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There is growing interest within regulatory agencies and toxicological research
communities to develop, test, and apply new approaches, such as toxicogenomics, to more
eûciently evaluate chemical hazards. Given the complexity of analyzing thousands of
genes simultaneously, there is a need to identify reduced gene sets.Though several gene
sets have been deûned for toxicological applications, few of these were purposefully
derived using toxicogenomics data. Here, we developed and applied a systematic
approach to identify 1000 genes (called Toxicogenomics-1000 or T1000) highly responsive
to chemical exposures. First, a co-expression network of 11,210genes was built by
leveraging microarray data from the Open TG-GATEs program. This network was then re-
weighted based on prior knowledge of their biological (KEGG, MSigDB) and toxicological
(CTD) relevance. Finally, weighted correlation network analysis was applied to identify 258
gene clusters. T1000 was deûned by selecting genes from each cluster that were most
associated with outcome measures. For model evaluation, we compared the performance
of T1000 to that of other gene sets (L1000, S1500, Genes selected by Limma, and random
set) using two external datasets. Additionally, a smaller (T384) and a larger version
(T1500) of T1000 were used for dose-response modeling to test the eûect of gene set size.
Our ûndings demonstrated that the T1000 gene set is predictive of apical outcomes across
a range of conditions (e.g.,in vitroand in vivo, dose-response, multiple species, tissues, and
chemicals), and generally performs as well, or better than other gene sets available.
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32 Abstract

33 There is growing interest within regulatory agencies and toxicological research communities to 

34 develop, test, and apply new approaches, such as toxicogenomics, to more efficiently evaluate 

35 chemical hazards. Given the complexity of analyzing thousands of genes simultaneously, there is 

36 a need to identify reduced gene sets. Though several gene sets have been defined for 

37 toxicological applications, few of these were purposefully derived using toxicogenomics data. 

38 Here, we developed and applied a systematic approach to identify 1000 genes (called 

39 Toxicogenomics-1000 or T1000) highly responsive to chemical exposures.  First, a co-

40 expression network of 11,210 genes was built by leveraging microarray data from the Open TG-

41 GATEs program. This network was then re-weighted based on prior knowledge of their 

42 biological (KEGG, MSigDB) and toxicological (CTD) relevance. Finally, weighted correlation 

43 network analysis was applied to identify 258 gene clusters. T1000 was defined by selecting 

44 genes from each cluster that were most associated with outcome measures. For model evaluation, 

45 we compared the performance of T1000 to that of other gene sets (L1000, S1500, Genes selected 

46 by Limma, and random set) using two external datasets. Additionally, a smaller (T384) and a 

47 larger version (T1500) of T1000 were used for dose-response modeling to test the effect of gene 

48 set size. Our findings demonstrated that the T1000 gene set is predictive of apical outcomes 

49 across a range of conditions (e.g., in vitro and in vivo, dose-response, multiple species, tissues, 

50 and chemicals), and generally performs as well, or better than other gene sets available. 
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51 Introduction
52

53 Over the past decade there have been profound steps taken across the toxicological sciences and 

54 regulatory communities to help transform conventional toxicity testing largely based on animal 

55 models and apical outcome measurements to an approach that is founded on systems biology and 

56 predictive science (Kavlock et al. 2018; Knudsen et al. 2015; Villeneuve & Garcia-Reyero 

57 2011).  On the scientific side, efforts are being exemplified by emergent notions such as the 

58 Adverse Outcome Pathway framework (AOP; Ankley et al., 2010) and New Approach Methods 

59 (ECHA 2016).  On the regulatory side, these are exemplified by changes to, for example, 

60 chemical management plans in Canada, the United States and REACH (ECHA 2007) across the 

61 European Union.

62

63 A core tenet underlying the aforementioned transformations, as catalyzed by the 2007 U.S. 

64 National Research Council report <Toxicity Testing in the 21st Century= (Andersen & Krewski 

65 2009), is that perturbations at the molecular-level can be predictive of those at the whole 

66 organism-level. Though whole transcriptome profiling is increasingly popular, it still remains 

67 costly for routine research and regulatory applications. Additionally, building predictive models 

68 with thousands of features introduces problems due to the high dimensionality of the data and so 

69 considering a smaller number of genes has the potential to increase classification performance 

70 (Alshahrani et al. 2017; Soufan et al. 2015b). Identifying smaller panels of key genes that can be 

71 measured, analyzed and interpreted conveniently remain an appealing option for toxicological 

72 studies and decision making 

73
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74 In recent years, several initiatives across the life sciences have started to identify reduced gene 

75 sets from whole transcriptomic studies. For example, the Library of Integrated Network-Based 

76 Cellular Signatures (LINCS) project derived L1000, which is a gene set of 976 8Landmark9 

77 genes chosen to infer the expression of 12,031 other highly connected genes in the human 

78 transcriptome (Subramanian et al. 2017). In the toxicological sciences, the U.S. Tox21 Program 

79 recently published S1500+, which is a set of 2,753 genes designed to be both representative of 

80 the whole-transcriptome, while maintaining a minimum coverage of all biological pathways in 

81 Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa et al. 2007) and Molecular 

82 Signatures Database (MSigDB) (Liberzon et al. 2015a). The first 1,500 genes were selected by 

83 analyzing microarray data from 3,339 different studies, and the rest were nominated by members 

84 of the scientific community (Mav et al. 2018).  L1000 and S1500 gene sets were originally 

85 proposed to serve a different purpose. The 978 landmark genes of L1000 are chosen to infer 

86 expression of other genes more accurately, while genes of S1500 are selected to achieve more 

87 biological pathway coverage. Compared to L1000, the S1500 gene set attains more toxicological 

88 relevance through the gene nomination phase, though its data-driven approach relies upon 

89 microarray data primarily derived from non-toxicological studies. It worth nothing that about 

90 33.7% of genes are shared between both signatures. Even though some differences can be 

91 realized between L1000 and S1500, they are both strong candidates of gene expression modeling 

92 and prediction (Haider et al. 2018).

93

94 The objectives of the current study were to develop and apply a systematic approach to identify 

95 highly-responsive genes from toxicogenomic studies, and from these to nominate a set of 1000 

96 genes to form the basis for the T1000 (Toxicogenomics-1000) reference gene set.  Co-expression 
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97 network analysis is an established approach using pairwise correlation between genes and 

98 clustering methods to group genes with similar expression patterns (van Dam et al. 2018). First, a 

99 co-expression network was derived using in vitro and in vivo data from human and rat studies 

100 from the Toxicogenomics Project-Genomics Assisted Toxicity Evaluation System (Open TG-

101 GATEs) database. Next, the connections within the co-expression network were adjusted to 

102 increase the focus on genes in KEGG pathways, the MSigDB, or the Comparative 

103 Toxicogenomics Database (CTD) (Davis et al. 2017). This incorporation of prior biological and 

104 toxicological knowledge was motivated by loose Bayesian inference to refine the 

105 computationally-prioritized transcriptomic space. Clusters of highly connected genes were 

106 identified from the resulting co-expression network, and machine learning models were applied 

107 to prioritize clusters based on their association with apical endpoints. Clustering genes based on 

108 expression data has been shown to be instrumental in functional annotation and sample 

109 classification (Necsulea et al. 2014), with the rationale that genes with similar expression 

110 patterns are likely to participate in the same biological pathways (Budinska et al. 2013). From 

111 each cluster key genes were identified for inclusion in T1000. Testing and validation of T1000 

112 was realized through two separate datasets (one from Open TG-GATEs and one from the U.S. 

113 National Toxicology Program) that were not used for gene selection.  The current study is part of 

114 the larger EcoToxChip project (Basu et al. 2019).

115

116 Materials & Methods

117 Overview

118 The work was conducted in four discrete phases as follows:  I) data preparation and gene co-

119 expression network generation; II) network clustering to group relevant genes; III) gene selection 
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120 and prioritization; and IV) external testing and performance evaluation.  Within these four study 

121 phases there were eight activities or steps (Figure 1): 1) data preparation, 2) constructing co-

122 expression networks; 3) computing prior scores from toxicogenomics resources; 4) re-weighting 

123 co-expression scores and applying graph clustering; 6) building local prediction models for each 

124 cluster; 6) building a global prediction model using representative genes from each cluster; 7) 

125 dose-response analysis and apical outcome correlation using an external dataset; and 8) 

126 prediction accuracy analysis using an external dataset. 

127

128 Phase I: Data preparation and gene co-expression network generation 

129 The goal of phase I was to construct two network representations of the interactions between 

130 toxicologically-relevant genes, with one based on TG-GATES microarray data (step 1) and the 

131 other based on the KEGG, MSigDB, and CTD databases (step 3). 

132

133 Step 1: data preparation

134 The derivation of T1000 was based on five public microarray datasets of toxicological relevance 

135 (Table 1): four datasets from Open TG-GATEs (Igarashi et al. 2014b), and one dataset generated 

136 by Thomas et al (referred to as the dose-response dataset in this manuscript) (Thomas et al. 

137 2013).  Table 1 provides a summary of all microarray datasets used in this study. For building 

138 the initial T1000 gene set, we used three of the four Open TG-GATEs datasets (see datasets 1-3 

139 in Table 1). For the performance evaluation and testing phase, we leveraged the fourth dataset 

140 from Open TG-GATEs (see dataset 4 in Table 1), which was not used for gene ranking or 

141 selection so that it could serve as an external validation dataset. The dose-response dataset was 

142 used for an additional external validation (see dataset 5 in Table 1). 
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143

144 Open TG-GATEs is one of the largest publicly accessible toxicogenomics resources (Igarashi et 

145 al. 2014b). This database comprises data from 170 compounds (mostly drugs) with the aim of 

146 improving and enhancing drug safety assessment. It contains gene expression profiles and 

147 traditional toxicological data derived from in vivo (rat) and in vitro (primary rat hepatocytes and 

148 primary human hepatocytes) studies. To process the raw gene expression data files of  Open TG-

149 GATEs, the Affy package (Gautier et al. 2004) was used to produce Robust Multi-array Average 

150 (RMA) probe set intensities (Irizarry et al. 2003b). Gene annotation for human and rat was 

151 performed using Affymetrix Human Genome U133 Plus 2.0 Array annotation data and 

152 Affymetrix Rat Genome 230 2.0 Array annotation data, respectively. Genes without annotation 

153 were excluded. When the same gene was mapped multiple times, the average value was used. 

154 Finally, all profiles for each type of experiment were joined into a single matrix for downstream 

155 analysis.

156

157 The dose-response dataset was used to externally evaluate the ability of T1000 genes to predict 

158 apical endpoints (Thomas et al. 2013). Briefly, this dataset contains Affymetrix HT Rat230 PM 

159 microarray data following in vivo exposure of rats to six chemicals (TRBZ: 1,2,4-

160 tribromobenzene, BRBZ: bromobenzene, TTCP: 2,3,4,6-tetrachlorophenol, MDMB: 4,49-

161 methylenebis(N,N9-dimethyl)aniline, NDPA: N-nitrosodiphenylamine, and HZBZ: 

162 hydrazobenzene). In exposed animals, both gene expression and apical outcomes (liver: absolute 

163 liver weight, vacuolation, hypertrophy, microvesiculation, necrosis; thyroid: absolute thyroid 

164 weight, follicular cell hypertrophy, follicular cell hyperplasia; bladder: absolute bladder weight, 

165 increased mitosis, diffuse transitional epithelial hyperplasia, increased necrosis epithelial cell) 
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166 were measured, permitting the comparison of transcriptionally-derived benchmark doses (BMDt) 

167 with traditional benchmark doses derived from apical outcomes (Yang et al. 2007). The apical 

168 outcome-derived benchmark dose (BMDa) for each treatment group was defined as the 

169 benchmark dose from the most sensitive apical outcome for the given chemical-duration group.

170

171 Step 2: constructing a co-expression network

172 In a co-expression network, nodes represent genes and edges represent the Pearson9s correlation 

173 of expression values of pairs of genes.  In the current study, we constructed three co-expression 

174 networks using gene expression profiles from Open TG-GATEs datasets (human in vitro, rat in 

175 vitro, and rat in vivo) (Table 1). If an interaction with a correlation coefficient of 60% or higher 

176 was present in all three networks, that gene-gene interaction was then accepted and mapped into 

177 one integrated co-expression network by averaging the absolute values of the pairwise 

178 correlation coefficients between individual genes. The final integrated co-expression network 

179 had 11,210 genes from a total of 20,502 genes.

180

181 Step 3: computing prior scores from toxicogenomics resources

182 The CTD, KEGG, and Hallmark databases were mined to integrate existing toxicogenomics and 

183 broader biological knowledge into one network that represents the prior knowledge space. CTD 

184 is manually curated from the literature to serve as a public source for toxicogenomics 

185 information, currently including over 30.5 million chemical-gene, chemical-disease, and gene-

186 disease interactions (Davis et al. 2017). Following the recommendations of Hu et al. (2015), only 

187 <mechanistic/marker= associations were extracted from the CTD database, thus excluding 

188 <therapeutic= associations that are presumably less relevant to toxicology. The extracted 
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189 subgraph contained 2,889 chemicals, 950 diseases annotated as toxic endpoints (e.g. 

190 neurotoxicity, cardiotoxicity, hepatotoxicity and nephrotoxicity), and 22,336 genes. KEGG 

191 pathways are a popular bioinformatics resource that help to link, organize, and interpret genomic 

192 information through the use of manually drawn networks describing the relationships between 

193 genes in specific biological processes (Kanehisa et al. 2007). The MSigDB Hallmark gene sets 

194 have been developed using a combination of automated approaches and expert curation to 

195 represent known biological pathways and processes while limiting redundancy (Liberzon et al. 

196 2015b). To build the prior knowledge space, we first encoded information from the three 

197 databases into feature vectors describing each gene. Then, we applied dimensionality reduction 

198 and K-means clustering to detect those genes that contributed most to the prior knowledge space. 

199

200 Each feature vector consisted of 239 dimensions, representing information encoded from 

201 Hallmark, KEGG and CTD. For the Hallmark and KEGG features, we used <1= or <0= to 

202 indicate if a gene was present or absent for each of the 50 Hallmark gene sets (Liberzon et al. 

203 2015b) and 186 KEGG pathways (Kanehisa & Goto 2000). These features were transformed into 

204 z-scores. For the CTD features, we computed the degree, betweenness centrality, and closeness 

205 centrality of each gene, based on the topology of the extracted CTD subgraph. The topology 

206 measures were log-scaled for each gene in the network. The resulting prior knowledge space 

207 consisted of a 239-dimension vector for each of the 22,336 genes, with each vector containing 50 

208 z-score normalized Hallmark features, 186 z-score normalized KEGG features, and three log-

209 scaled CTD network features.

210
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211 The 239-dimensional prior knowledge space was then projected onto a two-dimensional space 

212 using principal component analysis (PCA) and clustered using K-means (K=3). Genes that were 

213 furthest from the centroids (i.e., highest contributing ones) of the K-means clusters were more 

214 enriched with pathways and gene-chemical-disease interactions (see Supplemental Information 

215 1). Thus, we used the Euclidean distance of genes from the cluster centroids to rank genes based 

216 on the prior knowledge space. The ranked list was used to generate prior scores such that the first 

217 ranked gene would have a prior score of 100% and the last ranked gene would have a prior score 

218 close to 0%. The computational steps for computing the prior score are shown in Supplemental 

219 Information 1. Although the focus was on prioritizing 1000 genes, at this stage of building the 

220 prior knowledge, it was necessary to collect information for all potentially relevant genes. Thus, 

221 this was done for 22,336 genes.

222

223 Phase II: Network clustering for relevant grouping of genes

224 In this phase, we re-weighted the interactions in the co-expression network based on the prior 

225 knowledge space and then detected clusters of highly connected genes in the updated network. 

226

227 Step 4: Re-weighting co-expression scores (Bayesian) and applying graph clustering

228 In a Bayesian fashion, the pairwise connections between genes in the co-expression network 

229 were re-weighted by multiplying the correlation with the mean prior score. For example, given ÿ
230  and  as prior scores of genes A and B, the correlation score  is re-weighted as (ý) ÿ(ý) ÿ(ý, ý)

231 follows (Eq. 1):

232

233 (1)ÿ(ý, ý)ÿÿý =  ÿ(ý, ý) 7  ((ÿ(ý) + ÿ(ý))/2)
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234

235 After re-weighting the connections, we detected clusters of highly connected genes using the 

236 Markov Cluster Algorithm (MCL) (Figure 1, part c) (Van Dongen & Abreu-Goodger 2012). The 

237 MCL approach groups together nodes with strong edge weights and then simulates a random 

238 flow through a network to find more related groups of genes based on the flow9s intensity of 

239 movement. It does not require the number of clusters to be pre-specified. An inflation parameter 

240 controls the granularity of the output clustering and several values within a recommended range 

241 (1.2-5.0) were tried (Van Dongen & Abreu-Goodger 2012). After running several experiments 

242 and optimizing for the granularity of the clustering, the inflation parameter was set to 3.3, which 

243 generated 258 clusters that consisted of 11,210 genes.  The average number of genes in each 

244 cluster was 43.4 with the min-max ranging from 1 to 8,423.

245

246 Phase III: Gene selection and prioritization

247 The goal of phase III was to select the top genes from each cluster to form T1000 (step 5), and 

248 then produce a final ranking of the 1000 selected genes (step 6). 

249

250 Step 5: building local prediction models for each cluster
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251 From the training microarray datasets, specific samples were labelled binary as <dysregulated= or 

252 <non-dysregulated=. Dysregulated refers to exposure cases with potential toxic outcomes and 

253 non-dysregulated included controls and exposures with non-toxic outcomes. For the in vitro 

254 datasets, gene expression changes were associated with lactate dehydrogenase (LDH) activity 

255 (%). The activity of LDH, which serves as a proxy for cellular injury or dysregulation, was 

256 binarized such that values above 105% and below 95% were considered <dysregulated=.  While 

257 conservative, we note that these cut-off values were situated around the 5% and 95% marks of 

258 the LDH distribution curve (see Supplemental Figure S1 and Supplemental Information S2 

259 for more details). 

260

261 For the in vivo datasets (kidney and liver datasets from Open TG-GATEs), gene expression 

262 changes were associated with histopathological measures.  The magnitude of pathologies was 

263 previously annotated into an ordinal scale: present, minimal, slight, moderate and severe 

264 (Igarashi et al. 2014a).  This scale was further reduced into a binary classification with the first 

265 three levels considered <non-dysregulated= while the latter two were considered <dysregulated=.

266

267 For each of the 258 gene clusters, random forest (RF) classifiers were used to rank genes based 

268 on their ability to separate changes in gene expression labelled as <dysregulated= from those 

269 labelled <non-dysregulated=, using the Gini impurity index of classification (Nguyen et al. 2013; 

270 Qi 2012; Tolosi & Lengauer 2011). RF is one of the most widely used solutions for feature 

271 ranking, and as an ensemble model, it is known for its stability (Chan & Paelinckx 2008). In 

272 order to cover more biological space and ensure selected genes represent the whole 

273 transcriptome, a different RF classifier is built for each cluster and used to select representative 

274 genes (Sahu & Mishra 2012).
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275

276 We selected the top genes from each cluster based on the performance of the RF classifier. For 

277 example, when selecting the 1,000 top genes from two clusters (A and B), if the cross-validation 

278 prediction accuracy estimated for models A and B were 60% and 55%, respectively, then 522 

279 ((60%/(60%+55%))*1000) and 478 ((55%/(60%+55%))*1000) genes would be selected from 

280 clusters A and B. However, if cluster A contained only 520 genes, the remaining two genes 

281 would be taken from group B, if possible. So, the cluster size is only used if it contains 

282 insufficient genes. We repeated this process until 1000 genes were selected.

283

284 Step 6: building a global prediction model using representative genes from each cluster

285 After choosing top k genes from each cluster, we aggregated them into a single list of 1000 genes 

286 and built a final RF model to get a global ranking of the genes. We refer to this final ranked list 

287 as T1000 (see Supplemental Table S1 for a full list of selected genes and summary annotation; 

288 see Supplemental Information S3 for the cluster assignment of the genes).

289

290 Phase IV: External testing and performance evaluation

291 The goal of phase IV was to test the performance of the T1000 gene set using external datasets, 

292 and thus transition from gene selection activities to ones that focus on the evaluation of T1000.

293

294 Step 7: Dose-response analysis with an external dataset

295 Overall, the aim of the evaluation was to assess the ability of T1000 gene sets to predict apical 

296 outcomes according to previously published methods (Farmahin et al. 2017). Additionally, we 

297 repeated step 4 of the T1000 approach to select the top 384 (T384; i.e., a number conducive to 
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298 study in a QCPR microplate format as per the EcoToxChip project; (Basu et al. 2019)) and 1,500 

299 (T1500 see Supplemental Information S4; i.e., a number pursued in other endeavours like 

300 S1500) genes to investigate the effect of gene set size on apical outcome prediction. 

301

302 Raw gene expression data (CEL files) for the dose-response dataset were downloaded from GEO 

303 (Accession No. GSE45892), organized into chemical-exposure-duration treatment groups, and 

304 normalized using the RMA method (Irizarry et al. 2003a). Only expression measurements 

305 corresponding to genes in the T1000 gene (or T384 and T1500) set were retained, resulting in 

306 reduced gene expression matrices for each treatment group (  = 24). The reduced gene ý
307 expression matrices were analyzed using BMDExpress 2.0 to calculate a toxicogenomic 

308 benchmark dose (BMDt) for each treatment group (Yang et al. 2007). Here, the BMDt was 

309 calculated as the dose that corresponded to a 10% increase in gene expression compared to the 

310 control (Farmahin et al. 2017). Within BMDExpress 2.0, genes were filtered using one-way 

311 ANOVA (FDR adjusted p-value cut-off = 0.05). A BMDt was calculated for each differentially 

312 expressed gene by curve fitting with exponential (degree 2-5), polynomial (degree 2-3), linear, 

313 power, and Hill models. For each gene, the model with the lowest Akaike information criterion 

314 (AIC) was used to derive the BMDt.

315

316 The BMDts from individual genes were used to determine a treatment group-level BMDt using 

317 functional enrichment analysis with Reactome pathways (Farmahin et al. 2017).  Note, we chose 

318 here to functionally enrich with Reactome since we utilized KEGG previously to derive the 

319 T1000 list. After functional enrichment analysis, significantly enriched pathways (p-value < 

320 0.05) were filtered such that only pathways with > 3 genes and > 5% of genes in the pathway 
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321 were retained. The treatment group-level BMDt was calculated by considering the mean gene-

322 level BMDt for each significantly enriched pathway and selecting the lowest value. If there were 

323 no significantly enriched pathways that passed all filters, no BMDt could be determined for that 

324 treatment group. The similarity of the BMDt to the benchmark dose derived from apical 

325 outcomes (BMDa) was assessed by calculating the BMDt/BMDa ratio and the correlation 

326 between BMDt and BMDa for all treatment groups (Farmahin et al. 2017). Following the same 

327 procedures, BMDt/BMDa ratio and correlation statistics were determined from genes belonging 

328 to L1000, S1500, and Linear Models for Microarray Data (Limma) (Smyth 2005) to provide a 

329 reference for the performance of T1000 genes. 

330

331 Step 8: Prediction accuracy analysis with an external dataset

332 In this step, we applied five supervised machine learning methods to the TG-GATES rat kidney 

333 in vivo dataset, with the objective to predict which exposures caused significant <dysregulation=, 

334 according to the criteria defined in step 4. This dataset was purposefully not used earlier when 

335 deriving T1000 so that it could serve later as a validation and testing dataset. The five machine 

336 learning models used were K-nearest neighbors (KNN; K = 3) (Cover & Hart 1967), Decision 

337 Trees (DT), Naïve Bayes Classifier (NBC), Quadratic Discriminant Analysis (QDA) and 

338 Random Forests (RF). 

339

340 The performance of each method was evaluated with five-fold cross-validation and measured 

341 using six different metrics (Equations 2 3 7). TP represents the number of true positives, FP the 

342 number of false positives, TN the number of true negatives and FN the number of false 

343 negatives. The F1 score (also called the balanced F-score)  is a performance evaluation measure 
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344 that computes the weighted average of sensitivity and precision (He & Garcia 2009), and is well-

345 suited for binary classification models. The F0.5 score (Davis & Goadrich 2006; Maitin-Shepard 

346 et al. 2010; Santoni et al. 2010) is another summary metric that gives twice as much weight to 

347 precision than sensitivity. The evaluation was performed on a Linux based workstation with 16 

348 cores and 64 GB RAM for processing the data and running the experiments. 

349

350                                (2)ýÿÿýÿýÿÿÿýÿ = ÿÿ/(ÿÿ + ýý)
351                               (3)ýýÿýÿÿÿýÿýÿ = ÿý/(ÿý + ýÿ)
352                                   (4)ýÿÿýÿýÿýÿ = ÿÿ/(ÿÿ + ýÿ)
353                  (5) ÿýÿÿÿ = ýÿÿýÿýÿÿÿýÿ × ýýÿýÿÿÿýÿýÿ
354                          (6)ý1ÿýýÿÿ = 2 ×

ýÿÿýÿýÿýÿ × ýÿÿýÿýÿÿÿýÿýÿÿýÿýÿýÿ + ýÿÿýÿýÿÿÿýÿ
355           (7)ý0.5ÿýýÿÿ = 1.25 ×

ýÿÿýÿýÿýÿ × ýÿÿýÿýÿÿÿýÿ
0.25 × ýÿÿýÿýÿýÿ + ýÿÿýÿýÿÿÿýÿ

356

357 The performance of the T1000 gene list was evaluated by comparing it to the performance of 

358 randomly selected genes, the top differentially expressed genes, and other notable gene sets. For 

359 the random gene set, we generated a list of 1000 random genes, out of 22,336 genes, three times 

360 and reported the best. For the differentially expressed gene set, we selected the 1000 top-ranked 

361 genes based on analyzing the rat kidney dataset with Limma (Smyth 2005). Finally, to 

362 benchmark the performance of T1000 against other notable gene sets, we considered S1500 

363 (Merrick et al. 2015) and L1000 (Subramanian et al. 2017). 
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364 Results

365 The genes comprising T1000 cover a wide biological space of toxicological relevance.  For 

366 illustration, co-expression networks, before and after applying Steps 2 and 3 (i.e., networks built 

367 on the Open TG-GATEs data that are subsequently updated with prior information from KEGG, 

368 MSigDb, and CTD), are shown in Figure 2. In part (a) of Figure 2, a sample co-expression 

369 network composed of 150 genes (i.e., 150 for visualization purposes only; of the 11,210 genes 

370 identified) has, in general, similar color and size of all the nodes of the network. While this 

371 covers a broad toxicological space, it does not necessarily identify or prioritize the most 

372 important genes. After subjecting the data to steps 2 and 3, two clusters of genes with different 

373 node sizes and colors were identified (Figure 2b).  Through this refined network, we then 

374 applied a prediction model to each cluster to identify the most representative genes resulting in 

375 the final co-expression network of the T1000 genes (Figure 2c). The complete list of T1000 

376 genes with their gene symbols and descriptions, as well as their regulation state (up- or down-

377 regulated) is provided in Supplemental Table S1.

378
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379 To understand the biological space covered by T1000, we analyzed T10009s top enriched 

380 Reactome pathways (as KEGG was used to develop T1000). Reactome is a manually curated 

381 knowledgebase of human reactions and pathways with annotations of 7,088 protein-coding genes  

382 (Croft et al. 2014). Visual examination of the Reactome enrichment map (Figure 3) reveals that 

383 8biological oxidations9 (largest circle in Figure 3) contained the most enriched pathways 

384 followed by 8fatty acid metabolism9. This is logical given that xenobiotic and fatty acid 

385 metabolism, mediated by cytochrome P450 (CYP450) enzymes, feature prominently across the 

386 toxicological literature (Guengerich 2007) (Hardwick 2008). 

387

388 Evaluation of T1000 to predict apical outcomes

389 BMDt analysis of the dose-response dataset was performed with the T1000 gene list and the 

390 BMDExpress software program (Yang et al. 2007). The maximum number of BMDs calculated 

391 was 21 because for three of the experimental groups a BMDa (benchmark dose, apical outcome) 

392 did not exist due to a lack of observed toxicity (Table 3). The T384 gene set performed similarly 

393 with Limma; however, increasing the size of this gene set to T1000 resulted in performance 

394 evaluation metrics that rivaled that of all other gene sets of the same size or larger (L1000, 

395 Limma, and S1500). Further increasing the size of T1000 to T1500 did not increase the 

396 performance as the correlation slightly decreased while the average ratio of BMDt/BMDa got 

397 slightly closer to one (Figure 4). 

398

399 In a second validation study, we applied T1000 to study the Rat Genome 230 2.0 Array for 

400 Kidney dataset from the Open TG-GATEs program.  This dataset was not included in any model 

401 training or parameter tuning steps. This helped to establish another external validation of T1000 
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402 in terms of its generalized ability to predict apical outcomes for datasets derived from different 

403 tissues. When compared to baseline gene sets mapped using Limma and L1000, T1000 achieved 

404 a relative improvement of the F1Score by 6% and 17%, respectively, thus outperforming 

405 comparison gene sets (Table 4, Figure 5). When considering the absolute difference of F1Score 

406 between T1000 and the second best (i.e., Limma), T1000 achieved an improvement of 1.2%. The 

407 improvement was 1.5% for F0.5Score confirming that T1000 led to fewer false positive 

408 predictions. In the context of high throughput screening, such small improvements in F1Score or 

409 F0.5Score may represent large cost savings (Soufan et al. 2015a) as false positives may lead to 

410 added experiments that would otherwise be unnecessary. Detailed performance scores of each 

411 individual machine learning model are provided in Supplemental Table S2. Please refer to 

412 Supplemental Information S5 for more comparisons including expression space visualization 

413 using PCA and gene set coverage evaluation.

414

415 Discussion & Conclusions

416 There is great interest across the toxicological and regulatory communities in harnessing 

417 transcriptomics data to guide and inform decision-making (Basu et al. 2019; Council 2007; 

418 ECHA 2016; Mav et al. 2018; Thomas et al. 2019).  In particular, transcriptomic signatures hold 

419 great promise to identify chemical-specific response patterns, prioritize chemicals of concern, 

420 and predict quantitatively adverse outcomes of regulatory concern, in a cost-effective manner. 

421 However, the inclusion of full transcriptomic studies into standard research studies faces 

422 logistical barriers and bioinformatics challenges, and thus, there is interest in the derivation and 

423 use of reduced but equally meaningful gene sets.  

424
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425 Here we outlined a systematic, data-driven approach to identify highly-responsive genes from 

426 toxicogenomics studies.  From this, we prioritized a list of 1,000 genes termed the T1000 gene 

427 set. We demonstrated the applicability of T1000 to 7,172 expression profiles, showing great 

428 promise in future applications of this gene set to toxicological evaluations.  Our approach to 

429 select T1000 followed the same rationale of how the LINCS program derived the L1000 dataset 

430 (Liu et al. 2015), though here we purposefully included additional steps to bolster the 

431 toxicological relevance of the resulting gene set.  Generating a list of ranked genes based on 

432 toxicologically relevant input data and prior knowledge is another key feature of T1000. 

433 There are some limitations associated with our current study. For instance, the co-expression 

434 network was based on data from the Open TG-GATEs program. While this is arguably the 

435 largest toxicogenomics resource available freely, the program is founded on one in vivo model 

436 (rat), two in vitro models (primary rat and human hepatocytes), 170 chemicals that are largely 

437 drugs, and microarray platforms. Thus, there remain questions about within- and cross- species 

438 and cell type differences, the environmental relevance of the tested chemicals, and the biological 

439 space captured by the microarray. The multi-pronged and -tiered bioinformatics approach was 

440 designed to yield a toxicologically robust gene set, and the approach can be ported to other 

441 efforts that are starting to realize large toxicogenomics databases such as our own EcoToxChip 

442 project (Basu et al. 2019). In addition, our approach in selecting T1000 genes was purely data-

443 driven without considering input from scientific experts as was done by the NTP to derive the 

444 S1500 gene set (Mav et al. 2018).  It is unclear how such gene sets (e.g., T1000, S1500) will be 

445 used by the community and under which domains of applicability, and thus there is a need to 

446 perform case studies in which new approach methods are compared to traditional methods 

447 (Kavlock et al. 2018).  
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448

449 The toxicology community still favors using generic bioinformatics resources, such as KEGG 

450 and Reactome, to help organize genes though these are not necessarily applicable to most 

451 toxicological use cases. Here we externally validated T1000 against two in vivo datasets of 

452 toxicological prominence (a kidney dataset of 308 experiments on 41 chemicals from Open TG-

453 GATEs and a dose-response study of 30 experiments on six chemicals (Thomas et al. 2013). We 

454 compared the performance of T1000 against existing gene sets (Limma, L1000 and S1500) as 

455 well as panels of randomly selected genes.  In doing so, we demonstrate T10009s versatility as it 

456 is predictive of apical outcomes across a range of conditions (e.g., in vitro and in vivo, dose-

457 response, multiple species, tissues, and chemicals), and generally performs as well, or better than 

458 other gene sets available. Our approach represents a promising start to yield a toxicologically-

459 relevant gene set.  We hope that future efforts will start to use and apply T1000 in a diverse 

460 range of settings, and from these we can then start to make updates to the composition of the 

461 T1000 gene set based on improved understanding of its performance characteristics and user 

462 experiences.
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464 Supplemental data

465 Supplemental data are available at PeerJ online.
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Figure 1
Framework of the T1000 approach for gene selection and prioritization.

Phase I includes generating co-expression networks (a) and gene-chemical-toxicity endpoint
graphs. Phase II involves re-weighting of the co-expression scores (b) to identify genes in
Phase III that contribute more to the clustering (c). Phase IV is an external evaluation of the
prioritized gene list.
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Figure 2
Visual representation of co-expression networks before and after performing Steps 2
and 3 of the T1000 selection process.

a) Co-expression network of 150 genes after step 1. b) Re-weighted co-expression network of
150 genes after step 3 (same genes as part a). c) Re-weighted co-expression network of
T1000 genes after step 5. The color indicates the intensity of betweenness centrality (or
amount of inûuence a gene has along the shortest path of bridged pairs of genes) and size of
the node indicates degree (or the number of edges incident to a gene), which are two
common metrics to describe the topological structure of a network. A darker blue color
reûects higher intensity and a darker red a lower intensity. Yellow indicates a median
intensity. A larger size of the node indicates a greater number of connections.
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Figure 3
Reactome enrichment map of the T1000 gene set.

The gradient of colors represents p-adjusted of enrichment, where a high intensity red color
corresponds to more signiûcance for the enriched term. The diûerent sized circles reûect the
number of matched genes between T1000 and the enriched reference gene set. The
thickness of the edges indicates the ratio of common genes between the enriched gene sets
on both sides of the edge.
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Figure 4
Ratios of BMDt/BMDa for each experimental group determined with various gene sets as
indicated atop the plots.

The limits of the blue rectangular band and dotted lines represent 3-fold and 10-fold of unity,
respectively. Ratios could not be calculated for three experimental groups (HZBZ 5 day, 2
week, 4 week) due to a lack of apical outcomes. Red circles represent mean ratios greater
than 10-fold, while the yellow ones represent ratios greater than 3-fold. The fewer circles, the
more the gene set is indicative of potential relevance to the examined apical endpoints (see
Supplementary Figure 2 and 3 for T384 and T1500 plots, respectively).
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Figure 5
Average classiûcation performance over diûerent classiûcation models.

The Rat Kidney dataset was used as an external validation dataset. Refer to step 8 in Phase
IV: External testing and performance evaluation for information on F0.5Score, F1Score and
GMean.
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Table 1(on next page)

Summary of datasets used in the current study.

Datasets 1-3 were used to develop T1000 (see Phase I, II & III in Methods Section) and
datasets 4 and 5 (see Phase IV in Methods Section) were used to evaluate the performance
of the gene sets.
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1

Dataset 

#
Dataset Organism Organ

Exposure 

Type

Number of 

chemicals

Matrix size (% 

missing values)

Purpose in 

Current Study

1

Open 

TG-

GATEs

Human Liver in vitro
158 

chemicals

2,606 experiments x 

20,502 genes (8.9%)
Training

2

Open 

TG-

GATEs

Rat Liver in vitro
145 

chemicals

3,371 experiments x 

14,468 genes (11.6%)
Training

3

Open 

TG-

GATEs

Rat Liver

in vivo 

(single 

dose)

158 

chemicals

857 experiments x 

14,400 genes (11.5%)
Training

4

Open 

TG-

GATEs

Rat Kidney

in vivo 

(single 

dose)

41 

chemicals

308 experiments  x 

14,400 genes  (12.2%)
Testing

5
Dose-

response
Rat

Liver, 

Bladder, 

Thyroid

in vivo 

(repeated 

dose)

6 chemicals
30 experiments x 

14,400 genes (0%)

Testing 

(external 

validation)

Total 7,172  experiments

2

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27839v1 | CC BY 4.0 Open Access | rec: 3 Jul 2019, publ: 3 Jul 2019



Table 2(on next page)

Descriptive comparison of T1000 against existing gene sets.

For the 8selection criteria9 column, expression space coverage refers to the goal of ûnding a
subset of genes that would achieve high correlation with the original full set of genes.
Pathway coverage refers to ûnding a subset of genes that cover more pathways in a
reference library.
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1

Gene 

set

Selection 

criteria

Ranked 

gene list
Species Data Approach

Number 

of genes

L1000
Expression 

space coverage
No Human L1000 data

PCA and clustering (Data 

mining)
978

S1500 

(NTP 

2018)

Pathway 

coverage that 

combines data-

driven and 

knowledge-

driven 

activities

No Human 

Public GEO 

expression datasets 

(mainly GEO 3339 

gene expression 

series)

PCA, clustering, and 

other data-driven steps 

(Data mining)

2861 

(includes 

L1000 

genes)

T1000

Toxicological 

relevance using 

endpoint 

prediction

Yes
Human 

and Rat

Open TG-GATEs that 

is founded on co-

expression networks 

from  CTD, KEGG 

and Hallmark

Co-expression network 

and prior knowledge 

(Graph mining). PCA and 

clustering are used only 

for the prior knowledge.

1000

2

3
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Table 3(on next page)

Summary of correlation of apical endpoints to 24 experimental groups (6 chemicals x 4
exposure durations).
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1

T384 (n 

= 384)

T1000 (n 

= 1000) 

T1500 (n 

= 1500)

L1000 (n 

= 976)

S1500 (n 

= 2861)

Limma 

(n = 

1000)

# of BMDts 18 21 21 21 21 14

Mean ratio 

(BMDt/BMDa)

2.2 1.2 1.1 1.8 1.1 2.1

Correlation 

(BMDt, 

BMDa)

0.83

(p < 

0.001)

0.89

(p < 

0.001)

0.83

(p < 

0.001)

0.76

(p < 

0.001) 

0.78

(p < 

0.001)

0.73

(p < 0.01)

2
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Table 4(on next page)

Summary comparison of average classiûcation performance using the testing Rat
Kidney dataset.*

* Sensitivity would refer to the proportion of expression proûles that are correctly predicted
to be dysregulated (or toxic) among all actual dysregulated proûles. (see (Equations 2 3 7) for
deûnition of other performance evaluation metrics).
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1

Sensitivity Specificity Precision GMean F1 Score F0.5 Score

T1000 25.4% 72.1% 19.5% 41.6% 21.8% 20.3%

Limma 24.6% 70.8% 17.8% 39.2% 20.5% 18.8%

Random 23.9% 71.9% 17.8% 39.2% 20.1% 18.6%

L1000 20.9% 73.0% 16.8% 37.3% 18.6% 17.5%

S1500 19.4% 73.1% 16.5% 37.2% 17.7% 17%

2
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