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The mercuric content, pollution and contamination characteristics of water, sediments,
edible muscles of a non-piscivorous ûsh (Oreochromis nilotica Linnaeus 1758 [Cichlidae])
and yams (Dioscorea alata) in mercury-based artisanal and small-scale gold mining
(ASGM) impacted Namukombe stream and its propinquity, Busia gold district, Uganda
were evaluated. Human health risk assessment from consumption of the ûshes and yams
as well as dermal contact with sediments from the stream were performed. Forty-eight
(48) samples of water (12), sediments (12), ûsh (12), and yams (12) were taken at
intervals of 0, 10, 20 and 30m from up, middle and down sluices of the stream and
analyzed for total mercury (THg) using US EPA method 1631. Results showed that water in
the stream is polluted with mercury (Hg) in the range of 0.00 to 1.21±0.070mg/L while
sediments contain Hg up to 0.14±0.04ugg-1. THg content of the edible muscles of
Oreochromis nilotica ranges from 0.00 to 0.11±0.010ugg-1 while yams contain 0.00 to
0.30±0.001ugg-1 of Hg. The estimated daily intakes (EDIs) ranged from 0.0049 to
0.0183ugg-1day-1 and 0.020 to 0.073ugg-1day-1 for ûsh consumed by adults and children
respectively. The corresponding health risk indices (HRIs) ranged from 0.0123 to 0.04576
and 0.05 to 0.183. EDIs were from 0.0042 to 0.1279ugg-1day-1 and 0.013 to 0.394ugg-1day-1
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for yams consumed by adults and children respectively. The HRIs recorded were from
0.011 to 0.320 and to 0.033 to 0.985. All the mean THg contents of the investigated
matrices were within acceptable WHO/US EPA limits except for water samples.
Consumption of yams grown at 0m up sluice of Namukombe stream may pose deleterious
health risks as reûected by the HRI of 0.985 being very close to 1.0. From pollution and
risk assessments, Hg usage should be delimited in Syanyonja ASGM areas; solutions to
abolish mercury based ASGM in the area ought to be sought at its soonest to avert the
accentuating health, economic and ecological disaster arising from the continual discharge
of Hg into the surrounding areas. Other safe gold recovery methods such as use of borax
should be encouraged. Waste management system for contaminated wastewater, used Hg
bottles and tailings should be centralized to enable Hg waste management in ASGM areas
in Syanyonja.
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28 Abstract

29 The mercuric content, pollution and contamination characteristics of water, sediments, edible 

30 muscles of a non-piscivorous fish (Oreochromis nilotica Linnaeus 1758 [Cichlidae]) and yams 

31 (Dioscorea alata) in mercury-based artisanal and small-scale gold mining (ASGM) impacted 

32 Namukombe stream and its propinquity, Busia gold district, Uganda were evaluated. Human 

33 health risk assessment from consumption of the fishes and yams as well as dermal contact with 

34 sediments from the stream were performed. Forty-eight (48) samples of water (12), sediments 

35 (12), fish (12), and yams (12) were taken at intervals of 0, 10, 20 and 30m from up, middle and 

36 down sluices of the stream and analyzed for total mercury (THg) using US EPA method 1631. 

37 Results showed that water in the stream is polluted with mercury (Hg) in the range of 0.00 to 
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38 1.21±0.070mg/L while sediments contain Hg up to 0.14±0.040 gg-1. THg content of the edible ÿ
39 muscles of Oreochromis nilotica ranges from 0.00 to 0.11±0.010 gg-1 while yams contain 0.00 ÿ
40 to 0.30±0.001 gg-1 of Hg. The estimated daily intakes (EDIs) ranged from 0.0049 to 0.0183 gg-ÿ ÿ
41 1day-1 and 0.020 to 0.073 gg-1day-1 for fish consumed by adults and children respectively. The ÿ
42 corresponding health risk indices (HRIs) ranged from 0.0123 to 0.04576 and 0.05 to 0.183. EDIs 

43 were from 0.0042 to 0.1279 gg-1day-1 and  0.013 to 0.394 gg-1day-1 for yams consumed by ÿ ÿ
44 adults and children respectively. The HRIs recorded were from 0.011 to 0.320 and to 0.033 to 

45 0.985. All the mean THg contents of the investigated matrices were within acceptable WHO/US 

46 EPA limits except for water samples. Consumption of yams grown at 0m up sluice of 

47 Namukombe stream may pose deleterious health risks as reflected by the HRI of 0.985 being 

48 very close to 1.0. From pollution and risk assessments, Hg usage should be delimited in 

49 Syanyonja ASGM areas; solutions to abolish mercury based ASGM in the area ought to be 

50 sought at its soonest to avert the accentuating health, economic and ecological disaster arising 

51 from the continual discharge of Hg into the surrounding areas. Other safe gold recovery methods 

52 such as use of borax should be encouraged. Waste management system for contaminated 

53 wastewater, used Hg bottles and tailings should be centralized to enable Hg waste management 

54 in ASGM areas in Syanyonja.

55

56 Introduction

57 Artisanal and small-scale mining (ASM) is a lucrative source of income in Uganda employing 

58 over 400,000 people as of 2015 [1]. ASM in Uganda focuses majorly on gold in the gold districts 

59 of Mubende, Namayingo, Busia, Buhweju, Kaabong, Nakapiripirit and Amudat; sand 

60 (countrywide), clay, tin, wolfram and iron ore in Isingiro, Ntungamo, Kabale, Kisoro and 

61 Kanungu districts. The discovery of gold (Au) was first witnessed in West Nile in 1915, but no 

62 mining commenced until 1933. In Busia, gold was reported in 1932 in Osipiri area (Busia-

63 Kakamega greenstone belt) [2] which registered ASGM on vein and alluvial deposits in the 

64 auriferous areas of Tiira, Makina, Amonikakine and Osapiri villages up-to-date [3]. Despite the 

65 fact that rudimentary tools are employed, ASGM in Busia has continued, an indication that the 

66 business is recovering sizeable quantities of gold nuggets [3]. More so, gold prices now exceeds 

67 US $1,600 per ounce (from less than US$500 in the 1980s), causing ASGM to rise along with its 

68 elemental mercuric pollution [4]. Reports from Bank of Uganda noted gold as the second most 

69 important export of Uganda after coffee with a worth of US $35.73m in 2015 and US $339.54m 

70 in 2016 [5].

71     In Busia and Bugiri districts, close to 1,000 gold miners engage in mercurial ASGM with 

72 reported 150kg of Hg per annum ending up in the downstream areas. Approximated 45kg of Hg 

73 per annum get discharged with tailings into small rivers and streams in Busia during gravity 

74 concentration of auriferous materials (panning) [6]. Miners are thus exposed to elemental Hg 

75 intoxication [7] as well as cyanide used to extract gold from tailings. Similarly, miners handling 

76 amalgamation Hg or living in close proximity to the uncontrolled mercurial gold recovering sites 

77 risk coming in contact with Hg through dermal adsorption during amalgamation, inhalation of 
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78 Hg vapor, drinking Hg polluted water and consumption of foods such as fish, yams, maize, 

79 millet and potatoes grown in Hg-contaminated water and soils. The ASGM population of the 

80 neighboring village to Syanyonja (Tiira) who participated in mercurial ASGM have been 

81 diagnosed with severe health complications including paralysis [8]. Worse still, many miners 

82 have been buried by open pits in mines. The miners reportedly use bare hands during gold 

83 recovery without usage of personal protective equipment [8] contrary to international guidelines 

84 (UNIDO) on Hg use [1]. It is reported that Hg is poorly recovered in ASGM processes and the 

85 emission factor can be as high as 15g Hg/g gold produced [9]. More so, ASGM is inextricably 

86 linked with human health and poverty concerns. 

87   Elemental Hg intoxication leads to irreversible neurological, kidney and autoimmune 

88 impairment coupled with respiratory tract irritation, chemical pneumonitis, pulmonary oedema, 

89 chest tightness, respiratory distress [10], respiratory failure and death [11]. Systemic absorption 

90 of elemental Hg via the lungs causes nausea, vomiting, headache, fever, chills, abdominal 

91 cramps, and diarrhea. Chronic, lower level exposure to elemental Hg induces gingivostomatitis, 

92 photophobia, tremors and neuropsychiatric symptoms (fatigue, insomnia, anorexia, shyness, 

93 withdrawal, depression, nervousness, irritability and memory problems) [12]. Elemental and 

94 inorganic Hg toxicity in children may be witnessed in oedematous, painful, red, desquamating 

95 fingers and toes (acrodynia), as well as hypertension [13]. 

96 Mercury-gold amalgamation transmogrifies elemental Hg into methylmercury (MeHg), which is 

97 the most toxic organic form of Hg and a powerful neurotoxin reported to enter food chain 

98 through bioaccumulation [13,14]. MeHg because of its lipid-solubility can readily enter 

99 bloodstream via the digestive system, usually in excess of 90% [15]. On crossing the blood-brain 

100 barrier, MeHg accumulates in the spinal cord, triggering headaches, ataxia, dysarthria, visual 

101 field constriction, blindness, hearing impairment, psychiatric disturbance, muscle tremor, 

102 movement disorders, paralysis and death [16]. 

103    Uganda National Environmental Management Authority (NEMA) reported in 2017 that the 

104 Ugandan ASGM sector contributes an estimated annual Hg input of 18.495Mt per annum, of 

105 which 12.136 Mt per annum is released in the air, 3.333Mt per annum is released in water, and 

106 3.027Mt per annum is disposed on land [17]. As reported in other ASGM areas globally, Hg 

107 from ASGM is often discharged in a perverted fashion into ecosystems [18,19], initiating 

108 prodigious pollution of aquatic biota, water, sediments, soil and air [20-22]. This is disastrous for 

109 the case of Syanyonja and Busia as a whole since the Hg may likely get entrained in sediments 

110 which can enter 88the life artery of East African countries99 (Lake Victoria), 30km downstream 

111 via a series of wetlands [6]. 

112    This study provides the first ever comprehensive assessment of mercuric contamination of 

113 water, sediments, fish and yams from Namukombe stream in Syanyonja village, Busia district 

114 and creates a paradigm for future studies on the development of effective remediation strategies 

115 on reducing mercuric pollution from ASGM in Busia and could improve government decision-

116 making on ASGM activities in the gold districts of Uganda.

117
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118 Materials and Methods

119 Brief description of the area under study

120 The study was conducted in Namukombe stream, Syanyonja village, Busitema sub county, Busia 

121 gold district, Eastern Uganda (Figure 1). Syanyonja village lies in the coordinates UTM 60648 

122 36N617118. Namukombe stream is the one of the water bodies in Syanyonja village where 

123 mercury-based ASGM activities, washing, bathing, fishing and growing of food crops are done.

124

125 Collection and preparation of samples

126

127 All samples were obtained in triplicate from up, middle and downstream at 0,10, 20 and 30m 

128 along the stream.

129 Water samples were collected in plastic containers precleaned by washing in non-ionic 

130 detergent, rinsed with tap water and later soaked in 10% HNO3 for 72hours and finally 

131 rinsed with deionized water prior to usage. The collected samples were microfiltered through 

132 0.45¿m pore diameter membrane filters immediately and preserved with concentrated nitric acid. 

133 For analysis, the samples were prepared using the American Public Health Association (APHA) 

134 standard method 9221 for examination of water and wastewater [23].

135 Superficial sediment samples were obtained using a grab sampler at 0-5cm in accordance with 

136 the United Nations Environment Programme9s reference method for sediment pollution studies 

137 (UNEP method number RSRM 20) [24] to address geographic differences. Sediment samples 

138 collected were put in clean presterilized plastic bottles, tightly sealed and labelled. The samples 

139 were oven-dried at 80-95°C for 16 hours to reach a constant weight, then crushed in a stone 

140 mortar and sieved through a 63¿m sieve. The powdered samples were preserved at 40C on an ice 

141 block to preserve their integrity prior to analysis.

142 The best way to determine if mercury is becoming bioavailable within discrete areas is to 

143 analyze resident biota, such as invertebrates or small fish. Fish samples (5.5-8.0cm fork length) 

144 were caught and preliminarily prepared for analysis as described by Omara et al. [25].

145 Yam samples obtained were peeled and sliced. Aliquots (3.0±0.1g) were weighed and ashed in a 

146 furnace at 550oC for 5 hours. 

147

148 Analysis of samples

149 Total mercury in the samples were determined as per the US EPA method 1631 [26]. Total 

150 mercury was analyzed by BrCl oxidation and immediately prior to analysis, excess bromine in 

151 all samples was neutralized with 10% hydroxylamine hydrochloride. All samples were then 

152 reduced with stannous chloride, purged with nitrogen gas and trapped on columns packed with 

153 gold coated sand. The gold trap was heated and the desorped mercury detected with Cold-Vapor 

154 Atomic Fluorescence Spectrophotometer- CVAFS. The concentrations were reported in mg/L for 

155 water or µgg-1 for solid foods for easy comparison with set international compliance limits. 

156

157

158 Human health risk assessment
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159 The estimated daily intake (EDI) was calculated to averagely estimate the daily Hg loading into 

160 the body system of a specified body weight of a consumer (adult/child) via consumption of 

161 contaminated fish and yams while the average daily dose (ADDtherm) was calculated to determine 

162 intoxication via dermal contact with mercurially polluted sediments. These provide the relative 

163 availability of Hg but does not take into cognizance the possibility of metabolic ejection of Hg. 

164 EDI in ¿gg-1day-1 was computed using Equation 1 previously employed elsewhere [25] while 

165 ADDtherm (¿gg-1day-1) was computed from Equation 2 [27-29]. 

166

EDI = 
ýÿ ×  ýý ×  ýÿÿ ×  ÿÿ ×  ÿ/ÿÿÿÿ ×  ÿÿÿý                 (1)

ADD therm =  × 
ÿ/ÿ ×  ÿý ×  ýý ×  ýÿ ×  ýýÿÿÿ ×  ÿÿÿý  10

2 6

        

                 (2)

167 Where Ef = exposure frequency (365 days/year); Ed = exposure duration, the average lifetime 

168 (58.65 years for an adult Ugandan) [30]; Fir is the fresh food ingestion rate (g/person/day) = 48 

169 for fish and 301.0 and 231.5 for yams for adults and children respectively) [31,32]; Cf is the 

170 conversion factor (0.208) for fresh weight (Fw) to dry weight (Dw) for fish and 0.085 (to convert 

171 fresh yams weight to dry weight; considering it as a vegetable) [33], Chm = heavy metal 

172 concentration in foodstuffs (¿gg-1 Fw); Wab = average body weight (considered to be 15kg for 

173 children [29] and 60 kg for adults [34]) and Taet = average exposure time for non-carcinogens 

174 (given by the product of Ed and Ef) [35]; SA , the exposed surface area in cm2 = 4,350 for adults 

175 and 2,800 for children [29]; AF is the skin adherence factor in mg/cm2/day = 0.7 for adults [36] 

176 and 0.2 for children [29].

177 Health Risk Index (HRI), the total risk of non-carcinogenic element via three exposure pathways 

178 was evaluated using Target Hazard Quotient (THQ) in accordance with US EPA Region III risk-

179 based concentration table [37] used in a preceding study [25]. According to the criterion, THQ 

180 (HRI) less than unity (1.0) implies the exposure is very unlikely to have adverse effects whereas 

181 THQ greater than unity prognosticates a possibility of non-carcinogenic effects, with an 

182 increasing probability as the value increases [31]. The numerical HRI i.e. THQ values were 

183 obtained from the ratio of EDI or ADDtherm to the Reference Dose (RfD) (Equation 3) [25, 28].

 THQ =    or  THQ = 
ýÿýýÿÿ ýÿÿý/ÿÿÿýÿÿ (3)

184

185 The RfD of Hg via ingestion in µg/g/day is 4.0 × 1021 [37] while the RfD for Hg via dermal 

186 contact is 1.0 × 1022 µg/g/day [29]. 

187 The RfD (usually in mg/kg/day) is the maximum daily dose of a metal from a specific exposure 

188 pathway, that is believed not to lead to an appreciable risk of deleterious effects to sensitive 

189 individuals during a life time [38]. If the EDI is lower than the RfD, the THQ is less than 1, and 

190 adverse health effects are unlikely to appear, whereas if the EDI exceeds the RfD, THQ > 1, 

191 adverse health effects are likely to appear [27, 28]. In this study, the THQ was calculated basing 
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192 on three pathways i.e. consumption of mercurially contaminated fish and yams and dermal 

193 contact (assuming miners are occupationally in direct contact with dredged Hg-contaminated 

194 sediments). The assumptions made during the health risk calculations were that the ingested dose 

195 is equal to the absorbed trace metal dose [39] and that cooking of the fishes and yams have no 

196 appreciable effect on the Hg content of the assessed matrices [40]. 

197

198 Assessment of bioaccumulation factors

199

200 Bioaccumulation factors (BAFs) are multipliers often employed to estimate concentrations of 

201 chemicals that accumulate in tissues through any route of exposure [41]. They are often referred 

202 to as bioconcentration factors (BCFs) for aquatic invertebrates. The BCFs and biota to sediment 

203 accumulation factor (BSAF) of trace metals from sediment or surface water to animal tissues can 

204 be determined for different samples. Thus, BCF was determined from the numerical ratio of 

205 concentration of the priority trace metal (Hg) in the whole edible tissues of Nile tilapia to that of 

206 concentration of Hg in water while BSAF was determined from the ratio of the concentration of 

207 Hg in the edible tissues of Oreochromis nilotica to that of Hg in the corresponding sediment 

208 samples [42].

209

210 Sediment quality assessment

211  

212 To assess the level of contamination, the environmental and health risks that originate from a 

213 heavy metal9s occurrence, indices are used to indicate the enrichment of a given environmental 

214 component as compared to its natural concentration. The indices used to describe heavy metal 

215 enrichment of sediments include contamination factor (CF), enrichment factor (EF), pollution 

216 load index (PLI), geoaccumulation index (Igeo), potential ecological risk (RI) and hazard quotient 

217 (HQ) [43-46]. 

218 Single indices of the above-mentioned list are used, as a rule at thumb, to subtly assess sediment 

219 contamination. This approach, though allows evaluation of contamination, limits the ability to 

220 compare degree of  contamination of sediments investigated in different studies. In order to 

221 identify pollution problems, the anthropogenic contributions should be distinguished exclusively 

222 from the natural sources. Thus, the degree of mercuric pollution of sediments from Namukombe 

223 stream was assessed using contamination factor and geoaccumulation index. 

224 The contamination factor (CF) was calculated using Equation 4 given by Hakanson [43]. 

225

226 CF =                                         (4)
ÿ/ÿÿÿ

227

228     where Chm is the priority trace metal concentration in the analyzed sample and Cb is the 

229 geochemical background trace metal concentration/preindustrial concentration. A background 

230 concentration of 0.25µgg31 was used in this study. 
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231 Geoaccumulation index, Igeo for the sediments from the different sluices were obtained from 

232 computations utilizing Equation 5 suggested by Müller [47]. 

233

234 Igeo  = Log2 ( )                      (5)
ÿÿ1.5ýÿ

235

236 From which Cn is the concentration of the trace metal (n) in the sampled and analyzed sediment, 

237 Bn is the background concentration of the same metal (n) and the factor 1.5 is the background 

238 matrix correction factor due to lithogenic effects (takes into account possible lithological 

239 variability) [48,49]. 

240 Results

241 Statistical analysis of results

242 Analytical data was subjected to statistical evaluation using GraphPad Prism (v7.05.237, 

243 GraphPad software, California, USA). Analytical results, unless otherwise specified, were 

244 presented as mean ± standard deviations of triplicate analyses. Independent sample test or one-

245 way analysis of variance (ANOVA) followed by LSD post hoc test was used for comparison of 

246 the differences between the experimental mean THg concentrations and WHO/US EPA 

247 maximum permissible limits. These statistical analyses were performed at a 95% confidence 

248 interval (with differences in mean values accepted as being significant at p < 0.05). 

249 Mercuric pollution of Namukombe stream

250 The metalliferous content of water, sediments, fish and yams in the different sluices of 

251 Namukombe stream with their descriptive statistics are given in Table 1.

252

253 Human health risk assessments 

254 The toxicity indices from consumption of fish, yams and dermal contact with sediments from 

255 Namukombe stream are given in Table 2, Table 3 and Table 4.

256 Bioaccumulation factors

257 The statistical bioaccumulation factors computed are given in the Table 5.

258 Sediment quality 

259 The contamination factor and the Müller geoaccumulation index for the sediments from the 

260 different sluices are presented in Table 6.

261

262

263

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27832v1 | CC BY 4.0 Open Access | rec: 30 Jun 2019, publ: 30 Jun 2019



264 Discussion
265

266 Mercuric pollution of surface water from Namukombe stream

267    Total mercurial content of the water samples ranged from 0.00±0.00 to 1.21±0.070mg/L. Hg 

268 levels upstream were initially high at 0 m but reduced significantly (p = 0.0001) after a distance 

269 of 10 m from the point source of ASGM. There was a gradual decrease from 1.21±0.070 to 

270 0.09±0.006mg/L upstream, 0.18±0.010 to 0.02±0.001mg/L in middle stream and 

271 0.10±0.001mg/L until no detection downstream (Table 1).  

272 The observed decrement could have been due to the fact that Namukombe stream is swampy, 

273 thus the flow of water is reasonably slow. Since the stream contains organic matter, most of the 

274 Hg could have been retained within the sediments at upsluice and mid sluice, making them 

275 undetectable downstream. It is reported that organic matter can increase Hg methylation by 

276 stimulating heterotrophic bacteria (Pseudomonas species) in aerobic conditions [50] or abiotic 

277 methylation [51]. In anaerobic condition, Hg reacts with organic carbon in the sediments to form 

278 toxic methyl and di-methyl Hg [51]. Some anaerobic bacteria that possess methane synthetase 

279 are also reported to be capable of Hg methylation [52]. Once MeHg is released from microbes, it 

280 enters the food-chain as a consequence of rapid diffusion and tight binding to proteins in aquatic 

281 biota. 

282  Further, owing to their static nature, sediments tend to get enriched with toxic materials than 

283 water, which can undergo relatively rapid self-purification. Thus, a greater percentage of THg in 

284 an aquatic system is expected in sediments if there is effective binding with organic carbon 

285 bearing particles. This may innocuously retard the transfer of Hg to overlying water through 

286 interstitial water [53]. Heavy metals which are less soluble in water such as Hg are easily 

287 adsorbed and accumulated in sediments [54]; however, in the event that the trace metal cannot be 

288 permanently adsorbed by sediments, it is released back to the overlying water, when 

289 environmental conditions such as salinity, resuspension, pH, redox potential and the organic 

290 matter decay rate changes [55,56]. Thus, this explain the high levels of THg recorded in water 

291 than sediments for the corresponding sluices.

292    The results of this study is comparable (though higher) to that of Oladipo et al. [57] where the 

293 the mean THg content of water in ASGM areas of Manyera river, Nigeria was recorded at 

294 0.021±0.004mg/L. Mahre et al. [58] reported that water from River Kaduna, Nigeria had THg 

295 ranging from 1.72 to 2.50mg/L which is quite higher than the maximum mean THg level 

296 (1.21±0.070mg/L) recorded in this study. The results from this study agrees well with preceding 

297 investigations which concluded that the quality of water in the periphery of Hg-based ASGM 

298 sites in Uganda have been innocuously deteriorated by Hg pollution [59,60]. All the THg 

299 concentrations of the water samples in this study were higher the US EPA maximum 

300 contamination level of 0.002mg/L for Hg in drinking water. Therefore, this water is not safe for 

301 drinking and domestic use.

302

303
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304 Mercuric content of sediments  

305    Sediments are good hosts of highly toxic pollutants from natural and anthropogenic sources 

306 [61] and have been reported as the biggest sink and major reservoir for heavy metals [62-69]. 

307 They enhance accumulation of heavy metals in benthic invertebrates, thereby transferring them 

308 to higher levels of food chains [70-74]. Therefore, monitoring sediments can enhance a more 

309 accurate tracking of trace metal contamination of aquatic ecosystems [75-81] compared to water 

310 and/or floating aquatic plants, which tend to give inaccurate estimations due to water discharge 

311 fluctuations and lower resident times.

312    Mean THg concentrations of sediments from up sluice ranged from 0.00±0.00 to 

313 0.14±0.040µgg-1, middle stream ranged from 0.00±0.00 to 0.11±0.050µgg-1 while downstream 

314 ranged from 0.00±0.00 to 0.12±0.016µgg-1 (Table 1). All the mean THg concentration in the 

315 sediments from the three sluices along the stream is lower than the maximum permissible limit 

316 of 0.15µgg-1 recommended by USEPA 2001 standard [26]. For all the sluices, THg concentration 

317 in the sediments reduced significantly (p = 0.000994) from upstream to downstream with the 

318 result that no Hg was detected in sediments sampled 30m away from all the point sources. 

319 The mean THg content of the sediments in this study is lower than the values registered in other  

320 global studies such as 0.265µgg-1 reported by Donkor et al. [82] in Pra river (Ghana), 0.7-

321 9.3µgg-1 reported by Ramirez-Requelme et al. [83] in Amazon and 0.3-0.9µgg-1 recorded by 

322 Feng et al. [84] in Shaanxi Province of the Peoples` Republic of China. However, Lasut et al. 

323 [85] in Indonesia, Pataranawata et al. [86] in Thailand, Mohan et al. [51] in Nilambur, Kerala-

324 India and Oladipo et al [57] in Manyera river, Nigeria reported lower THg content of sediments 

325 of 0.010-0.017, 0.096-0.402, 0.103-0.46, and 0.018µgg-1 respectively which are comparable to 

326 the mean THg concentrations recorded in this study. Taylor et al. [87] reported that the drainage 

327 sediments from upstream of Uvinza on the Malagarasi river (Tanzania) contain THg in the range 

328 of 0.1730.24 µg/kg, which were lower than for sediments from Ilagala  with 0.10 to 0.66 mg/kg 

329 THg but all higher than the mean THg registered in this study.

330   THg content of all the sediment samples except one i.e. sample from 0m up sluice 

331 (0.14±0.040µgg-1) were below Threshold Effect Level (TEL) of 0.13µgg-1. All the THg 

332 concentrations of the sediments were lower than the Probable Effect Level (PEL) of 0.70µgg-1 

333 for Hg in sediments postulated by Smith et al. [88] and MacDonald [89]. THg in the sediments 

334 lying between TEL and PEL is expected to be associated with adverse biological effects [51]. 

335 Also, among the bottom sediment samples, none had THg higher than the background 

336 concentration of 0.25µgg-1, which is considered as normal in non-contaminated sediments [90]. 

337     It is worth noting that the mercurial content of the sediments in this stream were lower than 

338 the THg content of water from the corresponding sluices. In this study, the retention rates of Hg 

339 in sediments, which is influenced by many factors such as the metallic forms of mercury (i.e. 

340 elemental, ionic, organic, or inorganic), pH, temperature, organic carbon and electrical 

341 conductivity were not investigated. Because the sediment Hg retention rates can vary from one 

342 location to another, the observed variability in THg concentrations in sediments from the 
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343 different sampled study sites in this study can be attributed to the differences in the sediment Hg 

344 retention rates and the level of mercuric pollution due to ASGM activities.

345 According to the Sediment Quality Criteria for Protection of Aquatic Life (Environment Canada, 

346 1992 cited in [91]), all the sediments had THg below the toxic threshold of 1.0µgg-1 and minimal 

347 effects threshold of 0.20µgg-1.

348

349 Mercuric content of Oreochromis nilotica Linnaeus 1758 (Cichlidae)

350    Fish from all the sluices had mean THg in the range of 0.00±0.00 to 0.11±0.010µgg-1 (Table 

351 1). All the fishes from the stream did not exceed the maximum WHO permissible limit for Hg in 

352 fish for human consumption (0.50µgg-1) as well as the WHO recommended limit for vulnerable 

353 groups (0.20µgg-1). 

354 The mean THg content of fish reported in this study is lower than 0.58 ± 0.44µgg-1 mean THg 

355 reported by Castilhos et al [92] in fresh water fish from Tatelu gold mining area, Indonesia 

356 which recorded more than 45% of the fishes with THg above WHO compliance limit. Oladipo et 

357 al. [57] reported that fish (Heterotis niloticus) from Manyera river, Nigeria had a THg content of 

358 8.0 × µgg-1, well lower than is reported in Oreochromis nilotica Linnaeus 1758 (Cichlidae) 10
2 3

359 edible tissues by this study. Mahre et al. [58] reported a lower mean THg of  to µgg-1 10
2 4

10
2 3

360 in fisheries and aquatic life of river Kaduna, Nigeria.

361    In this investigation, fish samples obtained from upstream close to mining sites had higher THg 

362 content than those from downstream (Table 1). This could be due to a reduction in the Hg 

363 content of water as it flows downstream. Mercury in water could have probably got entrained in 

364 the sediments. 

365    It is reported that fish ingest heavy metals by direct uptake in aqueous solution or by epithelial 

366 ingestion of trace metal contaminated water that sluices through their gills, skin, oral cavity and 

367 digestive tract [93]. However, chronic intake of heavy metals by fish rests entirely on the trace 

368 metal concentration, volume of the ingested contaminated food, the heavy metal uptake speed, 

369 exposure duration, uptake route, ecological conditions external to the fish (including availability 

370 of water, temperature, pH) and innate factors notably fish age [94], fish nutritional habits as well 

371 as the dynamic processes involved in the trace metal metabolism [95-97]. Therefore, the lower 

372 levels of Hg recorded in this study could be because the fish samples were not so aged and the 

373 fact that Oreochromis nilotica Linnaeus 1758 (Cichlidae) is non-piscivorous. This is 

374 corroborated by the reports of Mol et al. [98] who reported that the THg concentrations in 

375 freshwater piscivorous fish species in ASGM areas of Suriname, South America was 0.71 gg-1,  ÿ
376 well (3.7 times) higher than 0.19¿gg21 recorded in non-piscivorous species in the same 

377 mercurially contaminated water bodies.

378    Weber et al. [99] pointed that aquatic organisms, including fish, exposed to copious levels of 

379 waterborne trace metals bioconcentrate the metals upon absorption, ultimately transferring them 

380 to humans as they are inevitable in human nutrition. Thus, for the general population, dietary 

381 intake is the dominant exposure pathway to Hg. Extensive investigations have quoted that 753

382 95% of Hg in most fish exists as MeHg. Therefore, though the levels of THg in the edibles fish 
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383 muscles eaten by the residents of Syanyonja  registered in this study are evidently low, the effect 

384 of its accumulation should not be overruled as other organs of accumulation such as the gills, 

385 liver and kidneys might contain higher THg concentrations [25].

386  More so, chronic exposure to MeHg via consumption of fish and other marine species is a major 

387 concern for human health, especially developmental exposure that triggers neurological 

388 alterations [100-105]. Hg exposure has been proven to cause elevated risks of cardiovascular 

389 diseases with severe exposures causing negative impacts to the reproductive and immune 

390 systems [106,107].

391

392 Mercuric content of yams (Dioscorea alata)

393 THg content of yams from Namukombe stream varied between 0.00±0.00 to 0.30±0.001µgg-1 

394 (Table 1). Yams from upstream (at 0m) had the highest mean THg of 0.30±0.001µgg-1. Middle 

395 stream samples at 0m had THg content of 0.28±0.014µgg-1, while downstream samples at 0m 

396 had the highest mean THg content of 0.29±0.003µgg-1 (Table 1). There was no significant 

397 difference (p = 0.0004) in the THg content of the yams from the different sluices. This trend can 

398 be related to the levels of Hg in both water and sediments from the sluices in relation to the 

399 distance of the samples from the ASGM activities. The highest mercurial content of the yams in 

400 Namukombe stream is quite higher than that reported in Rwamagasa ASGM area, Tanzania by 

401 Taylor et al. [87] where yams recorded THg content of 0.007 to 0.092µgg-1. It is noteworthy that 

402 yams in this study recorded the highest THg (0.30±0.001µgg-1) of all the studied matrices. This 

403 could be because yams are exposed to the different uptake routes such as the sediments (soils), 

404 contaminated water and atmospheric disposition on leaves during growth.

405

406 Health risk assessment from consumption of fish and yams and dermal contact with 

407 sediments from Namukombe stream

408 Chronic low level intake of priority trace metals such as Hg have been implicated for deleterious 

409 human health effects, which becomes apparent following years of persistent exposure [108-110]. 

410 THQ method was used to assess the potential health risks of Hg accumulation through 

411 consumption of the edible muscles of fish and yams as well as dermal contact during ASGM. 

412   The estimated daily intakes (EDIs) ranged from 0.0049 to 0.0183 gg-1day-1 and 0.020 to 0.073ÿ
413 gg-1day-1 for fish consumed by adults and children respectively. The corresponding health risk  ÿ
414 indices (HRIs) ranged from 0.0123 to 0.04576 and 0.05 to 0.183 (Table 2; Table 3). In 1960s, 

415 Minamata residents of Japan suffered unprecedented neuropathies due to the consumption of 

416 MeHg-contaminated seafood [111]. More so, some studies have reported that Hg is toxic to 

417 fishes (Tilapia guineersis, Mugil and Tilapia fuscatus) and induces fish weight loss even on 

418 exposure to sub-lethal doses in more than two fortnights [112]. Thus, it can be deduced that 

419 Oreochromis nilotica in Namukombe stream is endangered.

420   The EDIs were from 0.0042 to 0.1279 gg-1day-1 and 0.013 to 0.394 gg-1day-1 for yams ÿ ÿ
421 consumed by adults and children respectively. The statistical HRIs recorded were from 0.011 to 

422 0.320 and to 0.033 to 0.985 respectively (Table 2; Table 3). The HRI of 0.985 registered for 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27832v1 | CC BY 4.0 Open Access | rec: 30 Jun 2019, publ: 30 Jun 2019



423 consumption of yams from 0m upsluice by children is very close to 1.0, implying that 

424 consumption of yams from this site by children might lead to mercury-related health risks. 

425    The ADDtherm ranged from 1.015  to 7.105 gg-1day-1 and 7.47  to × 10
2 6

× 10
2 6 ÿ × 10

2 7

426 5.227 gg-1day-1 (Table 4) for dermal contact with mercury-contaminated dredged × 10
2 6 ÿ

427 sediments from Namukombe stream by adults and children respectively. The HRIs respectively 

428 ranged from 1.015  to 7.105  and 7.47  to 5.227  for adults and × 10
2 4

× 10
2 4

× 10
2 5

× 10
2 4

429 children (Table 4). 

430  THQ of less than unity (1.0) indicate the relative absence of health risks associated with intake 

431 of Hg through consumption of either Hg contaminated fish, yams or dermal contact with 

432 sediments. However, ingestion of both fish and yams, coupled with persistent dermal exposure to 

433 Hg in sediments during panning would lead to potential health risks especially for children. 

434

435 Mercuric accumulation based on bioaccumulation factors

436 The bioaccumulation factors (BAFs), bioconcentration factor (BCF) and biota to sediment 

437 accumulation factor (BSAF) computed for Oreochromis nilotica Linnaeus 1758 (Cichlidae)  in 

438 Namukombe stream are presented in Table 5. The results show a more  significant increase in 

439 Hg levels in Oreochromis nilotica Linnaeus 1758 (Cichlidae) tissues than in the surface water 

440 samples. BCF values for Hg in Oreochromis nilotica Linnaeus 1758 (Cichlidae) were ranked as 

441 follows: downstream > middle stream > upstream. The highest BCF of 0.800 was recorded at 0m 

442 downstream while the lowest BCF of 0.250 was recorded at 10m middle stream. Such trace 

443 metal accumulation levels in fish as in this concerted study augment published data reported by 

444 other authors on different species of aquatic organisms [42, 113-115]. Therefore, this study 

445 suggests that Oreochromis nilotica Linnaeus 1758 (Cichlidae) is a sentinel organism for 

446 biomonitoring of aquatic ecosystems. 

447 BSAF explored the rate of Hg uptake from the sediment and its subsequent accumulation in 

448 Oreochromis nilotica Linnaeus 1758 (Cichlidae) tissues. In this investigation, the highest BSAF 

449 value of  1.500 was recorded at 10m middle stream while the lowest BSAF (0.333) was recorded 

450 at 10m upstream. Thus, Hg enrichment was highest in the middle stream, though the sediments 

451 have higher concentrations of Hg than the edible muscles of Oreochromis nilotica Linnaeus 

452 1758 (Cichlidae).

453

454 Quality of superficial sediments from Namukombe stream

455

456 Contamination factor

457 All the statistical CFs were less than 1.0 (the highest statistical value of 0.56 was recorded at 0m 

458 upstream and the lowest value of 0.04 was reported at 10m downstream) (Table 6). According to 

459 Hakanson [43], four (4) contamination categories are distinguished: CF <1: low contamination, 1

460  CF < 3: moderate contamination, 3 CF < 6: considerable contamination and CF 6: very f f  >

461 high contamination. Thus, basing on the aforeacknolwedged criteria, there is very low 

462 contamination of the sediments of Namukombe stream.
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463 Geoaccumulation Index

464 Müller geoaccumulation index (Igeo) is a frequently employed analytical index for examination of 

465 the contamination level of sediment samples by trace metals. It assesses the degree of 

466 contamination by comparing the current levels of trace metal concentrations to the previous 

467 status of the research site. The computed Müller geoaccumulation indices for the bottom 

468 sediments from Namukombe stream ranged from  -5.233 to -1.423 (Table 6).

469 The Igeo is composed of seven grades along with associated sediment quality levels according to 

470 the degree of trace metal pollution. The values are classified as follows: no contamination 

471 (Igeo<0); low to median contamination (Igeo between 0 and 1); median contamination (Igeo 

472 between 1 and 2); median to strong contamination (Igeo between 2 and 3); serious contamination 

473 (Igeo between 3 and 4); serious to extreme contamination (Igeo between 4 and 5); and extreme 

474 contamination (Igeo>5). 

475 In this study, the geoaccumulation indices were all negative for the sluices (Table 6), reflecting 

476 that there is no serious anthropogenic (mercuric) pollution of the studied sites in Namukombe 

477 stream. 

478

479 Conclusions and recommendations

480 Persistent utilization of Hg in ASGM in Syanyonja and the proliferation of its environmental and 

481 human health effects pose significant challenges to sustainability; water in Namukombe stream is 

482 contaminated with up to 1.21±0.070mg/L of Hg which is above US EPA maximum permissible 

483 limit for Hg in drinking water. The maximum THg content of sediments from the stream is 

484 0.14±0.040 gg-1 which is lower than the maximum limit of 0.150µgg-1 recommended by USEPA ÿ
485 2001 standard. Release of ASGM residual Hg into Namukombe stream have resulted in 

486 significant entrainment of Hg in water and sediments in the stream. The mercuric content of the 

487 edible whole muscles of the locally consumed fish (Oreochromis nilotica Linnaeus 1758 

488 [Cichlidae]) is lower than that reported in sediments, yams and drinking water. 

489   THg content of the edible whole muscles of fish from Namukombe stream ranges from 

490 0.00±0.00 to 0.11±0.010µgg-1 which is still within the maximum WHO permissible limit of 

491 0.5µgg-1 for Hg in fish for human consumption. Health risk assessment indicates that 

492 consumption of yams from 0m up sluice may have potential health risk, particularly to children. 

493 From pollution assessment, mercury usage should be delimited in Syanyonja ASGM areas; 

494 strategies to minimize or abolish mercurial ASGM in the area should be reached to avert the 

495 accentuating health, economic and ecological disaster arising from the continual discharge of Hg 

496 into the surrounding areas. Other safe gold recovery methods such as use of borax should be 

497 encouraged. Waste management system for waste wastewater, used Hg bottles and tailings 

498 should be centralized to enable Hg waste management in ASGM areas in Syanyonja.

499 Further research should determine the geochemical properties (pH, organic carbon and 

500 conductivity) of the sediments as these properties tend to correlate with Hg accumulation in 

501 sediments. Research should be done to evaluate the mercuric content of the different organs of 
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502 accumulation (gills, liver, kidney) of Oreochromis nilotica Linnaeus 1758 (Cichlidae). The 

503 levels of methyl mercury and other trace metals such as Lead and Arsenic should be determined 

504 in water, sediments, yams, fish as well as soils. The atmospheric flux of mercury in the 

505 atmosphere of the study area should be determined.

506
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Figure 1
Map of the area under study
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Mercurial Content of water, sediments, ûshes and yams
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1 Table 1. Mercurial content of water, sediments, fish and yams in Namukobe stream

Mean total mercury concentration (mg/L or µgg-1)Sample Distance 

(m) Up sluice Middle sluice Down sluice

Mean ± S.D  Range S.E         Variance Mean ± S.D Range S.E         Variance Mean ± S.D Range S.E         Variance

0 1.21±0.040 1.17-1.25 0.023 0.0016 0.18±0.070 0.11-0.25 0.041 0.0049 0.10±0.030 0.07-0.13 0.017 0.0009

10 0.15±0.053 0.09-0.19 0.031 0.0028 0.12±0.017 0.11-0.14 0.010 0.0003 0.08±0.026 0.06-0.11 0.015 0.0007

20 0.12±0.021 0.10-0.14 0.012 0.0004 0.03±0.026 0.01-0.06 0.015 0.0007 0.02±0.010 0.01-0.03 0.006 0.0001

Water

30 0.09±0.001 0.06-0.13 0.021 0.0013 0.02±0.010 0.01-0.03 0.006 0.0001 BDL1 - - -

0 0.14±0.040 0.10-0.18 0.023 0.0016 0.11±0.050 0.07-0.18 0.011 0.0005 0.12±0.016 0.11-0.13 0.001 0.0003

10 0.12±0.036 0.10-0.16 0.020 0.0012 0.02±0.010 0.01-0.05 0.001 0.0002 0.01±0.004 0.009-0.011 0.001 0.0001

20 0.03±0.022 0.01-0.06 0.015 0.0007 0.03±0.011 0.02-0.05 0.004 0.0001 0.02±0.009 0.01-0.03 0.011 0.0001

Sediments

30 BDL - - - BDL - - - BDL - - -

0 0.11±0.010 0.09-0.15 0.031 0.0013 0.08±0.055 0.07-0.09 0.001 0.0003 0.08±0.050 0.05-0.12 0.001 0.0001

10 0.04±0.030 0.02-0.07 0.005 0.0013 0.03±0.010 0.01-0.07 0.005 0.0004 BDL - - -

Fish 

(Oreochromis 

nilotica Lin.) 20 BDL - - - BDL - - - BDL - - -

30 BDL - - - BDL - - - BDL - - -

0 0.30±0.001 0.20-0.50 0.022 0.0020 0.28±0.014 0.26-0.31 0.002 0.0003 0.29±0.003 0.27-0.36 0.001 0.0001

10 0.24±0.080 0.18-0.30 0.030 0.0012 0.20±0.005 0.17-0.23 0.003 0.0001 0.15±0.010 0.11-0.20 0.017 0.0003

20 0.12±0.034 0.10-0.14 0.010 0.0015 0.10±0.001 0.06-0.15 0.003 0.0004 0.01±0.001 0.008-0.013 0.005 0.0006

Yams 

(Dioscorea 

alata)

30 BDL - - - BDL - - - BDL - - -

2 1BDL-below detection limit

3

4

5
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Table 2(on next page)

Toxicity indices of mercury from consumption of ûsh and yams from Namukombe
stream by adults
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1 Table 2. Toxicity indices of mercury from consumption of fish and yams from Namukombe stream by adults

Fish (Oreochromis nilotica Lin.)
Yams (Dioscorea alata)Distance (m)

EDI ( g/kg/day)ÿ THQ EDI ( g/kg/day)ÿ THQ

Up 

sluice

Middle 

sluice

Down

Sluice

Up sluice Middle sluice Down 

sluice

Up sluice Middle sluice Down sluice Up 

sluice

Middle 

sluice

Down sl

0 0.0183 0.0133 0.0133 0.04576 0.03325 0.03325 0.1279 0.1194 0.1237 0.320 0.299 0.309

10 0.0067 0.0049 - 0.01675 0.0123 - 0.1023 0.0853 0.0639 0.256 0.213 0.160

20 - - - - - - 0.0512 0.0426 0.0042 0.128 0.105 0.011

30 - - - - - - - - - - - -

2

3

4
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Table 3(on next page)

Toxicity indices of mercury from consumption of ûsh and yams from Namukombe
stream by children
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1
2 Table 3. Toxicity indices of mercury from consumption of fish and yams from Namukombe stream by children

Fish (Oreochromis nilotica Lin.)
Yams (Dioscorea alata)Distance (m)

EDI ( g/kg/day)ÿ THQ EDI ( g/kg/day)ÿ THQ

Up 

sluice

Middle 

sluice

Down

sluice

Up sluice Middle sluice Down 

sluice

Up sluice Middle sluice Down sluice Up 

sluice

Middle 

sluice

Down sl

0 0.073 0.053 0.053 0.183 0.133 0.133 0.394 0.367 0.381 0.985 0.918 0.953

10 0.027 0.020 - 0.0665 0.05 - 0.315 0.262 0.197 0.788 0.655 0.493

20 - - - - - - 0.158 0.131 0.013 0.395 0.328 0.033

30 - - - - - - - - - - - -

3
4
5
6

7

8

9

10

11

12

13

14

15
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Table 4(on next page)

Toxicity indices of mercury from dermal contact with dredged sediments in Namukombe
stream by adults and children
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1 Table 4. Toxicity indices of mercury from dermal contact with dredged sediments in Namukombe stream by adults and children

Adults
Children

ADD therm ( g/kg/day) ÿ × ÿÿ 2 ÿ THQ  × ÿÿ 2 ÿ ADD therm ( g/kg/day) ÿ × ÿÿ 2 ÿ THQ  × ÿÿ 2 ÿDistance (m)

Up 

sluice

Middle 

sluice

Down

sluice

Up sluice Middle sluice Down 

sluice

Up sluice Middle sluice Down sluice Up 

sluice

Middle 

sluice

Down sl

0 7.105 5.583 6.090 7.105 5.583 6.090 5.227 4.107 4.480 5.227 4.107 4.480

10 6.090 1.015      0.5075 6.090 1.015      0.5075 4.480       0.747 0.373 4.480       0.747 0.373

20 1.523 1.523 1.015 1.523 1.523 1.015 1.120 1.120 0.747 1.120 1.120 0.747

30 - - - - - - - - - - - -

2
3

4

5

6

7

8

9

10

11
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Table 5(on next page)

Bioconcentration factor and Biota to Sediment Accumulation Factor for ûsh, water and
sediment from Namukombe stream
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1

2

3 Table 5. Bioconcentration factor and Biota to Sediment Accumulation Factor for fish, water and sediment from Namukombe stream

4
Distance (m) Bioconcentration factor Biota to Sediment Accumulation Factor

Up sluice Middle sluice Down sluice Up sluice Middle sluice Down sluice

0 0.091 0.444 0.800 0.786 0.727 0.667

10 0.267 0.250 - 0.333 1.500 -

20 - - - - - -

30 - - - - - -

5

6
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Table 6(on next page)

Contamination factor and Muller geoaccumulation index of sediments from Namukombe
stream
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1
2
3
4 Table 6. Contamination factor and Müller geoaccumulation index of sediments from Namukombe stream

5
Distance (m) Contamination factor Geoaccumulation index

Up sluice Middle sluice Down sluice Up sluice Middle sluice Down sluice

0 0.56 0.44 0.48 -1.423 -1.771 -1.644

10 0.48 0.08 0.04 -1.644 -4.230 -5.233

20 0.12 0.12 0.08 -3.644 -3.644 -4.230

30 - - - - - -

6

7

8

9

10

11

12

13

14

15

16

17

18

19
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