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Background.The humid tropical forests of Central Africa inûuence weather worldwide and play a major
role in the global carbon cycle. However they are also an ecological anomaly, with evergreen forests
dominating the western equatorial region despite less than 2000mm total annual rainfall. Meteorological
data for Central Africa are notoriously sparse and incomplete and there are substantial issues with
satellite-derived data because of inability to ground-truth estimates and persistent cloudiness. Long-term
climate observations are urgently needed to verify regional climate and vegetation models, shed light on
the mechanisms that drive climatic variability and assess the viability of evergreen forests in equatorial
Africa under future climate scenarios.

Methods. We have the rare opportunity to analyse a 34-year dataset of rainfall and temperature (and
shorter periods of absolute humidity, wind speed, solar radiation and aerosol optical depth) from Lopé
National Park, a long-term ecological research site in western equatorial Africa. We used linear mixed
models and spectral analyses to assess seasonal and inter-annual variation, long-term trends and
oceanic inûuences on local weather patterns.

Results. Lopé9s weather is characterised by a light-deûcient, cool, long dry season. Long-term climatic
means have changed signiûcantly over the last three decades, with warming occurring at a rate of
0.23°C per decade (minimum daily temperature) and drying at a rate of 50mm per decade (total annual
rainfall). Inter-annual variability is highly inûuenced by sea surface temperatures of the major oceans. In
El Niño years Lopé experiences both higher temperatures and less rainfall with increased contrast
between wet and dry seasons. Lopé rainfall observations lend support for the role of the Atlantic cold
tongue in <dry= models of climate change in the region.

Conclusions. Dry season cloud in western equatorial Africa plays a key role in reducing evaporative
demand during seasonal drought and maintaining evergreen tropical forests despite relatively low annual
rainfall. In the context of a rapidly warming and drying climate, urgent research is needed into the
sensitivity of clouds to ocean temperatures and the viability of humid forests in this dry region should the
clouds disappear.
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24 Abstract

25 Background. The humid tropical forests of Central Africa influence weather worldwide and 

26 play a major role in the global carbon cycle. However they are also an ecological anomaly, with 

27 evergreen forests dominating the western equatorial region despite less than 2000mm total 

28 annual rainfall. Meteorological data for Central Africa are notoriously sparse and incomplete and 

29 there are substantial issues with satellite-derived data because of inability to ground-truth 

30 estimates and persistent cloudiness. Long-term climate observations are urgently needed to 

31 verify regional climate and vegetation models, shed light on the mechanisms that drive climatic 

32 variability and assess the viability of evergreen forests under future climate scenarios.

33 Methods. We have the rare opportunity to analyse a 34-year dataset of rainfall and temperature 

34 (and shorter periods of absolute humidity, wind speed, solar radiation and aerosol optical depth) 

35 from Lopé National Park, a long-term ecological research site in western equatorial Africa. We 

36 used linear mixed models and spectral analyses to assess seasonal and inter-annual variation, 

37 long-term trends and oceanic influences on local weather patterns.

38 Results. Lopé9s weather is characterised by a light-deficient, cool, long dry season. Long-term 

39 climatic means have changed significantly over the last three decades, with warming occurring at 

40 a rate of 0.23°C per decade (minimum daily temperature) and drying at a rate of 50mm per 

41 decade (total annual rainfall). Inter-annual variability is highly influenced by sea surface 

42 temperatures of the major oceans. In El Niño years Lopé experiences both higher temperatures 

43 and less rainfall with increased contrast between wet and dry seasons. Lopé rainfall observations 

44 lend support for the role of the Atlantic cold tongue in <dry= models of climate change for the 

45 region.

46 Conclusions. Dry season cloud in western equatorial Africa plays a key role in reducing 

47 evaporative demand during seasonal drought and maintaining evergreen tropical forests despite 

48 relatively low annual rainfall. In the context of a rapidly warming and drying climate, urgent 

49 research is needed into the sensitivity of clouds to ocean temperatures and the viability of humid 

50 forests in this dry region should the clouds disappear. 

51
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52 Introduction

53 The humid forests of Central Africa make up 30% of the world9s tropical forests (Malhi et al. 

54 2013), are a major carbon store (Lewis et al. 2013) and influence weather globally (Bonan 2008; 

55 Washington et al. 2013). Most African evergreen tropical forests are found in the western 

56 equatorial region where total annual rainfall is less than 2000mm rainfall (Philippon et al. 2019). 

57 Evergreen forests can be maintained in this relatively dry region due to reduced water demand 

58 during seasonal drought associated with extreme cloudiness (Philippon et al. 2019). Long-term 

59 changes to climate and climatic variability in the region (James et al. 2013) are likely to have far-

60 reaching impacts on the functioning of these evergreen tropical forests (Asefi-najafabady & 

61 Saatchi 2013; Zhou et al. 2014) with knock-on effects for the global carbon cycle (Mitchard 

62 2018) and local human livelihoods (Niang et al., 2014). 

63 However, evidence for changes in forest function linked to weather conditions in equatorial 

64 Africa is extremely rare, mainly due to missing long-term meteorological data. The number of 

65 rain gauge stations reporting data across Central Africa fell from a peak of more than 50 between 

66 1950 and 1980 to fewer than ten in 2010 (Washington et al. 2013). This low density of 

67 observations and poor understanding of local landscape and climatic processes (Nicholson & 

68 Grist 2003) limits the accuracy of gridded observational data products (Asefi-najafabady & 

69 Saatchi 2013; Suggitt et al. 2017). Uncertainty is particularly high for rainfall patterns, which 

70 unlike temperature, are poorly conserved over space (Habib et al. 2001; Kidd et al. 2017). 

71 Because of missing ground data, climate and ecological models rely heavily on satellites despite 

72 major issues with this data source also due to extreme cloudiness in the region and little 

73 opportunity for ground-truthing (Washington et al. 2013; Maidment et al. 2014; Wilson & Jetz 

74 2016; Dommo et al. 2018). Empirical climate observations are urgently needed to verify regional 

75 climate and vegetation models and shed light on the mechanisms that drive seasonal and long-

76 term climatic variability in tropical Africa (Guan et al. 2013; Abernethy et al. 2016). 

77 We have the rare opportunity to analyse a 34-year record of rainfall and temperature (and shorter 

78 periods of humidity, wind speed, solar radiation and aerosol optical depth) from a long-term 

79 ecological research site in western equatorial Africa. These local weather data have not 

80 contributed to the regional climate products available and are able to act as an independent 

81 control. In this paper we briefly review the published literature on drivers of weather variability 

82 and long-term climate trends in western equatorial Africa (~6°S-5°N, 8°-18°E, covering 
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83 Cameroon, Republic of Congo, Central African Republic, Democratic Republic of Congo, 

84 Equatorial Guinea and Gabon). We then use our ground data to analyse seasonal, inter-annual 

85 and long-term weather patterns in this data-poor region with particular focus on rainfall for 

86 which uncertainty in regional products is high.

87 Seasonality

88 The climate of equatorial Africa is characterised by a bimodal rainfall pattern. Two rainy seasons 

89 occur each year coinciding with the boreal spring and autumn when the sun passes directly over 

90 the equator (March-May and October-November). Just 3% total annual rainfall falls during the 

91 major dry season, which extends from June to August/September (Balas et al. 2007). The 

92 primary influence on equatorial rainfall has historically been understood to be the Inter Tropical 

93 Convergence Zone (ITCZ), a band of clouds and high precipitation that migrates northwards and 

94 southwards over the equator following the sun (Nicholson 2018 and Fig. 1). However recent 

95 developments show the ITCZ to be a poor explanation of seasonal rainfall in Africa, with ITCZ-

96 associated low-level convergence often found decoupled from the rain belt in western and central 

97 equatorial regions (Nicholson 2018). Improved mechanistic models of the seasonal evolution of 

98 atmospheric conditions in the region are urgently needed. 

99 In western equatorial Africa the rainy seasons coincide with bright conditions. Convection 

100 clouds develop into storms late in the day or night leaving mainly clear skies during the daytime 

101 (Gond et al. 2013). By contrast the long dry season is when light is least available due to 

102 persistent low-lying cloud cover throughout the day (Philippon et al. 2019).  The seasonal 

103 synchrony between light and moisture in western equatorial Africa is in contrast to the central 

104 Congo Basin and the neotropics where dry seasons tend to coincide with peak irradiance (Wright 

105 & Calderón 2018; Philippon et al. 2019). In western equatorial Africa the long dry season is also 

106 the coolest and windiest time of year (Munzimi et al. 2015; Tutin & Fernandez 1993; Preethi et 

107 al. 2015). 

108 Oceanic influences

109 Large-scale patterns in sea surface temperatures (SSTs) are known to influence weather 

110 conditions across the tropics (Camberlin et al. 2001; Fig. 1). The El Niño Southern Oscillation 

111 (ENSO) refers to the state of the atmosphere and surface temperatures of the tropical Pacific 

112 Ocean. ENSO has a relatively straightforward, instantaneous effect on temperature throughout 
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113 the African continent, with greater warming in El Niño years (Collins 2011). Central African 

114 rainfall is also strongly connected to SSTs (Otto et al. 2013), although interactions are complex 

115 and seasonally specific. In Table 1 we summarise six major studies of ocean influences on 

116 rainfall in western equatorial Africa (Todd & Washington 2004; Balas et al. 2007; Otto et al. 

117 2013; Preethi et al. 2015 ; Nicholson & Dezfuli 2013; Dezfuli & Nicholson 2013). The main 

118 agreements between these studies are that (1) rainfall is below average from February to August 

119 in El Niño years (Camberlin et al. 2001; Todd & Washington 2004; Balas et al. 2007; Preethi et 

120 al. 2015; Nicholson & Dezfuli 2013), (2) rainfall positively correlates with the temperature of the 

121 Indian Ocean in January and February (Balas et al. 2007; Preethi et al. 2015) and (3) warm SSTs 

122 in the tropical South Atlantic enhance rainfall from April-September (Camberlin et al. 2001; 

123 Balas et al. 2007; Otto et al. 2013; Nicholson & Dezfuli 2013). 

124 Long-term trends

125 There is high confidence in the evidence for warming over African land regions (Niang et al. 

126 2014). Satellite estimates for tropical Africa show an annual mean temperature increase of 0.15°c 

127 per decade from 1979-2010 (Collins 2011). A recent multi-model ensemble shows that mean 

128 temperature for the whole continent is likely to continue to increase more than the global average 

129 especially in the long dry season (James & Washington 2013). 

130 Tropical land areas globally have seen no overall change in precipitation over the last century, 

131 with a recent increase in precipitation (2003-2013) reversing a drying trend from the 1970s to the 

132 1990s (Hartmann et al. 2013). Rainfall patterns are poorly conserved spatially and conflicting 

133 trends are detected within the western equatorial region of Africa. A regionalised long-term 

134 dataset for Africa constructed from historical records and rain gauge observations shows a sharp 

135 reduction in rainfall in the Cameroon region from the late 1960s until the present and a 

136 contrasting wetting trend in the Congo / Gabon region from 1980s until the present (Nicholson et 

137 al. 2018). However a higher resolution analysis of the same dataset shows that within central 

138 Gabon there has been a drying trend from the 1970s until 2000 and also reveals that there is no 

139 data available for this area for the last two decades (Nicholson et al. 2018). Flow data for the 

140 river Ogooué 3 the largest river in western equatorial Africa - indicates that runoff in the region 

141 declined from the 1960s until 2010 and that the flood peak has moved from May to April (Mahe 

142 et al. 2013). Land-cover change has been minimal in the watershed during this period 
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143 (Abernethy et al. 2016) and so it is likely that reduced rainfall has been the biggest influence on 

144 flow reduction.

145 Predictions of future rainfall vary widely across the African continent with high uncertainty in 

146 the direction of change centrally due to the sparse network of observations and poor 

147 understanding of local climate forcing (James & Washington 2013). Model projections mostly 

148 show no change or a weak wet signal in the central Congo Basin, and a dry signal in the western 

149 region in scenarios where warming is greater than 2°C (James et al. 2013). Models that support a 

150 drying trend in western equatorial Africa show strong associations with Atlantic and Indian (but 

151 not Pacific) SSTs. The construction of these dry models suggests that reductions in rainfall in 

152 Gabon and surrounding countries are likely to be caused by a northward displacement of the 

153 equatorial rain belt associated with the Atlantic cold tongue (Fig. 1B) and an eastward shift in 

154 convection caused by contrasts between Indian and Atlantic SSTs (James et al. 2013). 

155

156 Humid evergreen forests currently dominate western equatorial Africa. Intense rainfall 

157 seasonality alongside a drying and warming climate would be expected to push this region 

158 towards drought-adapted deciduous ecosystems. However few meteorological data are available, 

159 especially in recent decades, to understand if the climatic trends described above are witnessed 

160 on the ground and how quickly are they progressing. Using our ground data from Lopé NP we 

161 ask: How fast is the region warming? Is the region drying and how quickly? And how do the 

162 oceans influence rainfall and temperature variability? Answers to these questions will be 

163 important to predict the viability of evergreen forest ecosystems under future climates.

164 Materials & Methods

165 Description of the study area and weather data recorded since 1984

166 The Station d9Études des Gorilles et Chimpanzées (SEGC) research station is located at the 

167 northern end of Lopé National Park, Gabon (-0.2N, 11.6E). The station sits in a tropical forest-

168 savanna matrix, at an elevation of 280m and within 10.5 km of the river Ogooué. Ecological 

169 research activities including weather, plant and animal observations have taken place 

170 continuously at SEGC from 1984 until the present (>300 publications; 1984-2018).

171 Weather data have been recorded at Lopé using various types of equipment at two locations: a 

172 savanna site (the research station; 11.605E, -0.201N) and a forest site (800m from the research 
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173 station and approximately 10m from the savanna/forest edge; 11.605E, -0.206N). From 1984 to 

174 the present, a manual rain gauge was placed at the savanna site (50cm above ground >5m from 

175 any tree or building) and used to record total daily rainfall at 8am each morning. There was a gap 

176 in data recording in 2013 and occasional missing days due to logistical constraints (e.g. 

177 availability of personnel). Since 1984 daily maximum and minimum temperatures and relative 

178 humidity were recorded using a manual thermometer and wet/dry bulb located at the forest site 

179 (1.5m aboveground under closed canopy), which was checked whenever field teams passed it or 

180 daily when logistics permitted. In 2002 all temperature recording at the forest site was 

181 transferred to continuous automatic units (ONSET HOBO® Data Loggers 

182 refhttps://www.onsetcomp.com/, these units also recorded relative humidity). At the same time 

183 temperature recording using the HOBO units also began in the savanna. Due to technical failures 

184 these units were replaced in 2006 with the original manual max/min thermometer in the forest 

185 and a digital max/min thermometer (Taylor 1441) in the savanna. These were in turn replaced by 

186 another type of automated unit (TinyTag Plus 2, Gemini Data Loggers 

187 https://www.geminidataloggers.com/data-loggers/tinytag-plus-2, some of which record both 

188 temperature and relative humidity). TinyTags were deployed in the forest from 2007 and in the 

189 savanna from 2008 and used until the present (with a gap at the forest site from mid-2015 to mid-

190 2016 and intermittent recording throughout 2017 partly due to termite infestation). Two weather 

191 stations were installed in the savanna (sited near the research station, on a rock 4m from the 

192 ground) and collected data between 2012 and 2016. A Davis VantagePro2 

193 (https://www.davisinstruments.com/solution/vantage-pro2/) was installed in January 2012 and 

194 recorded rainfall, temperature, relative humidity, pressure, wind speed and direction, UV index 

195 and solar radiation every 30 minutes for two years until the equipment was struck by lightning in 

196 January 2014. A SKYE MINIMET weather station (https://www.skyeinstruments.com/minimet-

197 automatic-weather-station/) was installed at the same location in 2013 and collected temperature, 

198 relative humidity, wind speed and direction and solar radiation (and was also programmed to 

199 collect rainfall although this never worked). The SKYE unit ran intermittently until 2016 when 

200 the equipment was also damaged by lightning: data records between January 2014 and 

201 November 2014 were also lost. Finally, a sun photometer was installed at the research station in 

202 April 2014 and used to record aerosol optical depth up to the present as part of the NASA 

203 Aerosol Robotic Network (Aeronet; https://aeronet.gsfc.nasa.gov/; Holben et al. 1998). 
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204 Despite sustained effort, the remote and challenging environment at Lopé has led to a patchy 

205 weather data record. This situation has been exacerbated since the introduction of automated 

206 loggers, due to unreliable performance combined with difficulties and time delays in replacing or 

207 repairing malfunctioning equipment and respecting annual calibration schedules with 

208 manufacturers based in Europe or the USA. New equipment was often introduced out of 

209 necessity when previous equipment failed, precluding the opportunity of collecting simultaneous 

210 data for standardisation. Such problems have been experienced at many other field stations 

211 across Africa (Maidment et al. 2017). It was therefore necessary to select and standardise the 

212 Lopé data to reduce systematic biases between recording equipment. We summarise the data 

213 selection we undertook below and provide further detail in the accompanying Supplemental 

214 Information (Article S1 and Code S1). All Lopé data can be downloaded from the University of 

215 Stirling9s DataSTORRE (http://hdl.handle.net/11667/133).

216 We constructed a long-term record of daily rainfall totals (1984-2018) by calibrating the two 

217 sources of data (rain gauge and weather station) using a simple linear model on simultaneous 

218 records and taking the mean value for days with multiple observations (12050 daily 

219 observations). Where possible we interpolated missing daily values (3% observations) using the 

220 ten-day running mean for the time series (resulting in 12419 daily observations), however 11 

221 months spread over three calendar years remained incomplete. We used interpolated daily data to 

222 calculate total monthly and annual rainfall for the months and years with complete data (397 

223 monthly observations and 31 years).

224 Temperature data were recorded using six different types of equipment across two sites 

225 (recorded in the forest from 1984 to 2018 and in the savanna from 2002 to 2018). We calculated 

226 mean daily maximum and minimum values at each site for each day in the time series with 

227 multiple observations and used this dataset to demonstrate temperature seasonality (7058 daily 

228 observations from the forest and 4878 daily observations from the savanna). To create a 

229 continuous time series for periodicity analyses we calculated mean monthly maximum and 

230 minimum daily temperatures for each month in the time series (excluding months with fewer 

231 than five observations) and filled gaps using the mean value for the corresponding calendar 

232 month from the whole time series (408 monthly observations from the forest site and 192 

233 monthly observations from the savanna site). 
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234 Minimum daily temperature is recorded during the night and thus avoids errors associated with 

235 direct solar radiation (which we found to vary between our equipment, Article S1). We therefore 

236 chose to use minimum daily temperature only to assess trends and inter-annual variation. We 

237 constructed a long-term daily record combining minimum daily temperature data from both sites 

238 (8217 daily observations). We summarized this data to a monthly mean time series (371 monthly 

239 observations with 36 months excluded).

240 Finally we used shorter (and/or patchier) periods of data for relative humidity (2002-2018), solar 

241 radiation (2012-2016), wind speed (2012-2016) and aerosol optical depth (2014-2017) to assess 

242 seasonality and periodicity for these climate variables. We used night-time relative humidity 

243 records (6pm-6am) to avoid errors associated with direct solar radiation and converted to 

244 absolute humidity (g/m3) using simultaneous temperature records within the R package humidity 

245 (Cai 2008). We extracted aerosol optical depth data at wavelengths relevant for photosynthetic 

246 activity (440, 500 and 675nm).

247 Gridded regional temperature datasets

248 Because of missing data and lack of simultaneous recording between temperature equipment at 

249 Lopé we also downloaded two widely used gridded regional data products with which to 

250 compare the Lopé data: daily minimum air temperature from the Gridded Berkeley Earth Surface 

251 Temperature Anomaly Field (1° resolution; Rohde et al. 2013) and monthly mean daily 

252 minimum temperature from the Climate Research Unit9s Time-Series v4.01 of high-resolution 

253 gridded data (CRU TS4.01; 0.5° resolution; University of East Anglia Climatic Research Unit et 

254 al. 2017; Harris et al. 2014). Both were downloaded from http://climexp.knmi.nl/start.cgi for the 

255 grid-cell overlapping the SEGC location (0.2N, 11.6E).

256 Ocean Sea Surface Temperatures (SSTs)

257 We downloaded data for four oceanic SSTs from commonly used data sources: the Multivariate 

258 ENSO Index (MEI; Wolter & Timlin 1993; Wolter & Timlin 1998) sourced from the NOAA 

259 website (https://www.esrl.noaa.gov/psd/enso/mei/index.html), the Indian Ocean Dipole (IOD) 

260 Dipole Mode Index (Saji & Yamagata 2003) sourced from the NOAA website 

261 (https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/DMI/) and SST anomalies for the tropical 

262 north Atlantic (NATL, 5°320°N, 60°330°W) and the south equatorial Atlantic (SATL ,0°320°S, 

263 30°W310°E) sourced from the NOAA National Weather Service Climate Prediction Center 
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264 (http://www.cpc.ncep.noaa.gov/data/indices/). We rescaled all four SST indices by subtracting 

265 the mean and dividing by one standard deviation to allow direct comparison of modeled effect 

266 sizes. Positive values for MEI indicate El Niño conditions; positive values for NATL and SATL 

267 indicate warm SSTs in those regions while positive values for IOD indicate cool SSTs in South 

268 Eastern equatorial Indian Ocean and warm SSTs in the Western equatorial Indian Ocean.

269 Analyses

270 Seasonality

271 To describe the seasonality of each weather variable, we used empirical daily data to calculate 

272 the mean value for each day of the calendar year (DOY), the ten-day running mean of DOY and 

273 the mean for each calendar month. This allowed us to summarise the data while retaining fine-

274 scale variation where available. To assess periodicity for each variable we used spectral analyses. 

275 First we created standardised time series by calculating the mean value for each month in the 

276 record, filling missing months using the mean value for the corresponding calendar month from 

277 the whole time series and standardizing by subtracting the mean and dividing by its standard 

278 deviation. We then computed the Fourier transform for each time series and inspected the spectra 

279 for peaks that represent strong regular cycles in the data (Bush et al. 2017).

280 Long-term trends

281 We assessed whether rainfall and minimum temperature have changed linearly over the 

282 observation period (1984-2018) within a linear regression framework. We fitted a generalized 

283 linear model (GLM, family = poisson) for total annual rainfall and a linear mixed model (LMM) 

284 for minimum daily temperature, accounting for both the distribution and hierarchical structure of 

285 the response data. To represent long-term change, we fitted models with Year (continuous, 

286 rescaled) as the predictor and compared these to intercept-only models, representing no long-

287 term change, using AIC values. In all model comparisons we preferred simple models (few 

288 parameters) with lowest AIC (significantly different if delta AIC >2). We repeated the same 

289 procedure using LMMs for gridded data for Lopé from the daily Berkeley dataset and the 

290 monthly CRU dataset.

291 Next we investigated whether trends in rainfall and minimum temperature varied seasonally. 

292 Various seasonal definitions are used throughout the tropics, usually related to the annual rainfall 

293 cycle. We defined our seasons according to Lopé rainfall climatology where the long dry season 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27848v1 | CC BY 4.0 Open Access | rec: 10 Jul 2019, publ: 10 Jul 2019



294 extends into September, i.e. October-November (ON, the short rainy season), December-

295 February (DJF, the short dry season), March-May (MAM, the long rainy season) and June-

296 September (JJAS, the long dry season; Fig. 2A). We used daily rainfall and daily minimum 

297 temperature as response variables and fitted initial models (generalized linear mixed model, 

298 GLMM, for rainfall and LMM for temperature) including Year (continuous, rescaled), Season 

299 (factor with four levels as above) and their interaction as predictors to represent long-term 

300 change varying by season. We fitted subsequent models without the interaction term to represent 

301 long-term change not varying by season and compared the models using AIC values to test if the 

302 interaction improved the model. We modified the best models by temporarily removing the 

303 global intercept to estimate the magnitude of the trend for each season rather than comparing to 

304 the global intercept. 

305 To account for the hierarchical structure of the data and to avoid pseudoreplication we included 

306 Year and DOY as random intercepts for all mixed models with daily response data (Lopé and 

307 Berkely minimum daily temperature Lopé daily rainfall) and Year and Month as random 

308 intercepts in the mixed model with monthly response data (CRU mean monthly minimum daily 

309 temperature). Inspection of the autocorrelation functions for total annual rainfall and the median 

310 autocorrelation functions for the daily and monthly temperature and rainfall datasets 

311 (autocorrelation calculated for each DOY or Month) showed no significant temporal 

312 autocorrelation. All models were fitted using the R package lme4 (Bates et al. 2015) while 

313 autocorrelation functions for mixed models were calculated using the R package itsadug (van Rij 

314 2017).

315 Periodicity over time

316 We used wavelet analyses to assess if and how periodicity varied over time for rainfall and 

317 temperature, explicitly taking account of the circular nature of the data (Adamowski et al. 2009). 

318 We computed the wavelet transform for the standardised monthly timeseries for each variable 

319 using the  function wt from the R package biwavelet (Gouhier et al. 2018) and plotted the power 

320 (higher power denotes greater fidelity to a certain cycle), significance (a cycle is significant if 

321 >0.95, X2 test) and cone of influence (denoting the unreliable region at the beginning and end of 

322 the time series due to edge effects). We then extracted the power of the biannual, annual and 

323 multiannual (mean of the 2-4 year periods) components to assess how these dominant cycles 
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324 varied over time. We constrained the upper limit of the multiannual component to four years 

325 because lower frequency cycles were heavily influenced by edge effects.

326 Oceanic influences

327 We tested the seasonal influence of oceanic SSTs for the three major oceans hypothesized to 

328 influence weather in the Gabon region (Pacific: MEI, Indian Ocean: IOD and Atlantic Ocean: 

329 NATL and SATL) within a linear regression framework (GLMMs, family = poisson, for rainfall 

330 and LMMs for temperature). Using a monthly time series for each weather variable as the 

331 response variable, we fitted an initial model including each Oceanic Index (MEI, NATL, SATL 

332 and IOD), Season and the interactions between each Index and Season as predictor variables. For 

333 those weather variables that had previously shown to be changing linearly over time, we 

334 included Year (continuous, rescaled) and its interaction with Season as predictors. We modified 

335 these initial models by removing terms, starting with the interactions between each Oceanic 

336 Index and Season and ending with the Oceanic Index main effects, comparing models using AIC. 

337 As before, we refitted the best model without the global intercept to estimate the magnitude of 

338 the effect in each season rather than comparing each season effect to the global intercept. All 

339 models included Year and Month as random intercepts to account for pseudoreplication.

340

341 R code to accompany all analyses described above is made available in Supplemental 

342 Information (Code S1).

343 Results

344 Seasonality

345 Mean total annual rainfall at Lopé from 1984-2018 was 1466mm + 201 sd. Rainfall in this period 

346 followed a biannual cycle (Fig. S1) with broad peaks in the rainy seasons (MAM and ON) when 

347 mean daily rainfall was always greater than 5mm (Fig. 2A). The long dry season (JJAS) was 

348 very consistent, with a 90-day period (mid-June to mid-September) in which the ten-day running 

349 mean was never greater than 1mm (Fig. 2A). The short dry season (DJF) by contrast was much 

350 less dry (ten-day running mean greater than 1mm) and more variable between years (Fig. 2A).

351 Mean daily maximum and minimum temperatures at Lopé were 28.1°C + 2.2 sd and 21.9°C  + 

352 1.1 sd respectively at the forest site (1984-2018) and 31.6°C + 2.9 sd and 22.0°C + 1.2 sd at the 
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353 savanna site (2002-2018). Daily temperature range was greater in the savanna than under the 

354 forest canopy (Fig. 2C and D). Maximum daily temperature in the forest showed strong annual 

355 and bi-annual cycles while in the savanna only the annual cycle appeared dominant (Fig. S1). 

356 The difference between the two sites occurred during the short dry season when temperatures 

357 were maintained in the savanna at similar levels to the rainy seasons (ten-day running mean 

358 always greater than 31.7°c from October to May in the savanna; Fig. 2C). In the forest, the 

359 highest peaks in maximum daily temperature occurred in April and September (mean monthly 

360 maximum daily temperatures were 29.5°c and 28.6°c respectively; Fig. 2D). Annual cycles 

361 dominated the minimum daily temperature record for both the forest and the savanna (Fig. S1). 

362 Minimum daily temperatures were relatively constant from September to June (~22.5°c) 

363 followed by a cool period during the long dry season reaching an annual trough in July (mean 

364 monthly minimum daily temperature is 20.6°c in both the savanna and forest; Fig. 2C and D).

365 The forest was more humid than the savanna throughout the year (mean absolute humidity is 

366 21.40 g/m3 and 20.35 g/m3 respectively; Fig. 2E and F). Humidity follows the same annual cycle 

367 in both locations (Fig. S1), dropping during the long dry season to reach a minima in August and 

368 increasing throughout the short rains (ON) to reach a plateau from January to May (Fig. 2E and 

369 F).

370 Both surface solar radiation and wind speed were dominated by annual cycles at Lopé (Fig. S1), 

371 with the long dry season coinciding with low irradiance (mean monthly solar radiation for July = 

372 129.3 W/m2; Fig. 2G) and elevated wind speeds (mean monthly wind speeds for August and 

373 September are 1.3 m/s and 1.4m/s respectively; Fig. 2B). Aerosol optical depth cycled twice 

374 yearly (Fig. S1), elevated during the dry seasons and suppressed during the rainy seasons (Fig. 

375 2H). In contrast to the solar radiation cycle, which reached its minima during the long dry season 

376 (JJAS), the strongest peak in aerosol optical depth occurred in the short dry season (mean 

377 monthly aerosol optical depth at 500nm for February = 0.97). Aerosol optical depth at 440 and 

378 675nm wavelengths is similar to that at 500nm (Fig. S2).

379 Long-term trends

380 Total annual rainfall decreased by 50mm per decade, a change of -3.4% relative to mean annual 

381 rainfall for the time period (GLM, family = poisson, Estimate = -0.034 SE= 0.005, Z= -6.91, 

382 95% Confidence Interval = (-0.044, -0.024); Table 2 and Fig. 3A). However the slope of the 

383 decline was seasonally dependent (Tables 3 and 4) with no change in daily rainfall in DJF and 
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384 ON and most rapid decline in JJAS (-0.26 mm per day per decade, equating to 23.6% of mean 

385 JJAS daily rainfall) followed by MAM (-0.19 mm per day per decade, equating to 3.1% of mean 

386 MAM rainfall).

387 Minimum daily temperature at Lopé increased at a rate of 0.23°c per decade, equivalent to 1.1% 

388 relative to mean minimum temperature for the time period (LMM, Estimate = 0.23; SE = 0.05; T 

389 = 5.2; 95% Confidence Interval = (0.14, 0.31); Table 2 and Fig. 3B). The rate of warming also 

390 varied by season (Tables 3 and 4) with minimum temperature increasing most quickly in ON and 

391 DJF (0.30°c and 0.29°c per decade respectively) and most slowly in JJAS (0.16°c per decade; 

392 Tables 2B and 3B)). 

393 Berkeley minimum daily temperature for the interpolated Lopé grid square (1° resolution) 

394 increased at a rate of 0.16°c per decade (LMM, Estimate = 0.34, SE = 0.09, T = 3.9, 95% 

395 Confidence Interval = (0.17, 0.51) while the CRU interpolated record (0.5° resolution) increased 

396 by 0.19°c per decade (LMM, Estimate = 0.63 SE = 0.12, T = 5.4, 95% Confidence Interval = 

397 (0.40, 0.86)). 

398 Periodicity over time

399 Wavelet analyses gave further indication of the nature of these changes. The dominant six-month 

400 cycle for rainfall was, on average, four times as powerful as the annual component and 66 times 

401 as powerful as the multi-annual component and remained significant for most of the time period 

402 (Fig. 3C). However the biannual cycle did lose power on three occasions (1996-97, 2004 and 

403 2006; Fig. 3C). Over time, the biannual cycle in rainfall appeared to be losing power while the 

404 annual cycle was getting stronger (Fig. 3E).

405 The annual cycle for minimum temperature was, on average, three times as powerful as the 

406 biannual component and 23 times as powerful as the multi-annual component (Fig. 3F) and 

407 remained dominant throughout most of the time period with patches of low power at the end of 

408 the 1980s and between 2007 and 2010 (Fig. 3D). There were patches of high power in the 

409 multiannual component around 200. Both annual and semiannual components may be increasing 

410 in strength over time (Fig. 3F).

411 Oceanic influences

412 Rainfall was significantly correlated with SSTs of all three oceans while minimum temperature 

413 was significantly associated with the Pacific Ocean only (Table 5). The best model for rainfall 
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414 incorporated all oceanic indices and each of their interactions with Season (Table 6 and Fig. 4A). 

415 El Niño conditions reduced rainfall in the months between June and February and increased 

416 rainfall in MAM (Fig. 4B). The El Niño effect was strongest in DJF and ON where a 1-point 

417 decrease in the ENSO index resulted in a predicted reduction of 32mm and 41mm rainfall per 

418 month respectively. By contrast in MAM a 1-point increase in the ENSO index led to a predicted 

419 increase of 6mm rainfall per month.

420 Warm North and South Atlantic SSTs coincided with greater than average rainfall in all seasons 

421 (all significantly different from zero apart from the effect of NATL in MAM; Fig. 4D and E). 

422 The South Atlantic had a greater impact on Lopé rainfall than the North Atlantic (size of the 

423 estimates; Table 6) and was especially strong in the months from March to September (Table 6 

424 and Fig. 4D and E); A 1°C increase in the South Atlantic SST anomaly increased predicted 

425 monthly rainfall in MAM by 82mm and in JJAS by 17mm. Positive IOD modes coincided with 

426 enhanced rainfall in all seasons but was strongest (relative to the seasonal average) in JJAS 

427 (Table 6 and Fig. 4F) where a 1-point increase in the IOD resulted in an increase of 11mm to 

428 monthly predicted rainfall.

429 The best model for minimum daily temperature retained MEI (but not its interaction with season) 

430 as the only ocean influence on temperature (Tables 5 and 7 and Fig. 4A). El Niño conditions 

431 significantly increased minimum daily temperature in all seasons at Lopé (Fig. 4C) with a 1-

432 point increase in the ENSO index resulting in a 0.13°c increase in mean annual minimum daily 

433 temperature. 

434 There were weak positive correlations between IOD and MEI, IOD and NATL and between 

435 NATL and SATL (all <0.27; Fig. S3 and Fig. S4).

436 Discussion

437 Our results

438 Lopé weather has changed significantly over the last three decades, warming at a rate of 0.23°c 

439 per decade (minimum daily temperature) and drying at a rate of 50mm per decade (total annual 

440 rainfall). Both trends are seasonally dependent; significant warming occurred in all seasons, but 

441 was most rapid from October to February. Rainfall declined significantly between March and 

442 September, incorporating both the long rainy season and the long dry season. The drying trend at 

443 Lopé supports observations of reduced Ogooué river flow from March to September (Mahe et al. 
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444 2013) and precipitation declines evident from gridded gauge-data for the Gabon/Cameroon 

445 region (-1% total annual rainfall, 1968-1998; Malhi & Wright 2004). However, the Lopé total 

446 annual rainfall decline of -3.4% per decade exceeds the trend estimated from the regional gauge-

447 data. While the strength of the biannual cycle in rainfall appears to be declining at Lopé along 

448 with the overall long-term trend, the annual component is getting more powerful. Declines in 

449 rainfall in the long dry season (June-September) but not the short dry season (December-

450 February) are likely to be contributing to an increased contrast between the two dry seasons and 

451 enhancing an annual rainfall cycle.

452 The warming trend recorded at Lopé is greater than that estimated for the location over the same 

453 time period using the Berkeley and CRU gridded datasets (+0.16°C and +0.19°C respectively) 

454 and that identified using satellite data for mean annual temperature for all tropical Africa (0.15°c 

455 , 1979-2010; Collins 2011). However it is lower than the change estimated from gridded 

456 observational data (CRU) for mean annual temperature specifically for African tropical forests 

457 (+0.29°c per decade, 1976-1998; Malhi & Wright 2004). This latter analysis showed African 

458 tropical forests to be warming faster than those in both America and Asia (0.26 and 0.22°c per 

459 decade, respectively). While there remain issues with the Lopé temperature data record (lack of 

460 simultaneous recording to calibrate data recorded using different equipment), there is good 

461 evidence from supporting datasets and the literature that the warming trend observed at the site 

462 since 1984 is real. The slower warming trend in the already cool, long dry season is likely to 

463 account for the apparent increase in the power of the annual cycle for Lopé minimum 

464 temperature. 

465 In addition to these directional trends in climatological averages, we found that interannual 

466 weather variability at our site is highly influenced by global weather patterns. Our analyses show 

467 that rainfall at Lopé is linked to the SST patterns of all three oceans while temperature is 

468 associated with the Pacific only. The SSTs of the North and South tropical Atlantic positively 

469 influence Lopé rainfall in all seasons with the influence being especially strong in the southern 

470 equatorial Atlantic from March to September. The association between Atlantic SSTs and 

471 rainfall is supported by other studies; Camberlin et al. (2001) found the Atlantic dipole (cool 

472 temperatures in the North Atlantic and warm temperatures in the South Tropical Atlantic) to be 

473 associated with higher than average rainfall in March-May, while Balas et al. (2007) found 

474 positive temperature anomalies in the southern equatorial Atlantic (especially the Benguela 
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475 coast) to enhance rainfall in the long dry season. In another study, warm southern Atlantic 

476 anomalies were shown to correlate positively with rainfall in both dry seasons (Otto et al. 2013). 

477 South tropical Atlantic SSTs and circulation patterns have been an important influence on Congo 

478 Basin precipitation for the past 20,000 years (Schefuss et al. 2005).

479 Lopé rainfall is positively correlated with ENSO from March to May and negatively correlated 

480 from June to February, influencing the rainfall contrast between seasons. In La Niña years, 

481 rainfall is above average in the short dry season (December-February), making it more similar to 

482 the March-May rainy season (where rainfall is reduced under the same conditions). In El Niño 

483 years, rainfall is below average from December to February increasing the contrast between the 

484 short dry season and the rainy seasons, which are also more similar to each other at these times 

485 (Fig. 4B). While these findings support the conclusion that ENSO influences rainfall in the 

486 region, there are disagreements between our study and others. Among the major studies 

487 summarized in Table 1 negative associations were shown between ENSO and western equatorial 

488 African rainfall in all seasons. While we observed reduced rainfall at Lopé in El Niño years from 

489 June to February, we found a positive influence of ENSO on rainfall in March-May. Finally, we 

490 showed that positive dipole modes for the Indian Ocean (above average SSTs along the east 

491 African coast) are associated with increased rainfall in all seasons at Lopé. Published data show 

492 contrasting results, with reduced rainfall associated with positive IOD modes in both dry and 

493 rainy seasons (Dezfuli & Nicholson 2013; Nicholson & Dezfuli 2013; Otto et al. 2013). Overall, 

494 our work supports the idea that the drivers of rainfall variability in western equatorial Africa are 

495 highly complex, with strong local and seasonal forcing from the major oceans. Land topography 

496 (e.g. the highlands of Gabon, Cameroon and eastern Africa) is also likely to be a major influence 

497 on highly localised expressions of rainfall and rainfall variability in the region (Balas et al. 2007; 

498 Dezfuli et al. 2015).

499 Model projections of future rainfall in western equatorial Africa cover a broad spectrum and as a 

500 result, averaged model trends are close to zero. Those models that predict drying in the region do 

501 so due to a northward shift of the rainbelt, related to cool SSTs in the Gulf of Guinea in in all 

502 seasons, but most markedly in March-May (the Atlantic cold tongue; James et al. 2013). We 

503 found strong reductions in rainfall in these months associated with a cool southern equatorial 

504 Atlantic (0°- 20°S) and thus our data provide some support for the mechanisms behind these 

505 <dry= models.
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506 We found that El Niño conditions are associated with above average minimum temperatures at 

507 Lopé from December to May; a result supported by a continent-wide study showing increased 

508 warming in El Niño years throughout Africa (Collins 2011). As the long-term trend in minimum 

509 temperature was retained alongside ENSO in our final model, it is likely that the El Niño effect is 

510 in addition to, and not the main influence on, long-term warming in the region (as in Collins 

511 2011). The Atlantic and Indian Oceans had no significant effects on temperature at Lopé once 

512 the general warming trend was accounted for in our model, meaning that while both Lopé and 

513 the Atlantic oceans are warming, we find no evidence that one causes the other above and 

514 beyond the established global trend. The strong association between ENSO and Lopé minimum 

515 temperature is likely to account for the periodicity evident in the wavelet transform at ENSO 

516 scales (two to eight-year window).

517 Data quality and availability

518 One of the major issues with climate analyses in central Africa is the already limited and 

519 declining amount of publicly available data from weather stations in the region: The nearest 

520 weather stations to Lopé listed on the Global Historical Climatology Network (GCHN) Daily 

521 Database (Menne et al. 2012) are between 136 and 185km away and there are no public data 

522 available since 1980. The World Meteorological Organisation has a minimum recommended 

523 density of weather stations eight times higher than the modern density of weather stations in 

524 Africa (Collins 2011). This lack of data has a direct impact on the quality of gridded climate data 

525 products (Suggitt et al. 2017) and leads to an inability to calculate daily climatic indices for the 

526 extremes (Niang et al. 2014). Gabon is also one of the cloudiest places on earth 

527 (http://www.acgeospatial.co.uk/the-cloudiest-place/) which leads to large uncertainties in 

528 satellite estimates, with some satellite algorithms overestimating rainfall in the region by at least 

529 a factor of two (Balas et al. 2007). Finally, poor correlation between Central African rainfall and 

530 neighboring regions, as well as variability between individual stations, suggests much local 

531 influence and further confounds the challenges of sparse data (Balas et al. 2007).

532 The importance of maintaining long-term study sites and improving the quality and type of 

533 weather measurements in the region has been known for some time (Clark 2007). However, the 

534 region is remote and there are many financial, logistical and political challenges to face when 

535 servicing field stations. One such issue is that western equatorial Afria has the highest frequency 

536 of lightning strike in the world (Balas et al. 2007) leading to difficulties and great expense 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27848v1 | CC BY 4.0 Open Access | rec: 10 Jul 2019, publ: 10 Jul 2019



537 maintaining equipment. Lightning damage is an issue we regularly confront at Lopé and has led 

538 to major gaps in our data record.  While automatic continuous measurements can provide vast 

539 amounts of detailed data relevant for ecological studies they are also inherently more susceptible 

540 to technical failures that need expert fixes. In our experience, data gaps are more likely to go 

541 unnoticed with automatic data collection and so while we welcome new automatic methods, we 

542 recommend maintaining long-term manual records alongside for consistency. 

543 Conclusions

544 The long-term Lopé weather record has not previously been made public and is of high value in 

545 such a data poor region. Our results support regional analyses of climatic seasonality, long-term 

546 warming and the influences of the oceans on temperature and rainfall variability. However there 

547 are some surprises; warming has occurred more rapidly than the regional products suggest and 

548 while there remains much uncertainty as to the direction of precipitation change in the wider 

549 region, reduced rainfall over the last three decades at Lopé is in agreement with drying trends 

550 evident from less recent observational data for western equatorial Africa. The influence of the 

551 Atlantic cold tongue on rainfall at Lopé lends support to the mechanisms behind <dry= models 

552 for future rainfall in the region. 

553 Our analysis further serves to emphasise the ecological importance of the long dry season in 

554 western equatorial Africa; three-four months of dry (almost no rainfall for 90 consecutive days), 

555 cool (mean maximum daily temperature is 2.5°C lower in July compared to April) and windy 

556 conditions with low humidity and limited light availability. Such a defined season poses specific 

557 challenges to the biota and is likely to act as a temporal marker for ecological events, similar to a 

558 winter event in temperate regions. The long dry season is likely to be an unfavourable period for 

559 photosynthesis and for most reproductive events that require high energy and moisture 

560 availability. The response of the plant community to this recurrent and predictable seasonal 

561 drought could be used to estimate their long-term response to drying over multi-annual time 

562 scales (Detto et al. 2018).  

563 With a climatic regime delivering less than 1500mm per year, Lopé is an anomalously dry region 

564 for the persistence of evergreen tropical forests (Reich 1995). Reduced evaporative demand 

565 during the cloudy, light-deficient long dry season is likely to be the major factor facilitating 

566 persistence of evergreen forests (Philippon 2019). In the context of further drying and warming, 
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567 it is essential that we understand the sensitivity of this seasonal cloudiness to ocean temperatures, 

568 and the viability of forest in this dry region should the clouds disappear.
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Figure 1(on next page)

Global climatic inûuences on western equatorial Africa

(A) The forested region of central Africa is indicated by a layer of green pixels (>30% tree cover in 2010
from Hansen et al. 2013). The Northern (July) and Southern limits (January) of the Inter Tropical
Convergence Zone (ITCZ) are drawn from Barlow et al. (2018). The blue zones indicate patterns in oceanic
sea surface temperatures (SSTs) known to inûuence weather in western Central Africa: the Paciûc Ocean El
Niño Southern Oscillation (ENSO); North and South Tropical Atlantic SSTs (NATL and SATL) and the Indian
Ocean Dipole (IOD). In conventional El Niño years the tropical Eastern Paciûc is abnormally warm, in El Niño
Modoki the warming occurs in the central Paciûc. The IOD is the diûerence between SSTs of the western and
eastern tropical Indian Ocean. (B) The limits of western equatorial Africa as deûned in this paper are
indicated by the grey rectangle (including the humid forests of Gabon, Equatorial Guinea, Cameroon and the
Republic of Congo). We also show the location of the seasonal Atlantic cold tongue, a pool of cool surface
water that develops in the eastern tropical Atlantic during the boreal summer (Tokinaga & Xie 2011). Tree
cover data are available from http://earthenginepartners.appspot.com/science-2013-global-forest. The world
map was created by Layerace at Freepik.com.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27848v1 | CC BY 4.0 Open Access | rec: 10 Jul 2019, publ: 10 Jul 2019



Equator	

ENSO	

ENSO	

SATL	

NATL	

IOD	

Indian	Ocean	

Atlan4c	Ocean	

Paciûc		

Ocean	

A. 

B. 

     Atlantic cold cc        

                tongue 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27848v1 | CC BY 4.0 Open Access | rec: 10 Jul 2019, publ: 10 Jul 2019



Figure 2(on next page)

Seasonal weather variability at Lopé NP, Gabon.

Mean seasonality for daily rainfall (1984-2018), maximum and minimum daily temperature
(1984-2017), relative humidity (2007-2015), surface solar radiation (2012-2016), wind speed
(2012-2016) and aerosol optical depth at 500nm (2014-2017). The thin grey lines indicate
the mean values for each day of the calendar year (DOY). The thin black lines indicate the
seven-day running means of DOY and the thick black lines indicate the monthly means.
Vertical dotted lines indicate the alternating rainy and dry seasons.
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Figure 3(on next page)

Inter-annual variation, long-term trends and periodicity for rainfall and temperature at
Lopé NP, Gabon.

(A) The grey lines indicate inter-annual variation and the black line indicates the long-term
trend for total annual rainfall (1984-2018) derived from a generalised linear model (family =
poisson). (B) The grey dots indicate raw daily data summarised to monthly means and the
black line indicates the long-term trend for minimum daily temperature (1984-2018) derived
from a linear mixed model. (C, D) Wavelet transforms of the monthly time-series for total
monthly rainfall and mean minimum daily temperature. The faded region indicates the <cone
of inûuence= where end eûects made the data unreliable. The colour indicates the power of
the cycle at each time period, red= high power and blue = low power. Bold black lines
indicate cycles with signiûcant power (Chi-sq test). (E, F) Extracted wavelet components for
the biannual, annual and multi-annual (mean of 2-4 years) periods from the wavelet
transforms adjusted for edge eûects.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27848v1 | CC BY 4.0 Open Access | rec: 10 Jul 2019, publ: 10 Jul 2019



A	 B	

C	 D	

E	 F	

1200

1400

1600

1800

1985 1990 1995 2000 2005 2010 2015

Year

R
a
in

fa
ll 

(m
m

/y
e
a
r)

0

50

100

150

200

1985 1990 1995 2000 2005 2010 2015

Year

W
a
v
e
le

t 
p
o
w

e
r 

(/
1
0
0
0
0
)

224 years

Annual

Biannual

R
a
in

fa
ll 

p
e
ri

o
d
 (

y
rs

)

1985 1990 1995 2000 2005 2010 2015

8
.0

0
4
.0

0
2
.0

0
1
.0

0
0
.5

0
0
.2

5

20

21

22

23

24

1985 1990 1995 2000 2005 2010 2015

Year

M
in

 t
e
m

p
e
ra

tu
re

 (
c
)

0

25

50

75

100

1985 1990 1995 2000 2005 2010 2015

Year

W
a
v
e
le

t 
p
o
w

e
r

224 years

Annual

Biannual

T
e
m

p
e
ra

tu
re

 p
e
ri

o
d
 (

y
rs

)

1985 1990 1995 2000 2005 2010 2015

8
.0

0
4
.0

0
2
.0

0
1
.0

0
0
.5

0
0
.2

5

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27848v1 | CC BY 4.0 Open Access | rec: 10 Jul 2019, publ: 10 Jul 2019



Figure 4(on next page)

Oceanic inûuences on rainfall and temperature at Lopé NP, Gabon.

(A) Standardised eûect sizes for signiûcant correlations between oceanic indices (NATL =
northern tropical Atlantic SST, SATL= southern equatorial Atlantic SST, MEI = Multivariate
ENSO Index, IOD = Indian Ocean Dipole) derived from the best models for oceanic inûuences
on total monthly rainfall (generalised linear mixed model, family = poisson) and monthly
mean minimum temperature (linear mixed model). The colour of the dot indicates the
direction of the correlation (blue= positive, red=negative). The size of the circle indicates the
relative size of the eûect and the transparency of the circle indicates the uncertainty (low
transparency = low T/Z value, high transparency = high T/Z value). (B-F) The points indicate
raw data summarised to seasonal means and the lines indicate model predictions from the
best models for oceanic inûuences on rainfall (generalised linear mixed model, family =
poisson) and temperature (linear mixed model).
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Table 1(on next page)

Major oceanic inûuences on rainfall in western equatorial Africa.
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1

Study Description Ocean influences

Pacific: Canonical El Niño reduces rainfall Jan-Sep. El 

Niño Modoki increases rainfall Mar-May.

Preethi et al 

2015. 

Africa-wide; 

Satellite and 

gridded obs.; 

1979-2010.
Indian: Positive relationship between SSTs and rainfall 

Jan-Feb. No relationship between IOD and 

rainfall.

Pacific: El Niño negatively influences rainfall Apr-Jun.Camberlin et 

al. 2001.

Sub-Sahara; 

Gridded obs.; 

1951-1997.
Atlantic: South Atlantic SSTs positively influence rainfall 

Apr-Sep.

Pacific: El Niño negatively influences rainfall.

Indian: Weak positive relationship between SSTs and 

rainfall in all seasons except Mar-May when it is 

reversed.

Balas et al. 

2007.

WEA; 

Precipitation 

gauge dataset; 

1950-1998.

Atlantic: Positive correlation between south Atlantic SSTs 

and rainfall Jun-Nov, negative influence Dec-

Feb. Benguela coast influences rain Mar-May.

Pacific: El Niño has weak negative influence on rainfall 

Feb-Apr.

Todd & 

Washington 

2004.

CEA and WEA; 

Gridded obs. and 

discharge data 

Feb-Apr; 1901-

1998.

Atlantic: North Atlantic Oscillation negatively influences 

rainfall Feb-Apr.

Pacific: ENSO influences rainfall in dry seasons.

Indian: IOD negatively influences rainfall in dry seasons.

Otto et al. 

2013.

CEA and WEA; 

Simulated data. 

Dry seasons only. Atlantic: Warm tropical Atlantic SSTs enhance rain in dry 

seasons.

Pacific: El Niño reduces rainfall in rainy seasons.

Indian: Positive IOD modes associated with reduced 

rainfall in rainy seasons.

Nicholson & 

Dezfuli 2013; 

Dezfuli & 

Nicholson 

2013.

WEA. 

Regionalised obs. 

Rainy seasons 

only. Atlantic: Warm tropical Atlantic SSTs enhance rainfall in 

rainy seasons. Strong correlation with Benguela 

coast from Oct-Dec

CEA = central equatorial Africa, WEA = western equatorial Africa, SST = sea surface 

temperatures, ENSO = El Niño Southern Oscillation, IOD = Indian Ocean Dipole.
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Table 2(on next page)

Model comparisons to test for long-term trends in rainfall and minimum temperature at
Lopé NP, Gabon (1984-2018).

We used a generalised linear model (family = poisson) for total annual rainfall and a linear
mixed model for minimum daily temperature. Year and Day of Year were included as random
intercepts in the mixed model.
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1

Response Model Predictors AIC DF

Long-term change Year 1051.9 2Rainfall

No long-term change Intercept only 1097.7 1

Long-term change Year 22573.0 5Temperature

No long-term change Intercept only 22586.2 4

AIC = Akaike Information Criterion, DF = Degrees of Freedom.
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Table 3(on next page)

Model comparisons to test for long-term trends in rainfall and minimum temperature
varying by season at Lopé NP, Gabon (1984-2018).

We used a generalised linear mixed model (family = poisson) for daily rainfall and a linear
mixed model for minimum daily temperature. Year and Day of Year were included as random
intercepts in both mixed models.
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1

Response Model Predictors AIC DF

Long-term change varying by season Year * Season 151398.4 10Rainfall

Long-term change not varying by season Year + Season 151615.0 7

Long-term change varying by season Year * Season 22237.7 11Temperature

Long-term change not varying by season Year + Season 22251.5 8

AIC = Akaike Information Criterion, DF = Degrees of Freedom.
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Table 4(on next page)

Outputs from the best models for long-term trends in rainfall and minimum daily
temperature varying by season at Lopé NP, Gabon (1984-2018).

Estimates derived from a generalised linear mixed model (family = poisson) for daily rainfall
and a linear mixed model for minimum daily temperature. Year and Day of Year were
included as random eûects in both mixed models. Asterisks indicate estimates for which the
95% conûdence interval does not overlap zero.
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Response Predictor Estimate SE T/Z Value 95% CI

DJF 0.69 0.12 5.62 0.45,0.93 *

JJAS -0.02 0.11 -0.23 -0.24,0.19

MAM 1.12 0.11 10.01 0.9,1.34 *

ON 0.72 0.13 5.48 0.46,0.98 *

Year: DJF 0.02 0.03 0.92 -0.03,0.08

Year: JJAS -0.25 0.03 -8.75 -0.31,-0.19 *

Year: MAM -0.06 0.03 -2.36 -0.11,-0.01 *

Rainfall

Year: ON -0.03 0.03 -1.28 -0.08,0.02

DJF 22.28 0.06 371.77 22.16,22.4 *

JJAS 21.22 0.06 379.56 21.11,21.33 *

MAM 22.31 0.06 375.03 22.19,22.43 *

ON 21.95 0.07 329.92 21.82,22.08 *

Year: DJF 0.28 0.05 6.10 0.19,0.38 *

Year: JJAS 0.16 0.05 3.43 0.07,0.25 *

Year: MAM 0.24 0.05 5.09 0.15,0.33 *

Temperature

Year: ON 0.30 0.05 6.06 0.2,0.39 *

SE = Standard Error, CI = Confidence Interval
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Table 5(on next page)

Model comparisons to test for oceanic inûuences on rainfall and minimum temperature
at Lopé NP, Gabon (1984-2018).

We used a generalised linear mixed model (family = poisson) for monthly rainfall and a linear
mixed model for monthly mean minimum daily temperature. Year and Month were included
as random eûects in both mixed models.
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1

Response Predictors AIC DF

Season + NATL: Season + SATL: Season + MEI: Season 

+ IOD: Season + Year: Season

12253.9 26

Season + NATL: Season + SATL: Season + MEI: Season 

+ IOD + Year: Season

12346.4 23

Season + NATL: Season + SATL: Season + MEI + IOD: 

Season + Year: Season

12867.6 23

Season + NATL: Season + SATL + MEI: Season + IOD: 

Season + Year: Season

12396.5 23

Rainfall

Season + NATL + SATL: Season + MEI: Season + IOD: 

Season + Year: Season

12269.7 23

Season + NATL: Season + SATL: Season + MEI: Season 

+ IOD: Season + Year: Season

500.4 27

Season + NATL: Season + SATL: Season + MEI: Season 

+ IOD + Year: Season

484.0 24

Season + NATL: Season + SATL: Season + MEI: Season 

+ Year: Season

476.8 23

Season + NATL: Season + SATL: Season + MEI + Year: 

Season

466.1 20

Season + NATL: Season + SATL: Season + Year: Season 473.2 19

Season + NATL: Season + SATL + MEI + Year: Season 456.0 17

Season + NATL: Season + MEI + Year: Season 449.3 16

Season + NATL + MEI + Year: Season 435.2 13

Temperature

Season + MEI + Year: Season 432.9 12

AIC = Akaike Information Criterion, DF = Degrees of Freedom, MEI = Multivariate ENSO 

Index, NATL = Tropical North Atlantic, SATL = Tropical South Atlantic, IOD = Indian Ocean 

Dipole
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Table 6(on next page)

Outputs from the best model for oceanic inûuences on rainfall at Lopé NP, Gabon
(1984-2018).

Estimates derived from a modiûed generalized linear mixed model (family = poisson) on
monthly rainfall with the global intercept temporarily removed to allow direct comparisons
between the estimates for each season. Asterisks indicate estimates for which the 95%
conûdence interval does not overlap zero.
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Predictor Estimate SE Z Value 95% CI

DJF 4.45 0.37 11.89 3.72,5.19 *

JJAS 2.89 0.33 8.88 2.25,3.53 *

MAM 5.19 0.37 13.85 4.45,5.92 *

ON 5.44 0.46 11.87 4.54,6.33 *

MEI: DJF -0.32 0.01 -24.73 -0.35,-0.3 *

MEI: JJAS -0.11 0.02 -5.24 -0.15,-0.07 *

MEI: MAM 0.03 0.01 3.04 0.01,0.06 *

MEI: ON -0.16 0.01 -11.33 -0.19,-0.13 *

NATL: DJF 0.06 0.02 4.18 0.03,0.09 *

NATL: JJAS 0.05 0.02 2.41 0.01,0.1 *

NATL: MAM 0.01 0.01 0.65 -0.02,0.03

NATL: ON 0.09 0.02 4.89 0.05,0.12 *

SATL: DJF 0.12 0.01 10.50 0.1,0.14 *

SATL: JJAS 0.31 0.02 15.62 0.27,0.35 *

SATL: MAM 0.15 0.01 15.48 0.13,0.17 *

SATL: ON 0.05 0.01 4.11 0.03,0.08 *

IOD: DJF 0.08 0.02 4.70 0.05,0.12 *

IOD: JJAS 0.22 0.02 12.31 0.19,0.26 *

IOD: MAM 0.03 0.01 2.56 0.01,0.05 *

IOD: ON 0.05 0.01 4.73 0.03,0.07 *

Year: DJF -0.04 0.04 -1.21 -0.11,0.03

Year: JJAS -0.34 0.04 -8.69 -0.42,-0.27 *

Year: MAM -0.09 0.04 -2.55 -0.16,-0.02 *

Year: ON -0.09 0.04 -2.37 -0.16,-0.02 *

SE = Standard Error, CI = Confidence Interval, MEI = Multivariate ENSO Index, NATL = 

Tropical North Atlantic, SATL = Tropical South Atlantic, IOD = Indian Ocean Dipole
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Table 7(on next page)

Outputs from the best model for oceanic inûuences on temperature at Lopé NP, Gabon
(1984-2018).

Estimates are derived from a linear mixed model on monthly mean minimum daily
temperature with the global intercept temporarily removed to allow direct comparison
between the estimates for each season. Asterisks indicate estimates for which the 95%
conûdence interval does not overlap zero.
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Predictor Estimate SE T Value 95% CI

DJF 22.28 0.21 104.85 21.87,22.7 *

JJAS 21.19 0.19 114.51 20.82,21.55 *

MAM 22.3 0.21 105.03 21.88,22.71 *

ON 21.96 0.26 84.92 21.45,22.47 *

MEI 0.12 0.03 4.60 0.07,0.18 *

Year: DJF 0.31 0.06 5.56 0.2,0.41 *

Year: JJAS 0.16 0.05 3.05 0.06,0.26 *

Year: MAM 0.25 0.05 4.63 0.14,0.36 *

Year: ON 0.31 0.06 5.04 0.19,0.43 *

SE = Standard Error, CI = Confidence Interval, MEI = Multivariate ENSO Index
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