from specimen length to 298 

the presence of a flower, but also more complex traits requiring more sophisticated 299 

representation (e.g., virtual automated dissection of the vertebrate nervous system). 300 

 301 

IV. Concluding thoughts 302 

Digitization facilitates the democratizing of collections-based research and is essential to 303 

establishing and evaluating biological baselines to assess the impacts of climate change, 304 

land use changes, species invasions, and the current mass extinction. It allows for the 305 

mining of specimen data in much the same way that we explore organismal genomes. 306 

The key to further developing Digitization 1.0 and establishing Digitization 2.0 lies in 307 

building upon what the research, funding, and policy communities have learned in the 308 

several decades since the initiation of this endeavor. Data-rich NHC specimens are useful 309 

and provide unique perspectives on the diversity and distribution of a given taxon. 310 

However, if a specimen is not searchable, it will likely not be found or studied despite its 311 

potential use. We are already witnessing the fruits of the synergy between Digitization 312 

1.0 and 2.0. This will no doubt expand dramatically in the coming decades to involve 313 
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new domains, new questions, and new audiences that are not yet realized (or even 314 

imagined). Only with creativity and improved techniques, including automated and semi-315 

automated methods, a better distributed digitization workload making use of new 316 

technologies and workforces, and conscientious attention to the attribution chain, will 317 

researchers be best able to track ongoing biodiversity change from all existing data. 318 

Moreover, even as new technologies and digitization techniques emerge, we will need to 319 

always return to physical specimens, in ways that are unimaginable now, to generate 320 

novel data to better understand our changing planet. Although we stress the importance of 321 

improved methods and practices for digitization, the active collection and continued 322 

curation of physical specimens by expert biologists remains the central pillar supporting 323 

advancements in evolutionary biology and conservation represented so importantly by 324 

NHCs. 325 

 326 

Box 1: Estimating the size and scale of a global digitization effort– Digitization 1.0 has 327 

resulted in the mobilization of millions of specimen records and has created the 328 

momentum for a massive, global digitization effort. To better establish target goals and 329 

evaluate the success of this effort (e.g., estimating the proportion of specimen records that 330 

have been digitized and mobilized online), obtaining accurate estimates of the number of 331 

specimens housed in NHCs is necessary. Extrapolations from digitized content indicate 332 

that roughly 2.5–3 billion specimens are housed in NHCs worldwide (O’Connell et al. 333 

2004, Krishnan et al. 2016). However, more robust assessments of global specimen 334 

numbers, including geographic and taxonomic distribution, are required to facilitate 335 

thoughtful assessments of collection bias to better target digitization priorities (Meyer et 336 
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al. 2016). Making robust size estimates are particularly relevant as vended solutions are 337 

utilized to achieve digitization milestones, including the mobilization of entire collections 338 

like those at the Muséum National D’Histoire Naturelle (France), Naturalis 339 

(Netherlands), and the Smithsonian Institution (US) (Rogers 2016, Le Bras et al. 2017). 340 

Along these lines, a test case example to illustrate such an effort on a smaller scale comes 341 

from the Harvard University Herbaria (HUH), which has been thought to contain 5.5 342 

million specimens. Targeted subsampling of the HUH vascular plant collection facilitated 343 

accurate estimates (with confidence intervals) of total specimen collection numbers and 344 

their geographic distribution (figure 3A). Once the total number of specimens in NHCs 345 

have been accurately quantified, it is necessary to establish the percentage of specimen 346 

collection records that have been digitally mobilized.  347 

 Because imaging and serving metadata-rich collection information online requires 348 

a large financial investment, as well as human labor, its impacts on research should be 349 

documented and acknowledged. The most powerful outcomes of digitization would be 350 

better characterized by relating these various forms of data usage to one another to 351 

explore how digitization increases specimen usage. Along these lines, data relevant to 352 

describing the scientific impact of physical specimens (pre-digitization), such as loans 353 

and museum visits, remain largely confined to physical collection logbooks, thus limiting 354 

assessment of the impact of Digitization 1.0 (figure 3B). Such efforts would allow us to 355 

begin to understand the ways that digitization stimulates increased visitation and use of 356 

the actual physical versus digital collection (figure 3C). As a community, we must be 357 

better prepared to track and assess these questions.  358 

 359 
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 513 

Figures. 514 

 515 

Figure 1. Digitization 1.0 and 2.0. Digitization 1.0 is the creation and online mobilization 516 

of digital content derived from physical specimens. This endeavor occurs locally within 517 

institutions, most commonly Natural History Museums. Digitization 2.0, in contrast, 518 

builds upon the digitized data, workflows, and infrastructure produced by Digitization 1.0 519 

to facilitate enhanced digitization, curation, and data linkages to address increasingly 520 

complex questions at a massive global scale not previously imagined. These efforts are 521 

stimulating a new work force and connecting diverse scholarly domains, propelling a new 522 

generation of scientists forward, and removing financial, sociological, institutional, and 523 

academic obstacles restricting access to these materials. Some areas of inquiry that will 524 

be greatly stimulated by both Digitization 1.0 and 2.0 are highlighted. 525 

 526 

Figure 2. An end-to-end pipeline example to highlight the value and complementarity of 527 

Digitization 1.0 and 2.0. The African pig-nosed frog (genus Hemisus) shown (A) was 528 

collected during recent field research in Angola. In addition to metadata from the 529 

collection event, a series of x-ray images (tomograms) were created using diffusible 530 
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iodine-based contrast-enhanced computed tomography (diceCT) directly from the 531 

voucher specimen. This product of Digitization 1.0 is shown in the black and white x-ray 532 

image (B). From these digital x-ray images, a 3D volume was created from the digital 533 

data generated during Digitization 1.0 from which students and scientists can digitally 534 

dissect and manipulate regions of interest representing the frog’s nervous (C), circulatory 535 

(D), and muscular (E) systems (Digitization 2.0).  536 

  537 

Figure 3. Estimating collection sizes and impact on research. (A) Size and geographical 538 

distribution of the vascular plant collection at the Harvard University Herbaria (HUH). 539 

To statistically estimate the size of this large collection, the total number of specimens in 540 

randomly subsampled cubbies were counted. These data were then used to model a 541 

probability distribution of the total number of specimens across the entire collection 542 

(Comoglio et al. 2013). Three hundred fifty cubbies were sampled and counted, 543 

establishing that the HUH has 3,701,695 vascular plants with a 95% confidence interval 544 

spanning 3,644,497 to 3,759,803. A similar approach was applied to further assess 545 

geographical distribution of the collection as well. (B) Loan use information for the 546 

Harvard Museum of Comparative Zoology ichthyology collection. Digitization greatly 547 

enhances the tracking of loan use history post 1980, until which point records are 548 

confined to physical logbooks. (C) Cumulative number of HUH specimen loans post 549 

1980. While the total number of physical specimen loans (red) have remained relatively 550 

constant in recent years, the number of digital specimen images loaned has grown 551 

substantially. 552 
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