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Three Integrase (IN) strand transfer inhibitors are in intensive clinical use, raltegravir,
elvitegravir anddolutegravir. However, the onset of IN resistance mutations limits their
therapeutic eûciency. As put forth earlier, the drug aûnity for the intasome could be
improved by targeting preferentially the retroviralnucleobases, which are little, if at all,
mutation-prone. We report experimental results of anisotropy ûuorescence titrations of
viral DNA by these three drugs . These show that the ranking of their inhibitory activities of
the intasome corresponds to that of their free energies of binding, D Gs,to retroviral DNA,
and that such a ranking is only governed by the binding enthalpies, D H, the entropy
undergoing marginal variations.This ranking can therefore be directly correlated to that of
model Quantum Chemistry (QC) calculations of intermolecular interaction energies of the
sole halobenzene ring with the highly conserved retroviral nucleobases G4 and C14, using
Density Functional Theory. This DE(QC) ranking is in turn reproduced by the corresponding
DE tot values computed with a polarizable molecular mechanics/dynamics procedure, SIBFA
(Sum of Interactions Between Fragments Ab initio computed). Such validations should
enable polarizable molecular dynamics simulations on more potent inhibitors in their
complexes with the complete intasome. Such derivatives should principally encompass
modiûed halobenzene rings.
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38

39 Abstract. Three Integrase (IN) strand transfer inhibitors are in intensive clinical use, raltegravir, 

40 elvitegravir and dolutegravir. However, the onset of IN resistance mutations limits their 

41 therapeutic efficiency. As put forth earlier, the drug affinity for the intasome could be improved 

42 by targeting preferentially the retroviral nucleobases, which are little, if at all, mutation-prone. 

43 We report experimental results of anisotropy fluorescence titrations of viral DNA by these three 

44 drugs. These show that the ranking of their inhibitory activities of the intasome corresponds to 

45 that of their free energies of binding, ôGs, to retroviral DNA, and that such a ranking is only 

46 governed by the binding enthalpies, ôH, the entropy undergoing marginal variations. This 

47 ranking can therefore be directly correlated to that of model Quantum Chemistry (QC) 

48 calculations of intermolecular interaction energies of the sole halobenzene ring with the highly 

49 conserved retroviral nucleobases G4 and C14, using Density Functional Theory. This ôE(QC) 

50 ranking is in turn reproduced by the corresponding ôEtot values computed with a polarizable 

51 molecular mechanics/dynamics procedure, SIBFA (Sum of Interactions Between Fragments Ab 

52 initio computed). Such validations should enable polarizable molecular dynamics simulations on 

53 more potent inhibitors in their complexes with the complete intasome. Such derivatives should 

54 principally encompass modified halobenzene rings.

55

56 I. Introduction.

57

58 HIV-1 Integrase (IN) is a key element in viral replication. In addition to its essential role in viral 

59 DNA (vDNA) integration into host genomic DNA, IN appears involved, directly or indirectly, in 

60 reverse transcription [1], nuclear import [2-3] and HIV-1 particle maturation [4-5]. Since in 

61 addition IN has no counterpart in human cells, it could represent a privileged target for the 

62 design of potent antiretroviral drugs. 

63 The integration step is carried by a multimer of INs assembled on vDNA ends, referred to as the 

64 intasome. In a first step, denoted as 39-processing, a 3'GT dinucleotide is removed from each 

65 end of the Long Terminal Repeats (LTRs) of vDNA. This occurs in the cytoplasm within a multi-

66 component pre-integration complex (PIC) which gathers the vDNA and several viral and cellular 

67 proteins. DNA strand transfer occurs in a second step, after the PIC is chaperoned into the 

68 nucleus and results in integration of vDNA as a provirus into the host genome. This requires 

69 cutting of two phosphodiester bonds five base pairs apart on opposite strands of the host DNA 

70 and is done by free 3'-OH groups that were liberated following LTR processing [6-8]. 
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71 IN strand transfer inhibitors (INSTIs) proved to be much more effective than processing 

72 inhibitors and enabled the development of a successful class of antiretroviral drugs [9]. Three 

73 inhibitors inspired by the original diketo acids (DKAs) have been successively approved and are 

74 commonly used in HIV-1 treatment, namely raltegravir (RAL; MK-0518), elvitegravir (EVG; GS-

75 9137) and dolutegravir (DTG; S/GSK1349572) [10-13]. The latter is a second generation INSTI 

76 aimed at maintaining an effective efficacy to IN variants resistant to RAL and EVG [14-15]. 

77 As was the case for protease and reverse transcriptase inhibitors [16-17], IN inhibitors can 

78 generate several resistance mutations. These were recently reported following RAL, EVG and 

79 DTG treatment [18-21]. They affect, not only IN residues in direct interactions with INSTIs but 

80 also "outer-shell" residues indirectly bound [14, 22-23]. Among these are double mutations such 

81 as Q148R/H coupled to G140S/A that produce important synergetic effects on the efficacy of 

82 RAL, EVG and even DTG [24-25]. 

83 EVG, RAL and DTG (Figure 1) selectively bind at the interface of IN and the viral DNA ends, 

84 within the intasome and have in common two distinct structural motives: a) a large centralized 

85 pharmacophore contributing its keto oxygen and a coplanar neighboring oxygen to coordinate 

86 both two IN catalytic Mg(II), structural water molecules, and, either directly or through water, IN 

87 residues; and b) a halobenzyl group targeting the highly conserved 59CpA 39/59TpG 39 step on 

88 the viral DNA ends [9]. However, the surface and oxygen arrangement of the central 

89 pharmacophore differ among the three INSTIs, as well as the nature and position of the 

90 halogenation of their terminal aromatic ring: a single F is attached in para to RAL9s halobenzene 

91 ring, whereas EVG has an F in ortho and a Cl in meta, and DTG has two F atoms in ortho and 

92 para. 

93 Therefore, within the intasome, the binding of all three drugs targets both viral DNA and the viral 

94 protein. In addition to the well-known established interactions with the catalytic and non-catalytic 

95 site of IN, following the 39 processing reaction, the X-ray structures of IN-DNA-inhibitor 

96 complexes (Figure 1B) show that the halogenated benzene ring stacks over the C base (C14) 

97 upstream, while the C-X bond points toward the center of the G base (G4) downstream of the 

98 second strand [26-28]. 

99 On another note, it was reported that, compared with RAL and EVG, DTG displays a more 

100 potent in vitro anti-HIV activity and a distinct resistance profile [14-15, 29-30]. Furthermore, we 

101 have ourselves reported that an increase in the drug-vDNA complex stability correlates with an 

102 increase in drug activity and a decrease in viral resistance [14, 27-28], highlighting the important 

103 contribution of the vDNA end recognition for the binding affinity of INSTIs to the intasome [31-
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104 34]. In this connection, we have shown a narrow correlation between the strongest DTG-DNA 

105 affinity and DTG9s highest barrier to resistance [32].

106 Maximizing shape complementarity at the IN-vDNA-inhibitor surface could serve as a guiding 

107 principle for the development of new INSTIs [9, 26, 31, 35]. An important feature of second 

108 generation INSTIs consists into their increased contacts not only with IN active and non-active 

109 site, but also with processed viral DNA, right before the strand transfer step. This is supported 

110 by the fact that the sequence of the nucleic bases at the ends of the LTR represents stringent 

111 requirements concerning retroviral integration and that there is no evidence of mutations in the 

112 LTRs that could lead to resistance to INSTIs [35-38].

113

114

115 Could attempts to design novel INSTI9s with enhanced affinities focus on the viral DNA, which 

116 would render the new inhibitors much less sensitive to mutations occurring on the IN protein? 

117 As a continuation of our previous studies, we experimentally measure the ôG values for the 

118 binding of RAL, EVG and DTG to viral DNA. This is done by fluorescence anisotropy 

119 experiments at three different temperatures. We also analyze, by both ab initio quantum 

120 chemistry (QC) and polarizable molecular mechanics/dynamics, the intermolecular interaction 

121 energies of their halobenzyl rings with G4 and C14. The individual energy contributions of 

122 ôE(QC) are also compared to their SIBFA counterparts. Such analyses and validations of 

123 inhibitor interactions within the core of vDNA binding site constitute a necessary step toward 

124 long-duration PMD of drug-intasome complexes. 

125 An outstanding feature of the CX ring in halobenzenes, discovered on the basis of quantum 

126 chemistry [39, 40] is the existence of a zone of electron depletion along the extension of the 

127 bond with a magnitude increasing along the series F>  Cl >  Br > I. This 8sigma-hole9 goes along 

128 with a zone of electronic build-up on a cone around the halogen. It has been earlier shown that 

129 atom-centered point charges used in 8classical9 force-fields cannot account for the impact of the 

130 sigma-hole on the Coulomb electrostatic contribution EC: this could be only partly remedied 

131 upon resorting to an additional fictitious atom prolonging the CX bond with a partial charge and 

132 a distance to the X bearer that have to be fit on the basis of QC calculations [41-43] On the 

133 other hand, anisotropic potentials such as SIBFA, with distributed atomic multipoles up to 

134 quadrupoles, were shown to closely account for the impact of the sigma-hole along the F, Cl, 

135 and Br series on the magnitude of EC both along and around the CX- bond without extra 

136 calibration effort [44]. Along these lines, recent work showed that another possibility, resorting to 

137 a distributed charge model to reproduce the local quadrupole around the CX could also enable 
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138 to account for the impact of the sigma-hole on EC [45, 46 ] An additional incentive to validate 

139 SIBFA in the present work is the perspective of its applications to the entirety of the inhibitor-INT 

140 complex, in which the presence of two Mg(II) cations close to one another and of structured 

141 water molecules render it preferable to resort to polarizable potentials than to 8classical9, non-

142 polarizable ones.

143 At this stage we do not intend to compute true ôGs to compare the binding affinities of the three 

144 inhibitors to vDNA and a fortiori to INT. These would only be meaningful at the outcome of long-

145 duration Molecular Dynamics, and such an outcome could be very sensitive to the accuracy of 

146 the intermolecular potential. As a first step toward this evaluation, we focus here on the sole 

147 halobenzene-G4/C14 interactions expressed in terms of actual enthalpies of binding and 

148 evaluate if two points are satisfied: a) whether the ranking of ôE(QC) intermolecular interaction 

149 energies parallels that of the experimental binding enthalpies; b) whether in turn the 

150 corresponding ranking of ôE(SIBFA) values parallels the QC one.

151

152

153 II. Materials and Methods

154

155 1. DNA sample and inhibitors. The oligonucleotide LTR32 (Figure 2) was purchased from 

156 Eurogentec (Belgium). It was designed to adopt a folded double-stranded hairpin structure even 

157 under the low concentrations (10-9 to 10-5 M) used in fluorescence anisotropy experiments. RAL, 

158 EVG and DTG were purchased from AdooQ and Medchemexpress, respectively and their 

159 structures are represented in Figure 1A.

160

161

162

163  LTR32 is a linear oligonucleotide sequence designed to adopt a double strand hairpin structure 

164 in solution upon folding around a loop created by a purposely added thymine triplet (TTT in 

165 green) with the sensitive fluorescein reporter (F, in orange) grafted to its central T. The latter 

166 allows fluorescence studies in solution at low concentrations. The stem that reproduces the 39 

167 processed LTR end comprises a 17-nucleotide strand and a 15-nucleotide strand corresponding 

168 to the unreactive strand and the reactive strand, respectively. Their pairing leaves an unpaired 

169 dinucleotide 59 AC 39 at the 59 end on the unreactive strand. In each strand the nucleotide 

170 numbering goes from the 59 to the 39 extremity. The highly conserved doublet of base pairs, here 

171 numbered C14-G4 and A15-T3, is colored in red.
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172

173 2. Fluorescence measurements. Thermodynamic parameters of ligand-processed DNA 

174 complexes were identified using fluorescence anisotropy [47-48] on a Jobin-Yvon Fluoromax II 

175 instrument. RAL was purchased from AdooQ and EVG and DTG were purchased from 

176 Medchemexpress. The LTR32 oligonucleotide, reproducing the processed viral DNA, was 

177 purchased from Eurogentec (Belgium). It contains a thymine loop bearing the fluorescein 

178 reporter for fluorescence studies. During titrations, labeled DNA (LTR32) was dissolved in 

179 phosphate buffer (10mM, pH 6, I=0.1) and placed in thermally jacketed quartz cells (1cm) at 

180 5oC, 15oC and 25oC; increasing concentrations of the inhibitors (RAL, EVG or DTG) were then 

181 added. The excitation was recorded at 488 nm and the emission at 516 nm. The equilibrium 

182 dissociation constants (Kd) were determined with GraphPAD Prism 5 applying the non-linear 

183 regression (curve fit)-Least square procedure. This analysis led to the calculation of binding free 

184 energies using the following equation: �G= -R T ln (1/kd).

185

186 3. PDB entries. In the used computational approaches, all complexes were extracted from the 

187 X-ray structures of the PFV intasome (IN-viral DNA-Mg2+) in complex with EVG [26] (PDB code: 

188 3L2U), DTG [28] (PDB code: 3S3M) and RAL [27] (PDB code: 3OYA). 

189

190 4. Ab-initio QC Computations. The systems were first energy-minimized at the correlated level 

191 using the dispersion 3 corrected B97-D functional by Grimme et al. [49] and the cc-pVTZ basis 

192 set [50, 51] with the Gaussian 9 (G09) software [52]. 

193 During the minimization C4 and G14 were kept fixed and only the halogenated ring was allowed 

194 to move. 

195

196 41. Energy decomposition analysis. Two sets of calculations were performed at the Hartree-

197 Fock and DFT-d levels in order to obtain all five contributions to the interaction energy.

198

199 4.1.1. Hartree-Fock (HF) calculations. The energy decomposition analysis (EDA) was done 

200 using the reduced variational space (RVS) procedure of Stevens and Fink [53]. It separates the 

201 total interaction energy into four contributions: the first-order (E1) Coulomb (EC) and short-range 

202 exchange2 repulsion (Eexch) and the second-order (E2) polarization (Epol) and charge transfer 

203 (Ect). The basis set superposition error (BSSE) [54, 55] is evaluated within the virtual orbital 

204 space. EDA was done with the GAMESS software [56] at the HF/cc-pVTZ level of theory. This 

205 basis set was shown to closely reproduce the results from the more extended aug-cc-pVTZ 
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206 basis set in several test calculations bearing on inter- as well as intramolecular interactions [57].

207

208 4.1.2. Correlated Calculations. In order to obtain the dispersion contribution, the 

209 intermolecular interaction energies �E were computed at the correlated level using the 

210 dispersion-corrected B97-D functional with the G09 software and the cc-pVTZ basis set. The 

211 values of �E were also corrected for BSSE. For a given complex, the dispersion contribution 

212 (Edisp) is evaluated as the difference between the BSSE-corrected B97-D intermolecular 

213 interaction energies and the HF ones.

214

215 5. SIBFA Computations. The intermolecular interaction energy (�Etot) is computed as the sum 

216 of five contributions: electrostatic multipolar (EMTP), short-range repulsion (Erep), polarization 

217 (Epol), charge transfer (ECT), and dispersion (Edisp) [58]. EMTP is computed with distributed 

218 multipoles derived from the QC molecular orbitals of the individual ligands [59, 60, 61], 

219 augmented with penetration [62]. The anisotropic polarizabilities are distributed on the centroids 

220 of the localized orbitals [63]. Erep and ECT are computed using representations of the molecular 

221 orbitals on the chemical bonds and the lone-pairs. Edisp has an expansion into 1/R6, 1/R8, and 

222 1/R10 along with an exchange2 dispersion component [64]. The parameters for F and Cl were 

223 reported in [45].

224

225 III. Results and discussion.
226

227 We have previously reported that the strong INSTIs bind tightly to the ends of the 39-processed 

228 vDNA, at the LTR ends [32]; thus, justifying their function as a blocker of the strand transfer step 

229 [26]. Table 1 reports the Kd values for the binding of RAL, EVG and DTG to the LTR32 

230 oligonucleotide, as determined by fluorescence anisotropy titrations in a phosphate buffer at 5°, 

231 15° and 25°C. The fluorescence anisotropy titration curves of LTR32 for increasing 

232 concentrations of drugs are reported in Figures S.II., S.III. and S.IV. Those of LTR32 by DTG 

233 (S.II.A.) and EVG (S.III.A.) at 5°C already reported in El Khoury et al., 2017 [32], are added to 

234 this study for completeness. The DTG > EVG > RAL Kd ranking of inhibitor-vDNA binding 

235 affinities is the same, regarding these three inhibitors, as the one reported for their binding to 

236 the complete intasome [65]. Including the desolvation energies of the halobenzene rings is not 

237 expected to alter this ranking. We have computed their continuum solvation energies ôGsolv with 

238 a Polarizable Continuum Model (PCM) [66]. These could represent an upper bound to the 8real9 

239 solvation energies, on account of a lesser exposure to solvation of the ring when it is integrated 
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240 in the entire drug. The present values amount to -5.1, -6.0, and -3.9 kcal/mol for RAL, EVG and 

241 DTG, respectively. The relative differences are much smaller than the ôEtot ones, and their 

242 inclusion would actually favor DTG. 

243

244

245

246

247 We have further unraveled the enthalpy and entropy components of the free energies of LTR32-

248 INSTI complexation. The �G, �H and �S values are reported in Tables II.a-c.

249

250

251 These results show the affinity ranking of the three inhibitors for end vDNA to be dominated by 

252 the enthalpy component. This finding is fully consistent with the microcalorimetry study reported 

253 by Chaires et al., which covered 26 DNA ligands [67] and led to the conclusion that formation of 

254 DNA-intercalator complexes is enthalpy-driven, while that of DNA-groove binder complexes is 

255 entropy-driven. RAL-LTR32, EVG-LTR32 and DTG-LTR32 interactions are characterized by a 

256 mean �H / �G ratio in the 1.3-1.4 range. This is within the 0.83-1.97 �H / �G ratio range, 

257 considered as a signature of an enthalpy-dominated interaction. 

258 The above experimental results are an incentive for SIBFA polarizable molecular dynamics 

259 simulations of complexes of various halogenated drugs with retroviral DNAs, which should 

260 benefit from the massively parallel Tinker-HP software, co-developed in one of our Laboratories 

261 [68]. We deemed it necessary, however, to perform a prior validation in addressing the question: 

262 to which extent would the binding of the drug halobenzyl rings to G4 and C14 be accountable 

263 for the DTG > EVG > RAL ranking, and how well could the outcome from high-level QC 

264 computations be accounted for by the SIBFA polarizable molecular mechanics procedure?

265 The considered complexes have small sizes and, for the present purposes, energy-

266 minimizations bore on the sole halobenzyl ring. An evaluation of the SIBFA accuracy is 

267 nevertheless mandatory, as there would be little hope that inconsistencies between the SIBFA 

268 and QC results at this early stage could be obliterated or restored by subsequent large-scale 

269 MD simulations on the entire drug-IN-vDNA complex. It also is in line with our previous analyses 

270 on the binding of a series of mono- and poly-halogenated rings to G4/C14 and the sensitivity of 

271 �E and its individual contributions to diverse chemical substitutions [69, 70]. Table III lists the 

272 calculated values of �E(QC/B97-D) and �Etot(SIBFA). The results are summarized in Table III, 

273 which lists the values of �E(QC/B97-D) and �Etot(SIBFA). Supp. Info SI lists the individual 
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274 contributions of QC and SIBFA ôE values and compares their trends. It is first observed that 

275 regarding the halobenzene rings, �E(B97-D) for the inhibitor-G4-C14 complexes has the same 

276 DTG > EVG > RAL ranking as the ôH values for the DKA-vDNA complexes. This attests to the 

277 key role of the halobenzene ring as a modulator of inhibitor affinity for vDNA. It is also noted that 

278 the QC results can themselves be closely accounted for by ôEtot(SIBFA), regarding both the 

279 magnitudes of ôE and the DKA ranking. Close agreements between SIBFA and QC values for 

280 the G4/C14 complexes with several halobenzene derivatives were previously reported by us 

281 [68]. Supp. Info SI shows that such agreements carry out regarding the individual energy 

282 contributions and their trends.

283

284

285

286 IV. Conclusions and Perspectives. 

287

288 This study focused on three INSTIs successively used in anti-HIV-1 therapy, raltegravir (RAL), 

289 elvitegravir (EVG), and dolutegravir (DTG). We carried out measurements of their free energies 

290 of binding, ôG, to the vDNA end in solution, and unraveled their enthalpy and entropy 

291 components in solution. We found that the ôG ranking DTG > EVG > RAL parallels that inferred 

292 for the intasome [65]. The ôG ranking is also paralleled by the ôH one, a signature for 

293 intercalation-driven binding. It is also the same as the one computed by high-level QC for the 

294 binding of the halobenzene ring to the sole G4 and C14 dimer, as well as by the SIBFA 

295 polarizable molecular mechanics procedure. The consistency between SIBFA and QC was 

296 previously supported by the complexes of G4/C14 with a diversity of substituted halobenzenes 

297 [69]. 

298 As put forth in [69], it is possible to leverage the 8Janus-like9 properties of the CX bond (X=F, Cl, 

299 Br), electron-deficient along the bond and electron-rich in a cone around it, to target respectively 

300 and simultaneously electron-rich and electron-deficient sites of the nucleotide bases. 

301 Polarizable molecular mechanics is responsive to the electronic changes brought about by 

302 substitutions as these impact the magnitude of both QC-derived distributed multipoles and 

303 polarizabilities used to compute the EMTP* and Epol contributions. These should enable to fine-

304 tune and further evolve the affinity of halobenzenes for targeted HIV-1 DNA bases. 
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305 Along these lines, several novel compounds were recently designed and endowed with more 

306 favorable ôE(QC) and ôE(SIBFA) values than the DTG ring. They will be reported in a 

307 forthcoming paper (El Darazi et al., manuscript in preparation). 

308

309 In addition to handling the halobenzene interactions [69, 70], a further asset of SIBFA and 

310 related polarizable potentials [71] is the reliable handling of poly-ligated complexes of divalent 

311 cations [72] and interactions involving 8discrete9 structural waters [73, 74]. Such structural 

312 motives are also encountered in the intasome-INSTI complexes. 

313

314 Grounded on these validations, we plan to undertake long-duration polarizable MD simulations 

315 on a diversity of INSTI complexes with intasome, resorting to the massively parallel computer 

316 code Tinker-HP. These will enable to quantify the extent to which the halobenzene-G4/C14 

317 interactions are modulated by the conformational flexibilities of each partner within the complex, 

318 by the electrostatic potentials and fields exerted by the neighboring INT residues and viral DNA 

319 bases, and possibly as well by the two neighboring divalent Mg(II) cations and by the structural 

320 waters.

321

322

323

324

325

326 Figure captions. 
327

328 Figure 1. FDA approved Integrase strand transfer inhibitors INSTIs (from left to right): 

329 raltegravir, elvitegravir and dolutegravir. (A) 2D structures of the inhibitors. The red dashed 

330 circle indicates the halobenzyl moiety. (B) 3D structure of each inhibitor in complex with the 

331 Integrase (IN) and the viral DNA (vDNA). (C) Close-up on the interactions involving the 

332 halobenzene, cytosine 16 and guanine 14.

333 Figure 2: LTR32 is a linear oligonucleotide sequence designed to adopt a double strand hairpin 

334 structure in solution upon folding around a loop created by a purposely added thymine triplet 

335 (TTT in green) with the sensitive fluorescein reporter (F, in orange) grafted to its central T. The 

336 latter allows fluorescence studies in solution at low concentrations. The stem that reproduces 

337 the 39 processed LTR end comprises a 17-nucleotide strand and a 15-nucleotide strand 

338 corresponding to the unreactive strand and the reactive strand, respectively. Their pairing 

339 leaves an unpaired dinucleotide 59 AC 39 at the 59 end on the unreactive strand. In each strand 
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340 the nucleotide numbering goes from the 59 to the 39 extremity. The highly conserved doublet of 

341 base pairs, here numbered C14-G4 and A15-T3, is colored in red.

342
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1

Figure 1. FDA approved Integrase strand transfer inhibitors INSTIs: raltegravir, elvitegravir and

dolutegravir. (A) 2D structures of the inhibitors. The red dashed circle indicates the halobenzyl

moiety. (B) 3D structure of each inhibitor in complex with the IN active site and the vDNA. (C)

Close-up on the interactions involving the halobenzene, cytosine 14 and guanine 4 near the

processed 32-end of the viral DNA.
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LTR32

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27833v1 | CC BY 4.0 Open Access | rec: 1 Jul 2019, publ: 1 Jul 2019



Figure 2: LTR32 is a linear oligonucleotide sequence designed to adopt a double strand hairpin

structure in solution upon folding around a loop created by a purposely added thymine triplet

(TTT in green) with the sensitive fluorescein reporter (F, in orange) grafted to its central T. The

latter allows fluorescence studies in solution at low concentrations. The stem that reproduces

the  39  processed  LTR  end  comprises  a  17-nucleotide  strand  and  a  15-nucleotide  strand

corresponding to the unreactive strand and the reactive strand, respectively. Their pairing leaves

an unpaired dinucleotide 59 AC 39 at the 59 end on the unreactive strand. In each strand the

nucleotide numbering goes from the 59 to the 39 extremity. The highly conserved doublet of base

pairs, here numbered C14-G4 and A15-T3, is colored in red.
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Dissociation contents of LTR32-INSTI interactions
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Table I. Dissociation constants (Kds) of LTR32-INSTIs interactions

 RAL EVG DTG

Temperature    

278 5.90E-09 9.50E-11 1.63E-12

288 7.69E-09 1.44E-10 2.74E-12

298 1.26E-08 2.65E-10 6.07E-12

Kd (Molar)    

Temperature (Kelvin)   
3

4

5

6
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Thermodynamic contributions of LTR32-INSTI interactions
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QC and SIBFA computations of the INSTI(s)=G4/C14 interactions
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Table III. QC and SIBFA computations of the INSTI(s)-C14/G4 interactions.

 RAL EVG DTG

Procedure SIBFA QC SIBFA QC SIBFA QC

�E tot -31.5 -30.1 -37.1 238.3 -39.0 -40.8

3  

4
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