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Abstract

There is no doubt that the Blockchain has become an important technology that imposes itself in
its use. With the increasing demand for this technology it is necessary to develop and update
techniques proposed to deal with other technologies, especially in the field of cyber-security,
which represents a vital and important field. This paper discussed the integration of Recurrence
Qualitative Analysis (RQA) technology with the blockchain as well as exciting technical details
of RQA operation in increasing Blockchain security. This paper found significant improvements,
remarkable and differentiated compared to previous methods.

Introduction

There is no doubt that the Blockchain has become an important technology that imposes itself in
its use. With the increasing demand for this technology it is necessary to develop and update
techniques proposed to deal with other technologies, especially in the field of cyber security,
which represents a vital and important field.

Intrusion detection systems (IDSs) are divided into a dichotomy of anomaly-based and signature-
based (AXELSSON 1998). For a detailed survey of IDS types, refer to (LIAO et al. 2013).
Detecting denial of service (DoS) can be detected by many ways by Gyanchandani et al. (2012).
But Raut and Singh (2014) proved the limitation of those ways, when considering network
nonlinear dynamic behavior (Palmieim and Fiore, 2010). This dynamicity manifests itself as
recurrence (Palmieim and Fiore, 2010).

Recurrence Quantification Analysis (RQA), proposed by ( ECKMANN 1995), is a powerful
nonlinear tool in analyzing such behavior (Weber and Marwan, 2015; Righi and Nunes, 2018).
RQA has many features such as entropy (H) determinism (D), Laminarity (L). RQA is armed
with recurrence plot (RP) that is a powerful visualiza-tion tool.

This paper presents the integration of Recurrence Qualitative Analysis (RQA) technology in the
blockchain.
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The remaining of this paper is decomposed as follows. Section2 is for related works and
theoretical foundation of the RQA. Section3 provides proposed system. Section4 presents the
results and its validation. Conclusion and recommendations for future work are at the end of the
paper.

Previous Work

This section is for related works and theoretical foundation of the RQA.

1.1 Related works

RQA is successful in medical field. For instance, Moridani et al (2015) scrutinized heart rate
using the RQA. Schlenkeri, Funda & Nedelka (2011) scrutinized heart rate too.

Regarding security, Wu et al. (2011) proposed a decision-tree malicious attack classifier. Many
studies focus on studying non-linear aspects of a network (Palmieri and Fiore, 2010 and Jeyanthi
et al., 2014). However, some focused on the visualization RQA presents (Jeyanthi et al., 2014
and Jeyanthi et al., 2011) .

Determinism and entropy help in predicting the behavior (Fabretti and Ausloos, 2005). Phase-
space trajectory is reconstructed based on observations (Kantz et al., 2002; Abarbanel, 1997).

1.2 RQA foundations

A recurrence matrix is denoted as:

Rij(e)=0(e - || xi - x;||) (1
where # represents the state vector , while € is a discrete function defined as (if x >= 0 return 1
else return 0). The || . || denotes Euclidean norm. The greater the D, the more predictability is the

system. It is calculated as:

— z:{V=lmin lp(l)
D= X, p() 2

where [ is length of diagonal, and P(l)is the count of diagonal lines with length /.
Ly, 1s the mean of all lines diagonally viewed in RP. It is defined as:

M tmin L P(D)
Lav - min 4
& Z?:lminp(l) ( )

Finally, Shannon entropy is defined as:
H= =i imin () Inp (D) 5)

Proposed Framework
The proposed operational framework is adapted from (Pfleeger& Pfleeger 2002) by augmenting
it with the blockchain component, and adding RQA analysis in the Analysis component.
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Results and Validation
RQA was implemented by Matlab© R2015a on a 32-bit Windows© 7. Results are gained from
NSL-KDD dataset (DARPA Intrusion dataset, 1999).
Features selected are those concerning with DoS, Probe, R2L and U2R. But let us focus on DoS,
as Table 1 shows its confusion matrix. Thus Accuracy: 0.9964, Precision: 0.9951, and Recall:
0.9967.

Table 1: Confusion matrix for classifying DOS

Test if it is DoS attack Attack present Attack absent
Positive True Positive (9499) False Positive (212)
Negative False Negative (2830) True Negative (4630)
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Fig2. Recursive feature elimination with cross-validation(RFECV)

Peer] Preprints | https://doi.org/10.7287/peerj.preprints.27820v1 | CC BY 4.0 Open Access | rec: 24 Jun 2019, publ: 24 Jun 2019




82
83

84
85

86

87
88
89
90
91
92
93
94
95

96
97
98
99
100
101
102
103
104
105
106
107

Fig2 shows Recursive feature elimination with cross-validation(RFECV). Fig3, shows RP for
DoS with threshold €, DoS Attack has the highest D, and the highest H and the longest Lgy,..
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Figure 3: RP for DoS (¢ =0.5)

Conclusion and future work

This paper presents discussed the integration of Recurrence Qualitative Analysis (RQA)

technology in the blockchain as well as exciting technical details of RQA operation in increasing

Blockchain security. Significant improvements were noticed.

Results are gained from NSL-KDD dataset (DARPA Intrusion dataset, 1999). It was criticized to

be a toy dataset (BORISANIYA and PATEL 2015 ; CREECH and HU .2013). This forced

authors of the paper in hand to consider ADFA advanced dataset (Creech 2014) too.

In future, we will consider real-time dataset, such that the proposed BRQA guarantees more

security.
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