
1

Molecular weight calculator for organic compounds in biotechnology

Wenfa Ng

Unaffiliated researcher, Singapore, Email: ngwenfa771@hotmail.com

Abstract

Automated calculation of molecular weight of chemical compounds would provide savings in time

and effort, especially in handling large number of compounds common in chemical or

biotechnology workflow. In this work, a molecular weight calculator was developed using

MATLAB and is capable of handling the chemical elements: carbon, hydrogen, oxygen, nitrogen,

phosphorus, and sulphur that constitute organic compounds common in biotechnology. Such

compounds would typically come across as either substrates or products of fermentation, where

automated calculation of molecular weight would feed into mass/charge calculations that facilitate

workflow involving their mass spectrometric detection. Specifically, chemical formulas of

molecular ion are necessary information for identifying particular mass peaks in mass

spectrometry, to which automated molecular weight calculation would greatly simplify peak

identification. Thus, the molecular weight calculator developed in this work could be used as a

subroutine for more complex software that provides identification of mass peaks in mass

spectrometry workflow detecting organic compounds in fermentation.

Keywords: molecular weight calculator, fermentation, organic compounds, molecular ion,

mass/charge ratio, mass spectrometry, software, MATLAB, substrates, products,

Subject areas: biochemistry, biotechnology, microbiology, bioinformatics,

Background

 Automated molecular weight calculation would help ease effort in many biotechnology

workflows such as calculation of the concentration of organic compounds that serve as substrates

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27836v1 | CC BY 4.0 Open Access | rec: 2 Jul 2019, publ: 2 Jul 2019

mailto:ngwenfa771@hotmail.com

2

and products in fermentation. With the molecular weight of the organic compounds in hand, it

would also facilitate the identification of mass peaks in liquid chromatography-mass spectrometry

detection of metabolites from fermentation. To this end, this work sought to develop an automated

molecular weight calculator for organic compounds in biotechnology. Specifically, these

compounds comprise elements: nitrogen, sulphur, carbon, hydrogen, oxygen and phosphorus.

Implemented in the general purpose programming language for science and engineering,

MATLAB, the molecular weight calculator takes as input chemical formulas of the compounds

from an Excel file and output a database comprising the compound names, chemical formula, and

molecular weight in another Excel file.

Implementation

 Using the built-in function, xlsread, the molecular weight calculator first read the name and

chemical formula of the compounds into a character array, which facilitates the downstream

extraction of compound name and chemical formula for calculation of molecular weight.

 The molecular weight calculation works by first reading each chemical formula as a

character array. Subsequently, each letter of the chemical formula is read. If the letter is a character

belonging to the element list, ‘CHONPS’, the algorithm will further check the subsequent two
letters for numerical value that indicates the number of atoms of the specific element in the

chemical formula. If the downstream characters are not numbers, the algorithm will retrieve the

mass number of the element and add it to the molecular weight of the compound. However, if the

downstream characters are numbers, the characters will be converted from a string to a number by

the built-in function str2num, and will be multiplied by the mass number of the element for input

to molecular weight calculation. The above process will be repeated till n-2 of the character array

that describes the chemical formula, where n is the total number of characters in the formula. In

essence, the molecular weight of the compound would be progressively built-up by this process.

 The algorithm is also able to cater to cases where a single number describes the number of

atoms of the element in the chemical formula. In this case, the character immediately downstream

of the character that describes an element would be read. If the downstream character is a number,

it would be converted from a string into a number, and used in multiplying the mass number of the

element for calculating the molecular weight of the compound. On the other hand, if the

downstream character is not a number, the mass number of the element in the preceding character

will be retrieved and added to the molecular weight of the compound. The above process would

be repeated till n-1 character of the character array that describes the chemical formula of the

compound.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27836v1 | CC BY 4.0 Open Access | rec: 2 Jul 2019, publ: 2 Jul 2019

3

 Finally, when the algorithm reaches the last character of the character array, it would

retrieve the mass number of the element if the character specifies an element. The retrieved mass

number would be added to the molecular weight of the compound. If the final character specifies

a number, nothing will be done, and the algorithm will output the final molecular weight of the

compound.

 Overall, the algorithm reads each character of the character array that specifies the

chemical formula of the compound, and builds up the molecular weight of the compound

progressively by identifying the element and the number of atoms of each element in the chemical

formula of the compound. The function will repeat the calculation for each compound listed in the

Excel input file and output the molecular weight of each compound in a separate Excel file.

Key features

 To allow ease of data entry, the algorithm allows as input an Excel file that describes the

names of the compounds and their chemical formula. Similarly, to help users better access the

results, the names, chemical formula, and molecular weight of the compounds would be output as

an Excel file named: “Molecular_weight_of_compounds.xlsx” (Figure 1).

Figure 1: Sample output of the algorithm listing the name, chemical formula, and molecular

weight (mw) of the various compounds.

 Different from online molecular weight calculators,1 2 3 this MATLAB software allows the

user to input a list of compounds for molecular weight calculation; thereby, reducing time needed

compared to using an online calculator to calculate molecular weight of each compound one at a

time.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27836v1 | CC BY 4.0 Open Access | rec: 2 Jul 2019, publ: 2 Jul 2019

4

Conclusions

 In this work, a molecular weight calculator was developed that could automatically read

the names and chemical formula of different organic compounds with elemental composition of

‘CHONPS’ from an Excel file, and outputs the names, chemical formula, and molecular weight of
the different compounds in a separate Excel file. Molecular weight calculation was performed by

an algorithm that reads each character of the character array that describes the chemical formula

of the compound, checks for the element, and number of atoms of the element in the chemical

formula, and proceeds with progressive calculation of the molecular weight of the compound. The

end result is a MATLAB-based molecular weight calculator that could handle any number of

compounds with elemental composition of ‘CHONPS’ typical of those encountered in
biotechnology. Compared to online molecular weight calculators, the present software provides

savings in time due to the ability to calculate the molecular weight of all compounds in a list at the

same time.

Source code

function compounddb = main

 [~,~,C] = xlsread('Sample_Input.xlsx');
 k1 = length(C);

 for i =1:k1
 compounddb(i).name = C{i,1};
 formula = C{i,2};
 compounddb(i).formula = formula;
 mw_of_compound = mw_calculator(formula);
 compounddb(i).mw = mw_of_compound;
 end

 write_data(compounddb);

end

function mw_of_compound = mw_calculator(formula)

 k1 = length(formula);
 element_list = 'CHONPS';
 number_list = '1234567890';
 string = [];
 mw_of_compound = 0;

 for i = 1:k1
 letter = formula(i);
 if contains(element_list, letter)
 molar_mass = mw_of_element(letter);
 if i < k1-1
 letter2 = formula(i+1);

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27836v1 | CC BY 4.0 Open Access | rec: 2 Jul 2019, publ: 2 Jul 2019

5

 letter3 = formula(i+2);

 if contains(number_list, letter2) && contains(number_list,
letter3)
 string = [letter2 letter3];
 number = str2num(string);
 mw_of_compound = mw_of_compound + molar_mass * number;
 continue
 end

 end

 if i < k1
 letter2 = formula(i+1);

 if contains(number_list, letter2)
 number = str2num(letter2);
 mw_of_compound = mw_of_compound + molar_mass * number;
 continue
 end
 end

 mw_of_compound = mw_of_compound + molar_mass * 1;
 end
 end

end

function molar_mass = mw_of_element(letter)

 if letter =='C'
 molar_mass = 12;
 end

 if letter =='H'
 molar_mass = 1;
 end

 if letter == 'O'
 molar_mass = 16;
 end

 if letter == 'N'
 molar_mass = 14;
 end

 if letter == 'P'
 molar_mass = 31;
 end

 if letter == 'S'
 molar_mass = 32;
 end

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27836v1 | CC BY 4.0 Open Access | rec: 2 Jul 2019, publ: 2 Jul 2019

6

end

function write_data(compounddb)

 A{1,1} = 'Name';
 A{1,2} = 'Chemical_formula';
 A{1,3} = 'Molecular_weight';

 k1 = length(compounddb);

 for i =1:k1
 A{i+1,1} = compounddb(i).name;
 A{i+1,2} = compounddb(i).formula;
 A{i+1,3} = compounddb(i).mw;
 end

 xlswrite('Molecular_weight_of_compounds.xlsx', A)

 end

References

1. Molecular Weight Calculator. Sigma-Aldrich Available at:

https://www.sigmaaldrich.com/chemistry/stable-isotopes-isotec/learning-center/mw-

calculator.html. (Accessed: 25th June 2019)

2. Molecular Weight Calculator - BOC Sciences. Available at:

https://www.bocsci.com/molecular-weight-calculator.html. (Accessed: 25th June 2019)

3. Molecular Weight Calculator (Molar Mass). Available at:

https://www.lenntech.com/calculators/molecular/molecular-weight-calculator.htm. (Accessed:

25th June 2019)

Supplementary information

MATLAB m files for the function are encapsulated in a zip file that serves as supplementary

information of this manuscript.

Conflicts of interest

The author declares no conflicts of interest.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27836v1 | CC BY 4.0 Open Access | rec: 2 Jul 2019, publ: 2 Jul 2019

7

Funding

No funding was used in this work.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27836v1 | CC BY 4.0 Open Access | rec: 2 Jul 2019, publ: 2 Jul 2019

