

A lipid-leakage model for Alzheimer's Disease

Jonathan D'Arcy Rudge ¹

¹ School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom

Corresponding Author: Jonathan Rudge ¹

Email address: jon_rudge@btinternet.com

Abstract

This paper describes a potential new explanation for Alzheimer's disease (AD), referred to here as the lipid leakage model. It proposes that AD is caused by the influx of lipids following the breakdown of the blood brain barrier (BBB).

The model argues that a principle role of the BBB is to protect the brain from external lipid access. When the BBB is damaged, it allows a mass influx of free fatty acids (FFAs) and lipid-rich lipoproteins to the brain, which in turn causes neurodegeneration, amyloidosis, tau tangles and other AD characteristics.

The model also argues that, whilst β -amyloid causes neurodegeneration, as is widely argued, its principal role in the disease lies in damaging the BBB. It is the external lipids, entering as a consequence, that are the primary drivers of neurodegeneration in AD, especially FFAs, which stimulate microglia-driven neuroinflammation, inhibit neurogenesis and cause endosomallysosomal abnormalities, all characteristic of AD. In most cases amyloidosis and tau tangle formation lie downstream of these lipids and are in many ways as much symptomatic of the disease as causative.

In support of this, it is argued that the pattern of damage caused by the influx of FFAs into the brain is likely to resemble the neurodegeneration seen in alcohol-related brain damage (ARBD), a disease that shows many similarities to AD, including the areas of the brain it affects. The fact

that anterograde amnesia is far more pronounced in AD than ARBD results from the greater hydrophobicity of FFAs, in an anaesthesia-related manner.

Keywords: Lipids, Alzheimer's, alcohol-related brain damage, blood-brain barrier, βamyloid, tau tangles, amyloidosis, neurodegeneration, neurogenesis, ethanol, anaesthesia

A lipid-leakage model for Alzheimer's Disease

1 Introduction

3

2

1

4 Alzheimer's disease is a neurodegenerative disorder first described by the German physician Lois

5 Alzheimer in 1907. It is a form of dementia characterised by the extensive death of brain cells

and associated with widespread plaques and strongly staining fibrils.

7

8

9

10

11

12

13

14

15

6

Whilst these same characteristics, including the distinctive deposits now known as amyloid

plaques and tau tangles, are individually seen in other forms of neurodegeneration, their

occurrence together appears to be unique to AD. AD has emerged as the most common

dementia, accounting for over half of all dementias, with an especially high prevalence amongst

over-85 year-olds in the developed world (OECD, 2013). Yet, despite more than a century

having elapsed since AD's first discovery, and, in spite of the extensive suffering and financial

costs caused by the disease, only limited progress has been made in understanding its aetiology,

with an effective treatment yet to be developed.

16

17

18

19

20

This has not been for lack of trying. Amongst a number of promising explanations the

cholinergic hypothesis, which emerged in the 1980s, sought to explain the disease in terms of

reduced synthesis of acetylcholine (ACh) (Contestabile, 2011). But, whilst substantial evidence

points to AD-associated deficits in the cholinergic projection system of the brain (Contestabile,

21 2011), animal studies indicate that cholinergic damage causes only moderate cognitive deficits

Page 1

22	(Parent & Baxter, 2004), and attempts to increase ACh levels with drugs, including
23	acetylcholinesterase inhibitors, do not significantly slow disease progression (Contestabile,
24	2011) (Frölich, 2002).
25	
26	In the 1990s an alternative model emerged, the amyloid cascade hypothesis, which postulated
27	that beta-amyloid $(A\beta)$, a proteolytic product of amyloid precursor protein (APP) , is the
28	fundamental cause of the disease (Pimplikar, 2009). This is still the dominant model for
29	explaining AD, backed by a substantial body of evidence, not least the fact that $A\beta$ is the main
30	component of amyloid plaques (Pimplikar, 2009). Moreover, in inherited forms of the disease,
31	collectively referred to as familial AD (FAD), a number of genes related to normal APP
32	processing have been found to be abnormal (Wu et al., 2012). Similarly, people with Down's
33	syndrome (DS) who possess an extra copy of chromosome 21, on which APP resides, typically
34	go on to develop a form of dementia largely indistinguishable from AD (Nieuwenhuis-Mark,
35	2009). Any model of AD needs to take into account these facts.
36	
37	However, the amyloid cascade hypothesis is not without problems of its own, not least the fact
38	that a number of studies have shown a poor correlation between amyloid plaque distribution and
39	disease progression (Pimplikar, 2009) (Bowman & Quinn, 2008) (Terry et al., 1991). In some
40	instances high plaque levels are completely unassociated with dementia (Aizenstein H et al.,
41	2008). And twenty years since the hypothesis was first raised, treatments aimed at preventing or
42	eliminating amyloid plaques have yet to show any significant benefits in preventing dementia
43	(Pimplikar, 2009) (Sperling et al., 2011).
44	

45	Most studies of AD, proposing $A\beta$ as the causative agent, assume that the $A\beta$ found in cerebral
46	plaques must originate within the brain. However, this has recently come into question, with
47	doubts being raised as to whether cerebral production of $A\beta$ is significantly elevated in
48	individuals with non-inherited, late-onset forms of AD (LOAD) (Takechi et al., 2010a)
49	(Cummings et al., 1998).
50	
51	This has led some researchers to propose that the $A\beta$ deposits may originate from outside the
52	brain (Takechi et al., 2010a) (Deane et al., 2009). However, the size of the $A\beta$ protein prevents it
53	travelling across the BBB unaided (Deane et al., 2009). Thus, entry of the $A\beta$ protein into the
54	brain requires either that specific transporter proteins are available to carry it across, or that the
55	BBB is disrupted in some way. Whilst such transporters do exist there are also others that
56	transport $A\beta$ in the opposite direction (Deane et al., 2009) ie out of the brain, as well as
57	alternative efflux mechanisms (Takechi et al., 2010a) (Deane et al., 2009) (Lam et al., 2001).
58	Additionally, the brain appears to have more than adequate enzymatic mechanisms for
59	eradicating excess $A\beta$ arising from faulty transport (Takechi et al., 2010a) (Iwata et al., 2000).
60	Disruption of the BBB would thus seem to be a more plausible explanation for extravasation of
61	$A\beta$ into the brain.
62	
63	In support of such an explanation, AD is associated with BBB disruption (Popescu et al., 2009)
64	(Dickstein et al., 2006) (Kook et al., 2012) (Ujiie et al., 2003) (Iadecola & Gorelick, 2003).
65	Evidence for this includes the fact that AD brains contain proteins that would normally be
66	excluded by the BBB, most significantly apolipoprotein B, which is found in amyloid plaques
67	along with A β (Takechi et al., 2009) (Namba, Tsuchiya & Ikeda, 1992), as well as other large

68 molecular-weight proteins such as albumin, fibringen and immunoglobulins (Bowman & 69 Quinn, 2008) (Ryu & McLarnon, 2009) (Cortes-Canteli & Strickland, 2009) (D'Andrea, 2003). 70 Also, they stain for Evans Blue, which is normally substantially excluded by the BBB (Ujiie et 71 al., 2003) (Cortes-Canteli & Strickland, 2009) (Paul, Strickland & Melchor, 2007). 72 73 Similarly, proteins such as S100B, normally only found in the CNS and considered a good 74 marker of BBB disruption (Marchi et al., 2004), are present in systemic plasma in AD cases 75 (Takechi et al., 2010c) (Takechi et al., 2010b). Further evidence that BBB disruption may lead to 76 AD also comes in the form of Chronic Traumatic Encephalopathy (CTE). This is a progressive 77 degenerative condition, commonly affecting athletes and others with a history of brain trauma, 78 which typically shows many similarities with AD, including large-scale neuronal loss, severe 79 memory deficits, extensive tau tangles and, frequently in advanced cases, diffuse amyloid 80 plaques (Stein, Alvarez & McKee, 2014) and appears to be strongly associated with BBB 81 disruption (Doherty et al., 2016) (Farrell et al., 2019)[more references?]. Finally, the many risk 82 factors for LOAD include ApoE4 (Liu et al., 2013), hypertension (Kivipelto et al., 2002), 83 diabetes (Schnaider Beeri et al., 2004), smoking (Durazzo et al., 2014) and head injury (Gottlieb, 84 2000), all of which are associated with vascular damage (Salloway et al., 2002) (Girouard, 2016) 85 (Prasad et al., 2014) (Mazzone et al., 2010) (Alluri et al., 2015). 86 87 There is also substantial experimental evidence of $A\beta$ directly compromising the BBB (Kook et 88 al., 2012) (Gosselet et al., 2013) (Jancsó et al., 1998) (Farkas et al., 2003) (Tai et al., 2010), by 89 altering tight junction protein distribution and expression in brain endothelial cells (Kook et al., 90 2012) (Gosselet et al., 2013) (Tai et al., 2010) (Hartz et al., 2012) (Ohtsuki et al., 2007),

91 increased matrix metalloproteinase expression (Hartz et al., 2012), oxidative stress (Thomas et 92 al., 1997), increased apoptosis (Fossati, Ghiso & Rostagno, 2012) (Blanc et al., 1997) and 93 dysregulated calcium homoeostasis (Kook et al., 2012) (Blanc et al., 1997). Finally, there is 94 indirect evidence that AB can damage the BBB, for example, in cases of cerebral amyloid 95 angiopathy (CAA) (Hartz et al., 2012) (Fossati, Ghiso & Rostagno, 2012) (Carrano et al., 2011) 96 (Magaki et al., 2018). 97 98 The simplest interpretation of these findings is that A\beta has a dual role in AD progression, first 99 disrupting the BBB, and then causing neurodegeneration by deposition in the brain. But, whilst 100 there is abundant evidence that A\beta is toxic to the brain (Pimplikar, 2009), so are many of the 101 other molecules that a disrupted BBB could be expected to let through [such as?]. If A\beta does 102 play a major role in disrupting the BBB then any proposed model of AD must take into account 103 what role the intact BBB plays in the human body, particularly with regard to the brain. 104 105 Unfortunately, nearly a century after the BBB was first discovered, its full role is still a matter of 106 conjecture. What was considered to be a primary function, ensuring "immune privilege", is now 107 known to be far more limited and nuanced than once thought (Carson et al., 2006) (Harris et al., 108 2014). Nevertheless, it would appear from its unique architecture that the BBB's main purpose is 109 to exclude certain cells and molecules from the brain. This architecture is found hardly anywhere 110 else in the human body and includes tight junctions between endothelial cells, together with 111 numerous efflux transporters (Carson et al., 2006) (Rubin & Staddon, 1999).

Page 6

113	One class of molecules that the BBB excludes or, certainly, substantially limits, is lipids.
114	Evidence (outlined in 2.4-2.5) suggests that excess lipid influx, resulting from BBB compromise,
115	or otherwise, will damage the brain in at least two ways: (a) neuroinflammation and (b)
116	disruption of neurogenesis, both characteristics that have been associated with AD [other
117	references?]. Other characteristics, such as endosomal-lysosomal pathway disruption,
118	amyloidosis and tau tangle formation can also be explained by lipid influx in the form of external
119	lipoproteins (2.6). These are rich in cholesterol, which has also been linked with AD (Simons et
120	al., 2001) (Wolozin, 2004) (Xiong et al., 2008a), particularly in connection with amyloidosis and
121	tau tangles.
122	
123	In support of this, a recent study has reported the presence of lipids, including long-chained
124	triglycerides, within fibrillar $A\beta$ plaques (Kiskis et al., 2015), consistent with the evidence,
125	previously alluded to, of the presence of apolipoprotein B within amyloid plaques.
126	
127	Based on the above evidence, the lipid-leakage model argues that breakdown of the BBB, by $\ensuremath{A\beta}$
128	or other means, and the subsequent influx of lipids, leads to lipid-driven neurodegeneration and
129	dysfunction, including the long-term form known as Alzheimer's disease. According to this
130	hypothesis, it is peripheral lipids, not $A\beta$, that primarily drive AD.
131	
132	One reason for believing this is the similarity between the overall structural pattern of
133	neurodegeneration seen in AD and that seen in ARBD, resulting from chronic exposure of the
134	brain to ethanol. Ethanol passes relatively easily through the BBB and, for the reasons argued
135	below, can be expected to have similar overall effects on the brain as exposure to one major class

136	of lipids, FFAs, but without the amyloid plaques, tau tangles and endosomal-lysosomal
137	abnormalities seen in AD. (See 2.4-2.5.)
138	
139	This suggests that further study of ARBD may yield insights into the aetiology of AD. One area
140	of potential overlap emerges from extensive evidence that the detrimental effects observed in the
141	brain from chronic alcohol exposure are the result not only of neurodegeneration but also of
142	reduced levels of neurogenesis (Fadda & Rossetti, 1998a) (Crews, 2008) (Morris et al., 2010)
143	(Nixon, 2006).
144	
145	Recent studies also demonstrate that the neurodegenerative effects of chronic alcohol abuse may
146	be reversible (Pfefferbaum et al., 1997) (Crews & Nixon, 2009b), following the cessation of
147	ethanol treatment. This could mean that if neuroinflammation and neurogenetic inhibition could
148	be ameliorated then the neurodegenerative effects of AD may also be reversible, giving hope of
149	finding effective treatments for the disease.
150	2 Evidence and explanation of the model
151	
152	It follows from the above, that a full appreciation of the lipid-leakage model requires an
153	understanding of the similarities between AD and ARBD.
154	
155	2.1 Similarities between AD & ADDD
155	2.1 Similarities between AD & ARBD
156	

157 That AD and ARBD may share common elements in their aetiology is apparent from 158 comparisons of brains of individuals with either disease, including direct visual comparisons (see 159 Figure 1), and whole brain MRI scans (Figure 2), (Sullivan, Adron Harris & Pfefferbaum) 160 (Teipel et al., 2015) (Zahr, Kaufman & Harper, 2011) (Fox et al., 2001). 161 Image awaiting copyright owner's permission. 162 163 Figure 1. Visual comparisons of the brains of (A) normal elderly person; (B) a person with AD 164 and (C) a chronic alcoholic. Source [references?]. 165 Image awaiting copyright owner's permission. 166 167 Figure 2. Coronal plane MRI comparison between brains of (a) a normal person and (b) a typical AD case (Duara et al., 2008) 168 and that of (c) a patient with alcohol-related brain damage ("Alcoholic dementia, MRI scan"). Outlined areas in (a) & (b) 169 correspond to hippocampus (outlined in red); entorhinal cortex (blue) and perirhinal cortex (green). Source: [references?]. 170 171 2.1.1 Brain shrinkage 172 173 Such scans typically reveal pronounced similarities between the two diseases in their pattern of 174 neurodegeneration, including evidence of brain shrinkage (Pfefferbaum et al., 1997) (Hua et al., 175 2008) (Rando et al., 2011) (Thompson et al., 2007), loss of cortical folding (involving widening 176 of sulci and thinning of gyri) (Pfefferbaum et al., 1997) (Hua et al., 2008) (Harper & Kril, 1985)

("Brain With Alzheimer's Disease") (de la Monte SM, 1988), enlargement of ventricles

177

178

179

180

181

182

183

184

185

186

187

188

189

190

(Pfefferbaum et al., 1997) (Hua et al., 2008) ("Brain With Alzheimer's Disease") (de la Monte SM, 1988) (especially the lateral ventricles), together with shrinkage of the hippocampus and entorhinal cortex (Duara et al., 2008) (Hua et al., 2008) ("Brain With Alzheimer's Disease") (White, Matthews & Best, 2000) (Beresford et al., 2006) (Fadda & Rossetti, 1998b) and thinning of the corpus callosum (Estruch et al., 1997) (Frederiksen et al., 2011). On their own, such similarities could be dismissed as the effects of general brain shrinkage and other generalised damage. However, the similarities appear to run much deeper than this, with many of the same regions of the brain principally affected in both cases, especially early on in the disease process. In particular, both AD and ARBD appear to be "frontal" diseases, as suggested by physiological, behavioural and sensory studies ("The Neurotoxicity of Alcohol (Chapter 2, Alcohol and the Brain: Neuroscience and Neurobehaviour)") (Hall et al., 2008a) (Gallagher & Colombo, 1995) [more references?]. 2.1.2 Basal forebrain damage in AD and ARBD Measurements of brain volume reveal both diseases to be associated with significant shrinkage in the frontal region of the brain, particularly the prefrontal cortex and basal forebrain regions

191

193

194

195

196

197

198

192

(Pfefferbaum et al., 1997) (Fadda & Rossetti, 1998b) (Hall et al., 2008b) (Teipel et al., 2005) (Grodin et al., 2013), including the cholinergic basal forebrain projection system (Fadda & Rossetti, 1998b) (Teipel et al., 2005) (Muir, 1997) (Arendt et al., 1989a) (Miki et al., 2014).

199 This is backed up by studies in animal models, which suggest that chronic exposure of the brain 200 to ethanol causes a specific pattern of degeneration, including a marked loss of cholinergic 201 neurons, accompanied by a reduction in acetylcholine and choline acetyltransferase activity 202 (Fadda & Rossetti, 1998b) (Arendt et al., 1989a) (Miki et al., 2014) (Floyd et al., January) 203 (Mufson et al., 2003). Again, this is very similar to what is seen in AD (Muir, 1997) (Baskin et 204 al., 1999) [, which is, indeed, why the cholinergic hypothesis was proposed in the 1980s?]. 205 206 Related behavioural evidence pointing towards frontal damage as a factor in both diseases 207 includes personality changes [references?], disinhibition (Ball et al., 2008a) (Crews & Boettiger, 208 2009), confabulation (Attali et al., 2009) (Tallberg & Almkvist, 2001) (Maurage et al., 2011) 209 (Brun & Andersson, 2001) and a noticeable tendency towards perseverative behaviour. This last 210 attribute is readily apparent in individuals with AD (Serna, Pigot & Rialle, 2007) (Nagahama et 211 al., 2003), while studies in adult rats chronically exposed to ethanol (but given a nutritionally 212 adequate diet) point towards a similar pattern of behavioural and neurological deficit (Obernier 213 et al., 2002a) [references?], confirming findings in humans (Fadda & Rossetti, 1998b) (Oscar-214 Berman et al., 1997). Possibly such behaviour involves deficits in the dopamine system 215 [references?], principally centred in the frontal lobe, as well as of the cholinergic system. But 216 certainly it is known that various forms of motor perseveration and similar behavioural inertias 217 can be clearly associated with damage to the frontal lobes (Luria, 1965) [more references?]. 218 219 There is also very strong experimental evidence suggesting that, from comparatively early on, 220 both AD and ARBD are associated with olfactory deficits (Maurage et al., 2011) (Mesholam RI 221 et al., 1998) (Collins, Corso & Neafsey, 1996) (Doty, 2005) (Velayudhan et al., 2013a)

Page 10

222	(Ditraglia et al., 1991) (Christen-Zaech et al., 2003) (Rupp et al., 2006), although not always
223	perceptible to demented patients (Doty, Reyes & Gregor, 1987). [(This may reflect a general
224	lack of olfactory awareness in humans and its much-diminished role compared to other
225	mammals (Sela & Sobel, 2010).)] These are also very likely to involve damage to the basal
226	forebrain, including the olfactory bulb (Collins, Corso & Neafsey, 1996) (Christen-Zaech et al.,
227	2003) (Rupp et al., 2006) (Ohm & Braak, 1987) (Obernier et al., 2002b) and cholinergic systems
228	(D'Souza & Vijayaraghavan, 2014) (Arendt et al., 1989b) (Mundiñano et al., 2013) ("Smell and
229	the Degenerating Brain The Scientist Magazine®," 2013), amongst others.
230	
231	More generally, both forms of dementia are associated with deficits in executive functions ("The
232	Neurotoxicity of Alcohol (Chapter 2, Alcohol and the Brain: Neuroscience and
233	Neurobehaviour)") (Rupp et al., 2006) (Ball et al., 2008b) (Weiss et al., 2014) (Marshall et al.,
234	2011) (Houston et al., 2014) (Duarte et al., 2006), such as attentional and inhibitory control,
235	working memory and reasoning - i.e. those faculties which allow problem-solving, planning,
236	self-control and the attainment of goals. Clearly there are difficulties separating the immediate
237	effects of drinking alcohol from the long-term neurodegenerative effects of alcoholism, as well
238	as questions as to what degree executive function is under the control of the frontal region.
239	Nevertheless, taken collectively, the evidence presented here points to a strong involvement of
240	the frontal lobe degeneration in both ARBD and AD.
241	
242	2.1.3 Medial temporal lobe damage in AD and ARBD

244	As well as the basal forebrain, the medial temporal lobe is also found to be significantly
245	atrophied in both ARBD and AD (Duara et al., 2008) ("Brain With Alzheimer's Disease")
246	(Fadda & Rossetti, 1998b) (Jobst et al., 1992) (Bengochea & Gonzalo, 1990) (Korf et al., 2004)
247	(Vetreno, Hall & Savage, 2011). This is most obvious in the hippocampus but is also in
248	immediately adjoining regions, such as the entorhinal cortex and perirhinal cortex (Traissard et
249	al., 2006) (Velayudhan et al., 2013b) (Sullivan & Pfefferbaum, 2014) (Augustinack et al., 2013)
250	(Jaatinen & Rintala, 2008) (Hirni et al., 2016).
251	
252	Given the well-established link between the hippocampus and memory formation, it is
253	unsurprising, therefore, that AD is associated with anterograde amnesia (AA), including severe
254	deficits in spatial memory [references?]. However, such deficits in ARBD are less clear-cut.
255	Most examples of AA in alcoholics are associated with Korsakoff Syndrome [references?], i.e.
256	assumed to be the result of long-term vitamin B1 deficiency rather than from chronic alcohol,
257	even if this assumption may not always be merited, given the tendency to diagnose the
258	Syndrome primarily by symptoms. Moreover, chronic alcohol-associated AA appears to be
259	reversible, unlike AA in Alzheimer's. Nevertheless, there is sufficient evidence in animal models
260	to suggest that both acute and chronic alcohol exposure lead to pronounced deficits in spatial
261	memory (Cippitelli et al., 2010) (García-Moreno & Cimadevilla, 2012) (Santín et al., 2000)
262	(Assunção et al., 2007), evidence that appears to be mirrored in humans (Bowden & McCarter,
263	1993) [more references?].
264	
265	Overall, anterograde amnesia (AA) predominates in both forms of dementia, with retrograde
266	amnesia tending to emerge later in disease progression (Weintraub, Wicklund & Salmon, 2012)

[more references?]. This would seem to reinforce the overall pattern of degeneration, in which AD and ARBD are both principally characterised by atrophy of the frontal and medial temporal regions, with generalised neocortical involvement emerging only later [references?]. One explanation for this is that both the frontal and medial temporal regions have a higher proportion of pyramidal cells, larger neurons that are thought to be more vulnerable to various stresses (Morrison & Hof, 2002) (Hof, Morrison & Cox, 1990) [more references?]. Whatever the reason, the similarities between AD and ARBD listed above would seem to provide the most obvious reason binge drinking is associated with a higher risk of developing Alzheimer's and related dementias ("Binge Drinking in Midlife and Dementia Risk") [more references?].

276

267

268

269

270

271

272

273

274

275

2.1.4 Summary of similarities between AD and ARBD

278

279

280

281

282

283

284

277

In summary AD and ARBD show a strikingly similar pattern of neurological damage, particularly evident in the basal forebrain and hippocampal region of the medial temporal region, accompanied by marked degeneration in the cholinergic projection system. In keeping with this pattern of damage both AD and ARBD sufferers show deficits in executive function, olfaction and anterograde memory (especially spatial memory) formation and a tendency towards perseverative behaviour.

285

286

287

288

Taken together, these similarities would seem more than sufficient to warrant further investigation. Yet it is hard to explain the mechanism by which long-term exposure of the brain to two such different molecules, ethanol and Aβ, vastly different in size and sharing no obvious

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

chemical or physical properties in common, should lead to such a similarly distinctive pattern of damage. Rather, it suggests that AD could be caused by molecules whose effects are likely to be more similar to those of ethanol. One such candidate is FFAs which, for reasons discussed later, share some crucial properties of ethanol and other aliphatic 1-alcohols (including fatty alcohols). However, in order to appreciate how FFAs can become a major driver of AD, one must first understand the differences between lipid metabolism either side of the BBB. 2.2 Differences between lipid metabolism on either side of the BBB Whatever the exact biological role of the BBB may be, it is clear that many aspects of lipid metabolism and transport greatly differ either side of it. This is most apparent in the case of fatty acids (FAs) and cholesterol. 2.2.1 Fatty acid metabolism For efficient transport within plasma, the vast majority of FAs, being highly hydrophobic, must travel within lipoproteins or must be bound to the protein serum albumin to improve solubility (Vance & Vance, 2008) (van der Vusse, 2009). Immediately after eating, dietary FAs, bound to glycerol as triacylglycerol esters (TAGs) and transported within the class of lipoproteins known as chylomicrons, constitute a major proportion of the plasma transport pool (Vance & Vance, 2008) (Rang, 2012). At the same time,

311	high blood glucose levels associated with satiety lead to hepatic neogenesis of FAs and glycerol,
312	with the resulting TAGs being transported in the blood within Very Low Density Lipoproteins
313	(VLDLs) (Vance & Vance, 2008) (Rang, 2012). During subsequent plasma transport most of the
314	TAGs within chylomicrons and VLDLs are taken up by tissues, principally adipocytes and
315	muscle cells [references?].
316	
317	The chylomicrons and VLDLs are relatively large (typically within a range of 30-80nm and 100-
318	1000nm, respectively (Vance & Vance, 2008) (Rang, 2012)) and lipid-rich by virtue of their
319	association with ApoB isoforms. ApoB is synthesised only in the liver and in enterocytes and
320	thus is normally unavailable to the CNS (Vance & Vance, 2008) (Young, 1990). Such
321	lipoprotein-mediated FA transport appears to allow only very restricted access to the postnatal
322	brain across the BBB, largely composed, as it is, of endothelial cells, held together by tight
323	junctions and lacking in fenestrations and transcytotic vesicles (Carson et al., 2006) (Rubin &
324	Staddon, 1999) (Orth & Bellosta, 2012) (Elliott, Weickert & Garner, 2010) (Björkhem &
325	Meaney, 2004) (Nag, 2003).
326	
327	During the fasting state, adipocytes release stored FFAs directly back into the bloodstream, with
328	the majority being subsequently bound to serum albumin (Vance & Vance, 2008) (van der
329	Vusse, 2009). Because serum albumin is created almost exclusively in the liver (van der Vusse,
330	2009) (Ballmer, 2001) (Schiff, Maddrey & Sorrell, 2011) and cannot pass readily through the
331	BBB (Nag, 2003) (Banks, 2008) (Banks, 2006), it has until recently been assumed that albumin-
332	bound FFAs must also be largely excluded. Support for this hypothesis comes from the
333	widespread expression within BBB endothelial cells of efflux pumps, such as P-glycoprotein,

which have hydrophobic molecules amongst their principal ligands (Rubin & Staddon, 1999).
Together, such features would appear to provide an obvious reason why, almost uniquely
amongst organs, the CNS does not rely on the external supply of FAs (especially in albumin-
bound form) for its energy and other needs. Instead, it appears to rely almost totally on ketone
bodies (breakdown products of FAs, almost solely produced in the liver [references?]), both
during maturation of neurons and glial cells in young age, and when glucose levels alone are
insufficient, such as during fasting (Laffel & Lori Laffel, 1999) (Schönfeld & Reiser, 2013).
Not all experimental evidence supports this hypothesis (Mitchell & Hatch, 2011). For instance,
palmitic acid and arachidonic acid have been observed to pass into brain microvessels from
plasma in rats (Williams et al., 1997), as have octanoic and myristic acids (Spector, 1988). This
has led some observers to question the extent of fatty acid exclusion from the brain by the BBB.
However, such transport proteins as have been identified appear to be limited to specific areas of
the brain and development stages, most obviously in the case of fatty acid transport proteins
(Mitchell & Hatch, 2011) [more references?]. Meanwhile, diffusion, while potentially providing
a generalised means of transport, is likely to be too slow to allow substantial FA provision to the
brain, given the large size of FA molecules (Dalvi et al., 2014) [more references?].
2.2.2 Cholesterol metabolism
Numerous studies have shown that, except in very early foetal development, almost all
±

Page 16

cholesterol in the CNS is of local origin, relying on endogenous de novo biosynthesis rather than

external, lipoprotein-mediated provision (Orth & Bellosta, 2012) (Elliott, Weickert & Garner,

356

357 2010) (Björkhem & Meaney, 2004) (Dietschy & Turley, 2004), This appears to be true for a 358 wide range of animals, including birds and mammals, with much of cholesterol production for 359 neuronal consumption being delegated to local astrocytes (Elliott, Weickert & Garner, 2010) 360 (Dietschy & Turley, 2004) (Pfrieger, 2003). 361 362 Moreover, cholesterol turnover in the mature CNS is very low, typically only around 5% of the 363 turnover seen in the rest of the body (Orth & Bellosta, 2012) (Björkhem & Meaney, 2004) 364 (Dietschy & Turley, 2004). In keeping with this, the principal apolipoproteins expressed in the 365 CNS (including Apo E, D & J (Elliott, Weickert & Garner, 2010) (Danik et al., 1999)) associate 366 into lipoprotein particles that are relatively small (typically less than 20nm) and lipid poor, 367 containing modest amounts of cholesterol and other lipids (Vance & Vance, 2008) [more 368 references?]. Such CNS lipoprotein particles tend to resemble High-Density Lipoproteins 369 (HDL) (Rang, 2012) much more than the larger ApoB-associated lipoproteins that predominate 370 outside the CNS (Elliott, Weickert & Garner, 2010) [more references?]. 371 372 In the rest of the body (and thus on the other side of the BBB) a large proportion of cholesterol is 373 either of dietary origin or else the result of neogenesis in the liver (Vance & Vance, 2008) (Rang, 374 2012). From there much of it is transported in the same large, lipid-rich, ApoB-containing 375 lipoproteins (i.e. chylomicrons and VLDLs) that also transport dietary and liver-derived FAs 376 (Vance & Vance, 2008) (Rang, 2012) (Young, 1990). Thus, for reasons of size (along with the 377 other reasons explained above), much cholesterol of non-CNS origin is unable to cross the BBB

378 (Orth & Bellosta, 2012) (Elliott, Weickert & Garner, 2010) (Björkhem & Meaney, 2004) (Kay et 379 al., 2003). 380 381 2.2.3 Overall differences in lipid transport either side of the BBB 382 Certainly, from birth onwards (Saunders et al., 1999), the BBB separates two compartments with 383 384 very different lipid systems (Dietschy & Turley, 2004) (Pardridge & Mietus, 1980). Compared 385 to the rest of the body the mature CNS compartment is distinguished by a much lower circulation 386 of lipids, with minimal external lipid supplementation and a set of lipoproteins that are 387 noticeably smaller and less lipid-rich [references?]. Much of this difference can be accounted for 388 by the BBB, and by the fact that ApoB is not produced in the brain. 389 390 Given that this distinction appears to have first emerged comparatively early in vertebrate 391 evolution (Bundgaard & Abbott, 2008) [more references?], it seems plausible that serious 392 disruption to the BBB will have lipid-related consequences. This can be inferred from the fact 393 that the mature brain compartment has evolved for so long to function in an environment low in 394 circulating lipids compared with the rest of the body. And, given the relative volumes of the two 395 compartments, it seems likely the brain will be the most vulnerable to lipid incursion if they are 396 no longer separated by the BBB. 397 2.3 The causes of BBB disruption in the lipid-leakage model 398

400	Clearly, an explanation of how the BBB becomes disrupted in AD is central to the lipid-leakage
401	model. It is generally established that the BBB slowly degrades with age (Popescu et al., 2009)
402	(Farrall & Wardlaw, 2009), providing a simple reason, according to the model, why LOAD
403	incidence is also closely correlated with age. But any model with such disruption at its centre
404	needs to account for the many inherited and non-inherited risk factors that accelerate the onset of
405	AD.
406	
407	In FAD this can accounted for by $A\beta$, which, as explained earlier, is known to impair BBB
408	integrity (Takechi et al., 2010a) (Thomas et al., 1997) (Su et al., 1999) (Marco & Skaper, 2006),
409	especially in association with the ApoE4 genotype (Alonzo et al., 1998) [more references?].
410	Numerous studies show that ApoE protects the BBB, with its absence leading to progressive
411	BBB leakage, in excess of what is seen as a result of normal ageing (Hafezi-Moghadam, Thomas
412	& Wagner, 2007) (Methia et al., 2001) (Mulder et al., 2001). Compared to the other ApoE
413	isoforms, however, ApoE4 is associated with impaired BBB function, particularly involving
414	tight junctions, whose integrity is critical to the BBB's capacity to exclude a wide range of
415	molecules (Salloway et al., 2002) (Nishitsuji et al., 2011) (Bell et al., 2012).
416	
417	However, recent studies have revealed that $A\beta$ has an important function as a regulatory
418	apolipoprotein, being highly expressed in both the liver and small intestine, and associated with
419	triglyceride-rich lipoproteins of similar origin (Takechi et al., 2010a) (Mamo et al., 2008)
420	(Galloway et al., 2007). In absorptive enterocytes, $A\beta$ is seen to collocate with ApoB ₄₈ , forming
421	chylomicrons, with enterocytic levels of $A\beta$ and plasma levels of $A\beta$ -associated chylomicrons

422 both increasing in response to a diet high in saturated fats (Galloway et al., 2007) (Pallebage-423 Gamarallage et al., 2010). 424 425 In a standard transgenic mouse model of AD in which Aβ is overproduced, disease progression 426 and onset were seen to be strongly correlated with rates of secretion into the blood of TAG-rich, 427 Aβ-associated lipoproteins, and with their subsequent plasma levels (Takechi et al., 2010a). Such 428 overproduction, whether resulting from dietary causes or from direct Aβ over-expression, leads 429 to BBB disruption (Takechi et al., 2010a) (Mamo et al., 2008) (Pallebage-Gamarallage et al., 430 2010). 431 432 This explains, amongst other things, why amyloid plaques in human brains show 433 immunoreactivity for ApoB, similar to that seen in the brains of AD mouse models (Takechi et 434 al., 2010a) (Namba, Tsuchiya & Ikeda, 1992). For the reasons stated earlier, such ApoB 435 deposition is only possible if the BBB has been disrupted in some way, as well as being 436 consistent with the premise that invading, lipid-rich, lipoproteins are primary actors in 437 endosomal pathology (as described in 2.6.2) and amyloid plaque formation. 438 439 This suggests that the aetiology of both familial and late-onset forms of AD could be linked 440 through excess levels of TAG-rich chylomicrons. In the former case this would primarily result 441 from over-production of A β , whilst in the latter case it would primarily result from dietary 442 causes. This in turn would lead, in both cases, to BBB disruption (which can be exacerbated by 443 other factors, as explained above) and to the characteristic neurodegenerative effects outlined

below. However, evidence for such chylomicron excess as a general characteristic of AD is limited at present and is not a requirement of the model.

446

444

445

2.4 Likely neuroinflammatory consequences of lipid influx to the brain

448

447

2.4.1 Neuroinflammation

450

451

452

453

454

455

456

457

458

459

460

461

462

463

449

Extensive research has established that neuroinflammation is an important cause of ethanolinduced neurodegeneration (Crews, 2008) (Crews) [more references?] and that microglia are central agents of such inflammation (Crews, 2008) [more references?]. This central role is perhaps unsurprising, given that the "immune-privileged" status conferred on the brain by the BBB leaves microglia as the primary immune cell (Kaur et al., 2010) (Yang et al., 2010), a role not seen as a rule in macrophages in the rest of the body. Their ability to perform this role seems to depend in large part on being abnormally sensitive to a wide range of ligands (Yang et al., 2010) (Dissing-Olesen et al., 2007) (Gehrmann, Matsumoto & Kreutzberg, 1995), and this, in turn, helps to explain why chronic ethanol, largely unobstructed by the BBB, causes such extensive inflammatory damage to the brain over time (Fadda & Rossetti, 1998b) [more references?]. Additionally, the mechanism through which this occurs suggests that FAs, provided they could pass through the BBB in quantity, would have similar inflammatory effects, since both are known to powerfully activate the same critical receptor.

464

465	Ethanol activation of microglia (Crews, 2008), is accompanied by upregulation of the
466	transcription factor NF-κB (Zou & Crews, 2010) (Alfonso-Loeches et al., 2010), and other
467	macromolecules known to be involved in inflammation and in the immune response. The
468	evidence suggests that toll-like receptors, particularly TLR4, a receptor that binds bacterial
469	lipopolysaccharide (LPS), appear to be central to such activation and the subsequent
470	neuroinflammation (Alfonso-Loeches et al., 2010) (Fernandez-Lizarbe, Montesinos & Guerri,
471	2013).
472	
473	If TLR4 is central to ethanol-induced neuroinflammation then there seems every reason to think
474	that FFAs entering the brain would have similar neuroinflammatory effects. Saturated (but not,
475	apparently, unsaturated) FAs are known to activate TLR4 in macrophages, leading in turn to
476	activation of NF- κB and the other pro-inflammatory molecules referred to earlier (Wang et al.,
477	2012) (Chait & Kim, 2010). And TLR4 activation in adipocytes by saturated FAs (and perhaps
478	by some unsaturated FAs) is an essential step in lipid-induced diabetes mellitus (Chait & Kim,
479	2010) (Shi et al., 2006), which is now thought to be substantially inflammatory in nature
480	[references?]. In support of this, knockdown or ablation of TLR4 has been shown to inhibit both
481	FFA-induced and ethanol-induced inflammation (Alfonso-Loeches et al., 2010) (Wang et al.,
482	2012) (Shi et al., 2006) [more references?] .
483	
484	Given the much greater overall sensitivity of microglia to pathological stimuli (compared to
485	other macrophages) (Rock et al., 2004) [more references?], one would expect activation by both
486	ethanol and FFAs to result in far more vigorous inflammatory activity than seen in other parts of
487	the body. And, whilst the relative affinities of ethanol and FFAs for TLR4 have yet to be

determined, the fact that saturated fatty acyl groups are known to be crucial to TLR4 recognition of LPS (TLR4's principal pathogenic ligand) (Hwang, 2001) suggests that FFAs should have a substantially higher affinity than ethanol for TLR4. Thus the relatively low levels of FFAs seen in plasma (generally agreed to fall within an average range of 0.3-0.6 mM [references?]) should be sufficient to generate a steady level of neuroinflammation, following major BBB insult, especially if they are accompanied by pathogen-associated LPS, as seen in ethanol-induced liver injury (Nagy, 2003). Thus it may be this, rather than TLR4 stimulation by amyloid (Walter et al., 2007), that is the primary driver of microglial-based neuroinflammation in LOAD.

496

488

489

490

491

492

493

494

495

2.4.2 Inhibition of neurogenesis

498

499

500

501

502

503

504

505

506

507

508

497

Ethanol-induced neuroinflammation has also been linked to inhibition of neurogenesis (Crews & Nixon, 2009a) [more references?], with many studies suggesting that such neurogenetic deficits are almost as important a factor as neuroinflammation in ethanol-mediated brain degeneration (Crews, 2008) [more references?] . Here too, TLR4 is likely to have a prime inhibitory role (Barak, Feldman & Okun, 2014) [more references?], diminishing proliferation of adult neuronal progenitor cells (NPCs) and restricting neuronal differentiation from NPCs. Such inhibition would obviously be most apparent in the main neurogenic niches, i.e. the subgranular and subventricular zones, which provide new interneurons to (respectively) the hippocampus and the olfactory bulb [references?]. This could explain the deficiencies in learning and olfaction common to both AD and ARBD.

509

Furthermore, current evidence indicates that the overall level of neurodegeneration is determined almost as much by the relentlessness of the ethanol assault as by the concentrations involved (Crews, 2008) (Crews & Nixon, 2009a) (Nixon & Crews, 2002). Thus, one can reasonably infer that constant exposure of the brain to plasma levels of FFAs is likely to overwhelm the brain's capacity to recover, especially in the elderly. Such a conclusion is further supported by evidence that inhibition of neurogenesis, by both ethanol and FFAs, does not need to rely on the TLR4 receptor alone, and may, in fact, depend more on GABAergic effects, as explained in the next section.

518

510

511

512

513

514

515

516

517

2.5 GABAergic effects

520

521

522

523

524

525

526

527

519

Recent research has indicated a possible role for the inhibitory neurotransmitter gammaaminobutyric acid (GABA) in the development of AD (Wu et al., 2014) (Rissman & Mobley, 2011) (Jo et al., 2014), with a number of possible mechanisms being suggested. One such mechanism, GABA-induced tonic inhibition within the hippocampus, provides an obvious explanation of why AD is characteristically associated with AA. However, the proposed source of this excess GABA within hippocampal-resident reactive astrocytes, does not have much support in the literature, either for AD or ARBD.

528

529

530

531

The lipid-leakage model provides an alternative mechanism, extending beyond tonic inhibition, and accounting for the coexistence of AA in AD and ARBD, as well as other similarities, including similar patterns of neurodegeneration within two major neurogenic niches, the SGZ

532	and SVZ. Underlying this common mechanism is the proven affinity of ethanol, and likely
533	affinity of FFAs, for GABAA receptors (GABAARs), as well as the recently-discovered role of
534	high-affinity extrasynaptic GABAARs in both tonic inhibition and anaesthesia-associated
535	amnesia.
536	
537	In the 1950s onward, Samson and Dahl and other groups showed that injection of FFAs induced
538	light anaesthesia in a range of mammals (Samson Jr, Dahl & Dahl, 1956) (White & Samson,
539	1956) (Matsuzaki & Takagi, 1967) (McCandless, 1985). Anaesthetic potency increases (up to an
540	undetermined cut-off) with FFA chain length (and thus hydrophobicity), in line with Meyer-
541	Overton (Samson Jr, Dahl & Dahl, 1956) (White & Samson, 1956) (Dahl, 1968) (Perlman &
542	Goldstein, 1984), falling within the low millimolar range (expressed both as moles per litre and
543	moles per kilogram of body weight) and showing similar potencies to structurally comparable 1-
544	alcohols (including ethanol) (Alifimoff, Firestone & Miller, 1989), as well as to alkanes (Hau,
545	Connell & Richardson, 2002) and aldehydes (Deneer, Seinen & Hermens, 1988).
546	
547	Given the general correlation between hydrophobicity and anaesthetic potency first described by
548	Meyer-Overton (Evers & Crowder, 2009), it would perhaps be surprising if fatty acids did not
549	show similar anaesthetic potencies to structurally very similar fatty alcohols (Evers & Crowder,
550	2009) (Ueda & Suzuki, 1998) (Matsuki et al., 1999) (Frangopol, 2001), nor, given the
551	established anaesthetic properties of various steroids (Kappas & Palmer, 1963) (Belelli &
552	Lambert, 2005), should it be a surprise that other lipids might display similar properties.
553	

The immediate significance of lipids' anaesthetic properties to dementia lies in the fact that, at

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

concentrations well below those needed for clinical anaesthesia, the vast majority of anaesthetic agents are known to cause AA (Evers & Crowder, 2009) (Orser, 2007) (Bonin & Orser, 2008a). Such low-level anesthesia-induced AA is now known to involve extrasynaptic GABAARs (Orser, 2007) (Bonin & Orser, 2008b) whose subunit composition (including either $\alpha 5$ or δ subunits) gives them sufficient sensitivity to respond to low levels of ambient GABA (Brickley & Mody, 2012). It is the resulting low-level inhibitory currents, termed "tonic inhibition", which is associated with AA (Nutt et al., 2007) (Cheng et al., 2006) (Sikka, Beaman & Street, 2015). (By contrast lower-affinity synaptic GABAARs, with different subunit compositions, respond only to the higher concentrations of GABA released within their associated synapses, with the resulting phasic inhibition causing the other anaesthetic effects (Evers & Crowder, 2009) [more references?], including analgesia, immobility and unconsciousness.) In support of this, pharmacological and genetic knockdown of extrasynaptic α5- and δ-containing GABA_ARs in mice has been shown to improve performance on learning and memory tasks (Collinson et al., 2002) (Clarkson et al., 2010) (Shen et al., 2010), possibly by lowering the threshold for longterm potentiation (Martin et al., 2010) (Whissell et al., 2013) (Liu et al., 2010). The reason for all this is that GABAARs have associated ion channels, which become permeable to chloride (and, to a lesser extent, HCO₃) ions, in response to GABA ligation (Li & Xu, 2008) [more references?]. Upon such activation, chloride ions flow through these GABAAR channels in a direction determined by their electrochemical gradient. Since mature neurons maintain an

Page 26

excess of chloride ions externally, the normal response to GABA binding is therefore for these

negative ions to flow in through the GABAAR channels, increasing the negative membrane

577	potential and thereby hyperpolarising (i.e. inhibiting) the affected neuron (Li & Xu, 2008)
578	(Kaila, 1994). Tonic inhibition is just the extrasynaptic form of this (Petrini et al., 2004) (Jia et
579	al., 2005). The majority of anaesthetic agents (including those that are only weakly anaesthetic,
580	such as ethanol) are known to enhance this GABA binding, acting as positive allosteric
581	modulators (Krasowski, 2003) (Orser et al., 1998). Accordingly, they tend to inhibit normal
582	activity in mature neurons of the CNS (Orser et al., 1998) (Krasowski & Harrison, 1999)
583	(MacIver, 2014).
584	
585	However, recent research has shown that the same high-affinity extrasynaptic GABAARs that
586	mediate tonic inhibition in mature neurons (Brickley & Mody, 2012) (Yeung et al., 2003) also
587	play a significant role in neurogenesis and neuronal plasticity (Bordey, 2007a) (Liu et al., 2005).
588	In support of this, pharmacological and genetic suppression of tonic GABA inhibition, including
589	by down-regulation of extrasynaptic GABAAR activity, is associated with marked
590	improvements in functional recovery after stroke (Clarkson et al., 2010) (Paik & Yang, 2014).
591	This is in agreement with findings that suggest that increased GABA tonic inhibitory currents, in
592	the days after stroke, hinder recovery (Clarkson et al., 2010) (Clarkson, 2012).
593	
594	Since the extrasynaptic GABAARs containing the δ -subunit are known to be especially sensitive
595	to positive modulation by ethanol (Meera et al., 2010) (Wei, Faria & Mody, 2004) this may
596	explain alcohol-mediated neurodegeneration seen in ARBD. As explained earlier, disruption of
597	neurogenesis appears to be critical to the neurodegenerative effects of ethanol upon the brain.
598	Specifically, chronic exposure of the brain to ethanol is characterised from comparatively early
599	on by erosion of the hippocampal region (Crews, 2008) (Nixon & Crews, 2002), loss of

600 interneurons (the primary product of neurogenesis (Mandyam, 2013)), AA (White et al., 2004) 601 (Sanday et al., 2013) and olfactory deficits (Collins, Corso & Neafsey, 1996) (Ditraglia et al., 602 1991). 603 604 An obvious explanation for these findings is inhibition of neurogenesis in the SGZ and SVZ, 605 given that the former supplies interneurons to other hippocampal regions (Eriksson et al., 1998) 606 [more references?], whilst the latter is known to replenish the olfactory bulb interneurons via the 607 rostral migratory stream (Lim & Alvarez-Buylla, 2016) [more references?]. Since much 608 evidence suggests that FFAs have similar, if not higher, anaesthetic potency levels to ethanol 609 (Ueda & Suzuki, 1998) (Frangopol & Mihailescu, 2001) (Samson, Dahl & Dahl, 1956) (Pringle, 610 Brown & Miller, 1981) (Walker et al., 1970) (Wong et al., 1997) implying a similar affinity for 611 GABAARs, it may well be that chronic exposure of the brain to excess FFAs over many years 612 will have similar results, explaining why AD and ARBD share these hallmark effects on the 613 brain. 614 615 A complicating factor here is that, in immature neurons, the chloride gradient is reported to be in 616 the reverse direction to that of their mature counterparts (Li & Xu, 2008) (Ben-Ari & Holmes, 617 2005). That is to say, chloride ions are held internally in excess of their external levels. If so, 618 GABA binding to GABAARs could reasonably be expected to activate such precursor neurons 619 and, by extension, one would expect anaesthetic agents (and other positive modulators) to 620 overactivate them. A further consideration is that such precursor cells initially exhibit few 621 synapses, with most GABAARs having a subunit composition typical of extrasynaptic 622 GABAARs in mature neurons (Henschel, Gipson & Bordey, 2008) (Pallotto & Deprez, 2014)

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

(Song et al., 2012), with synapses only tending to emerge later as the neuronal precursors mature and become integrated (synaptically and otherwise) with the existing network (Ming & Song, 2011) (Ge et al., 2007) (Ben-Ari et al., 2007). So GABAARs in these cells tend to have a high affinity for ambient GABA, and one would expect the dominant response to GABA stimulation to be tonic activation (Song et al., 2012) (Ming & Song, 2011). So, if ethanol (and, as we are arguing here, by extension, FFAs) abnormally enhance this effect, one should expect to see overgrowth rather than erosion in adult neurogenic regions. Why is this not so? One mechanism that might explain such neurogenetic deficits in the SGZ and SVZ, is GABAmediated feedback inhibition. Recent discoveries suggest that non-synaptic paracrine GABA signalling provides information on population size to control proliferation and migration of neural progenitor cells in the SVZ (Liu et al., 2005) (Pallotto & Deprez, 2014) (Ge et al., 2007) (Bordey, 2007b). Specifically, adult SVZ neuroblasts synthesise and release GABA, which acts on GABAARs in neural stem cells, inhibiting NSC division and thus effectively applying a brake on neurogenesis. In confirmation of this, removal of neuroblasts is seen to release this brake. The specific details of this appear to have been provided by a study of neurogenesis in postnatal rat striatum (Nguyen et al., 2003). Here, the growth factor EGF was seen to decrease GABA production and release in PSA-NCAM+ neural precursor cells, leading to their proliferation. A number of experiments suggested that GABA was indeed acting on GABAARs in an autocrine/paracrine mechanism to prevent cell proliferation by inhibiting cell cycle progression. Application of GABAAR antagonists inhibited proliferation, whereas positive allosteric

646	modulators decreased it. As with other immature neuronal cell lineages, GABA-mediated
647	GABAAR activation elicited inward currents (indicating outward flows of negatively-charged
648	chloride ions), leading to tonic inhibition of the mitogen-activated protein kinase cascade and an
649	increase of intracellular calcium levels (Nguyen et al., 2003).
650	
651	This agrees with the findings of the Liu study, which showed that, at least in GFAP-expressing
652	neural progenitor cells in the SVZ, GABAAR activation limits progression through the cell cycle
653	(Liu et al., 2005). It also suggests that, at least in the SVZ, adult neurogenesis is regulated by the
654	same mechanisms that govern embryonic neurogenesis, where, for instance, GABA is seen to
655	direct neuroblast migration, stimulating random mobility by promoting elevation of cytosolic
656	Ca2+ levels (Ge et al., 2007) (Barker et al., 1998), similar to what is seen in adult neurogenesis
657	(LoTurco et al., 1995). While some related studies have shown that such effects appear to
658	promote neuronal fate selection (Tozuka et al., 2005), the overall impression is that GABA
659	stimulation also seems to limit proliferation (Nguyen et al., 2003) (Barker et al., 1998).
660	However, more recently, doubts have been raised about whether such tonic GABA-mediated
661	depolarisation is sufficient to open voltage-gated calcium channels enough to permit substantial
662	increases in intracellular calcium in the way proposed, requiring other explanations (Bordey,
663	2007b).
664	
665	An alternative explanation is that an epigenetic mechanism, involving histone H2AX
666	phosphorylation following sustained GABAAR activation by GABA, inhibits DNA synthesis
667	and cell cycle progression, and therefore proliferation of adult neural stem cells (Fernando et al.,
668	2011). It is not clear that this mechanism also applies to SGZ neurogenesis but, if so, it could

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

explain why GABAergic stimulation is similarly associated with quiescence of adult precursor cells in this niche (Pallotto & Deprez, 2014) (Song et al., 2012) (Duveau et al., 2011). But it may be that such involved explanations are not necessary, as recent research has brought into question the prevailing orthodoxy concerning GABA activation of immature neurons (Valeeva et al., 2016) (Zilberter, 2016), concluding that, overall, GABA action on the neonatal brain is inhibitory. If this proves correct, and is found to be true also for adult neurogenic regions, then ethanol-induced deficits in neurogenesis can be simply explained as a result of excess inhibition. Either way, assuming ethanol inhibition of neurogenesis in the SVZ and SGZ is mediated by GABAARs, then FFAs are likely to have a similar effect. This is because a number of studies point towards GABAARs as the most likely target and mediator of FFA's limited anaesthetic properties, not least the well-established anaesthetic effects (alluded to earlier) of structurally similar n-alkanes, n-alcohols and n-aldehydes. Furthermore, as with FFAs, anaesthetic potency increases with chain length but only up to a certain "cut off" length (Alifimoff, Firestone & Miller, 1989) (Hau, Connell & Richardson, 2002) (Frangopol & Mihailescu, 2001) (Chiou et al., 1990) (Wick et al., 1998) (Lugli, Yost & Kindler, 2009)). This, together with direct evidence that the n-alcohols act on GABAARs (Wick et al., 1998) (Davies, 2003), as does the endogenous, FA, anaesthetic oleamide (Lees et al., 1998) (Coyne et al., 2002) (Laws et al., 2001), suggests a common binding site. More direct evidence for this comes from the observed antagonising effects of long-chain FFAs on GABAAR-mediated anaesthesia by volatile anaesthetics (Yamakura, 2004) (Hanada, Tatara & Iwao, 2004), along with other evidence of

direct interactions between FFAs and GABAARs (Zhang & Xiong, 2009) (Koenig & Martin, 1992) (Witt & Nielsen, 1994).

694

695

696

697

698

699

700

701

702

692

693

Taken together, a strong body of evidence points to the likelihood that FFAs, entering the brain through a damaged BBB (and therefore much in excess of their normal levels), will, if maintained over the long-term, tend to seriously disrupt neurogenesis by acting on GABAARs. Given the presence of major sites of neurogenesis in the SGZ and SGZ, this will principally manifest itself in anterograde amnesia and olfactory deficits. The first of these is of course the primary behavioural abnormality seen in AD, whilst the second has been argued to be another common (if less obvious) outcome. But, as described above, these are also seen in ARBD, driven by excess exposure to ethanol, which is known to act on GABAARs, accounting for the similarities between AD and ARBD detailed above.

704

703

2.6 AD-specific consequences of brain exposure to external lipids

706

707

708

709

710

711

712

713

705

If the above account explains many of the similarities seen between AD and ARBD, it does not explain why, unlike ARBD, AD is characterised by profuse plaques and tangles. The lipidleakage model of AD explains this by the fact that the BBB has to be disrupted for fatty acids to substantially enter the brain, unlike in ARBD, where ethanol can pass through the BBB relatively unhindered [references?]. Consequently, in AD the brain is also exposed to other molecules from which it is normally protected, including lipoproteins, which are much larger and more lipid-laden than those normally found within the CNS compartment.

714	
715	There is good reason to think that such lipoproteins may account for the amyloid plaques that
716	characterize AD. It has been known for some time that excess cholesterol is associated with
717	increased amyloidogenesis.
718	
719	2.6.1 The role of excess cholesterol in amyloidogenesis
720	
721	Cholesterol may have a role in increasing proteolytic production of amyloidogenic $A\beta$ from
722	APP, as opposed to production of alternative non-amyloidogenic fragments (Xiong et al., 2008b)
723	(Nicholson & Ferreira, 2010) (Bodovitz & Klein, 1996). This appears to result from the
724	influence of cholesterol stimulation on an amyloidogenic pathway involving $\beta\text{-}$ and $\gamma\text{-}secretases$
725	(two proteases involved in APP proteolysis) (Xiong et al., 2008b), as well as on a non-
726	amyloidogenic pathway involving α -secretase (Kojro et al., 2001) (Figure 3.). Increasing the
727	levels of cholesterol stimulates the amyloidogenic pathway, at the same time inhibiting the non-
728	amyloidogenic pathway (Wolozin, 2004) (Xiong et al., 2008b). In contrast, cholesterol depletion,
729	by various processes, inhibits the amyloidogenic pathway and enhances non-amyloidogenic
730	processing, resulting in lower levels of A β (Kojro et al., 2001) (Simons et al., 1998) [more
731	references?].
732	
733	Amyloidogenic processing appears to be initiated within cholesterol-rich lipid rafts (Ehehalt et
734	al., 2003) (Rushworth & Hooper, 2011) (Nixon, 2017) (especially in early endosomes (Nixon,
735	2017) (Arriagada et al., 2007)), whilst non-amyloidogenic processing occurs in the main

736	phospholipid-rich region of the neuronal plasma membrane (Xiong et al., 2008b) (Grimm et al.,
737	2013). This suggests that an important part of cholesterol's influence on amyloidogenic
738	processing may be a consequence of its essential role as a major constituent of these lipid rafts, a
739	conclusion that is well-supported in the literature (Ehehalt et al., 2003) (Nixon, 2017) (Vetrivel
740	et al., 2004) [more references?].
741	
742	Certainly, some studies indicate that brain cholesterol levels may be raised in AD, compared to
743	non-demented, brains (Xiong et al., 2008b) [more references?], although not all studies concur
744	[references?]. That cholesterol may be directly associated with amyloid plaque formation is
745	supported by brain imaging studies, which show $\ensuremath{A\beta}$ collocated with cholesterol $% \ensuremath{B}$ within amyloid
746	deposits in AD human brain samples (Xiong et al., 2008b) [more references?].
747	
748	

750

751

Figure 3. (a) Amyloidogenic and (b) non-amyloidogenic processing of APP.

752

2.6.2 The role of excess cholesterol in endosomal-lysosomal pathway abnormality

754

755

756

757

753

Indirect evidence of raised brain cholesterol levels as a causal factor in AD comes from studies of human AD brains (Cataldo et al., 2000) [more references?]. Such brains show abnormalities in the endosomal-lysosomal system compared to normal brains, together with neurofibrillary

758	(tau) tangles [references?]. Such endosomal pathway overactivity and compartmental
759	enlargement appears to be an early marker in AD, especially in pyramidal neurons (which are
760	known to be vulnerable in AD [references?]), and in endothelial cells [references?].
761	
762	Interestingly, a very similar pathology is also seen in mouse and other models of DS (Arriagada
763	et al., 2007) (Cataldo et al., 2000) (Cataldo et al., 2008) [more references?]. However, at least in
764	the case of one mouse model, such pathology was seen to emerge only following lipoprotein-
765	mediated cholesterol treatment (Arriagada et al., 2007), suggesting that cholesterol is a crucial
766	causal factor.
767	
768	Further support for this comes from a number of studies in in Niemann-Pick disease type C
769	(NPC), a neurological disorder characterised by faulty cholesterol transport and by tau tangles
770	(Saito et al., 2002), and in which endosomal-lysosomal pathology is also observed (Frolov et al.,
771	2001). Such studies, whilst often contradictory in their results, collectively point to various
772	failings in cholesterol uptake, transport and recycling, and in abnormal endosomal-lysosomal
773	pathway behaviour. Such reported failings include excessive uptake of exogenous LDL-derived
774	cholesterol (Liscum & Faust, 1987), excessive synthesis of endogenous cholesterol (Liscum &
775	Faust, 1987), enlarged early endosomes (Nixon, 2004) (Jin et al., 2004), accumulation of
776	unesterified cholesterol in late endosomes and lysosomes (Nixon, 2004) (Sobo et al., 2007),
777	defective post-lysosomal cholesterol transport (Roff et al., 1991) and redistribution of lysosomal
778	hydrolases to early endosomes (Jin et al., 2004).

781

782

783

784

785

786

787

788

789

790

791

792

793

794

Yet such reports commonly claim that other aspects of cholesterol internalisation (and endosomal-lysosomal pathway behaviour) appear to be normal, particularly in the case of initial cholesterol uptake and early endosome behaviour (Nixon, 2004). However, a very similar phenotype is observed in a Chinese hamster ovary (CHO) cell mutant, which has a normal copy of NPC1 (the late endosome/lysosome-residing protein most commonly associated with NPC disease (Nixon, 2004)), and of the HE/NPC2 protein (also associated with NPC, although less commonly) yet still exhibits NPC-like pathology (Frolov et al., 2001). In this mutant late sterol trafficking is reported to be normal despite obvious cholesterol accumulation in late endosomes/ lysosomes (Frolov et al., 2001). Instead, cholesterol build-up occurs as a result of muchincreased LDL-R binding, probably leading to cholesterol uptake being in excess of the normal capacity of the cell to dispose of it (Frolov et al., 2001). Evidence in support of this conclusion includes the finding that LDL starvation of this mutant resulted in the disappearance of the cholesterol-laden aberrant late endosome compartment (characteristic also of NPC) that had previously been observed, only for this compartment to reappear with the restoration of LDL feeding (Frolov et al., 2001). More generally, another study, using a human fibroblast model, appears to provide further

795

796

797

798

799

800

801

802

evidence for this conclusion. It found endosomal-lysosomal pathology in a number of inherited sphingolipid-storage disorders (Puri et al., 1999). In almost all cases such pathology showed strong similarities with that seen in NPC, with a marked reduction in the accumulation of both cholesterol and a representative sphingolipid within the Golgi complex, accompanied by their increased accumulation within many punctate cytoplasmic structures that also appeared to be associated with the NPC1 protein (Puri et al., 1999).

805

806

807

808

809

810

811

812

The authors conclude that the observed pathology most likely results from a build-up of cholesterol (which is known to associate with high affinity to sphingolipids (Brown, 1998) (Lönnfors et al., 2011)) within endosomes and lysosomes, since the reported pathology was seen to disappear following cholesterol depletion, being replaced with normal endosomal-lysosomal behaviour (Puri et al., 1999). However the same pathology could also be induced in normal cells by application of excess external cholesterol in the form of low-density lipoprotein (LDL) (Puri et al., 1999), similar to what is described for the CHO mutant mentioned above (Frolov et al., 2001), and in line with another study linking raised levels of plasma membrane cholesterol with correspondingly enlarged early endosomes in hippocampal neurons (Cossec et al., 2010).

813

814

815

816

817

818

As stated earlier, LDL is not normally seen in the brain (since it requires apolipoprotein B) and tends to be both larger in size and more cholesterol-rich than the HDL-like lipoproteins typically seen there (Vance & Vance, 2008) (Danik et al., 1999). This suggests that externally-sourced cholesterol, supplied in excess of normal brain levels, may be a causal factor of AD-related endosomal abnormalities and of amyloidosis, at least in the late-onset form.

819

820

821

822

823

824

In further support of this hypothesis, inhibition of CYP46A1 (a protein indirectly responsible for cholesterol clearance from the brain through the BBB (Lund, Guileyardo & Russell, 1999) (Lütjohann et al., 1996)) in mouse hippocampal neurons has been shown to lead to accumulation of neuronal cholesterol. This, in turn, is associated with a distinctive AD-like pathology, including marked changes in endosomes (increasing both in size and number), Aβ peptide

production, tau phosphorylation, endoplasmic reticulum stress and apoptosis, and eventually

hippocampal atrophy and cognitive impairment (Dielti et al., 2015) (Ayciriex et al., 2017). It has been argued earlier that the presence of a BBB has resulted in the brain (and the rest of the CNS) evolving to have a different lipid system to the rest of the body, one characterised by a much lower lipid turnover, and smaller, less lipid-dense lipoproteins. If so, it should therefore not be unexpected that substantial damage to the BBB, leading to long-term exposure to a systemic lipid system characterised by high lipid turnover and larger, more lipid-dense lipoproteins, will result in neurons and other brain cells becoming overloaded and displaying the kind of abnormalities described above. 2.6.3 The role of the β-secretase-induced C-terminal fragment (βCTF)

835

825

826

827

828

829

830

831

832

833

834

837

838

839

840

841

842

843

844

836

Certainly, this interpretation fits in well with the evidence presented above, given that cellular LDL-cholesterol uptake is known to be dependent on the endosomal-lysosomal pathway, by way of receptors possibly bound within lipid rafts (Vance & Vance, 2008) (Nixon, 2017) (Pompey et al., 2013) (Sun et al., 2010). Furthermore, APP seems to be central to endosomal-lysosomal pathology, as the latter can be induced by APP over-expression, or by the C-terminal fragment that remains after β-secretase cleavage of APP (Nixon, 2017) (Jiang et al., 2010) [more references?], but prior to γ-secretase cleavage (Fig. 3).

846	Such cleavage is known to take place in early endosomes (Arriagada et al., 2007) (Cataldo et al.,
847	2000) and appears crucial to pathology, since inhibition of β -secretase (or the substitution of
848	APP by constructs lacking β -secretase cleavage sites) restores normal endosomal-lysosomal
849	behaviour (Jiang et al., 2010) [more references?]. Furthermore, treatments that increase levels of
850	$A\beta$ without increasing levels of β CTF do not result in endosomal-lysosomal pathology (Jiang et
851	al., 2010), in line with other evidence that the endosomal abnormalities seen in a mouse model of
852	DS do not appear to be associated with abnormally high levels of $\ A\beta$ (Salehi et al., 2006) (Choi
853	et al., 2009). Meanwhile, inhibition of γ -secretase, which increases levels of β CTF at the expense
854	of $A\beta$, induces endosome-lysosomal pathology in previously normal fibroblasts (Jiang et al.,
855	2010).
856	
857	The underlying reason for this appears to be that β CTF recruits the adaptor protein APPL1
858	(adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain, and
859	leucine zipper motif) to Rab5 complexes on endosomes (Nixon, 2017) (Miaczynska et al., 2004)
860	(Zhu et al., 2007). This stabilises the monomeric GTPase protein Rab5 in its GTP-bound,
861	activated form, and therefore amplifies the Rab5 signalling associated with early endosomes
862	(Grbovic et al., 2003) (Gorvel et al., 1991) (Mishra et al., 2010), leading in turn to the enlarged
863	endosomes seen in both AD and DS (Nixon, 2017) (Kim et al., 2016).
864	
865	(More on cholesterol? ApoE4?)
866	Thus, taken collectively, the evidence appears to explain the endosomal-lysosomal pathology
867	seen in DS dementia, and in many forms of AD, by two related mechanisms.

Page 40

In the case of DS dementia, and early-onset forms of AD resulting from APP mutations, the pathology is likely to be the product of β CTF over-expression. In the case of LOAD, over-supply of cholesterol, originating from outside the brain, results in preferential up-regulation of βsecretase (Xiong et al., 2008b), leading to the same result. Amyloidosis inevitably follows in both cases, no doubt enhanced by the substantial presence of Aß in enterocytic- and hepaticderived lipoproteins (see 2.3). Tau tangles presumably result from amyloidosis or from a failure of cholesterol transport, by a similar mechanism to that seen in NPC.

876

877

878

879

880

881

882

883

884

869

870

871

872

873

874

875

3 Discussion

In the preceding text, evidence has been presented to support a lipid-leakage model of AD progression. This states that, in the majority of cases, if not all, AD is primarily driven by the influx of lipids of systemic non-CNS origin, following the breakdown of the BBB. From a general perspective, this emphasis on a mechanical, rather than a purely biochemical failure, would seem to provide a much better explanation of why AD is as prevalent as it is, in contrast to current models. In particular, such mechanical failure also provides a more straightforward explanation of why ageing is the primary risk factor for AD.

885

886

887

888

889

However, as has been shown above, many specific aspects of AD can also be said to support such a model. These include indirect evidence of BBB damage from the presence, in AD cases, of non-CNS proteins inside the brain, and of CNS proteins outside it. In particular, evidence of the presence of the systemic apolipoprotein ApoB, together with long-chain triglycerides, within Aß plagues strongly suggests that, in AD, the BBB is failing to separate the highly distinctive

890

891 lipid systems of the CNS and systemic non-CNS compartments in the normal way. Moreover, 892 included amongst the non-CNS proteins mentioned earlier, are plasma proteins such as albumin, 893 fibringen and immunoglobulins that are, like Apoβ100, exclusively synthesised in the liver (or, 894 like, Apoβ48, in other non-CNS organs). Again, like Apoβ, they are of high molecular weight, 895 meaning that they cannot readily pass through the BBB in normal circumstances. 896 897 Further support for the lipid-leakage model arises from the likelihood that the BBB will be 898 compromised by many of the risk factors associated with AD. As well as ageing, these include 899 brain trauma, diabetes, ApoE4 and Aβ. Similarly, CTE, a condition showing many similarities to 900 AD, has been associated with clear evidence of BBB disruption. Finally, there is clear evidence 901 that A\beta directly disrupts the BBB, something most obviously apparent in the case of CAA. 902 903 Why should lipid influx from outside the CNS matter so much? As explained in some detail 904 above, there are major differences in the two lipid systems either side of the BBB. In particular, 905 and most relevantly to AD, lipoproteins on the non-CNS side are larger and more lipid-rich than 906 on the CNS side, thanks in large part to the presence of ApoB. Similarly, unlike on the CNS 907 side, there is extensive transport of FFAs. Reasons for this include the absence of large FA-908 storing adipocytes and of albumin synthesis in the CNS, as well as the presence of the BBB 909 itself. 910 911 But why should these differences matter? It is argued here that, whatever the original 912 physiological function of the BBB might have been, it has allowed the CNS (and the brain in

particular) to evolve in ways that make it highly vulnerable to lipid incursion from the non-CNS compartment. In particular, it is predicted that exposure to the higher cholesterol content of the more lipid-rich lipoproteins from outside the CNS will lead to cholesterol overload in neurons and other CNS-specific cell types. This in turn will result in endosomal-lysosomal pathology, tau tangles and excessive formation of AB, similar to what is seen in AD.

918

919

920

921

922

923

924

925

926

927

928

913

914

915

916

917

In support of this hypothesis, similar endosomal-lysosomal pathology is seen in NPC, a disease characterised by faulty cholesterol transport, resulting in the accumulation of unesterified cholesterol in late endosomes and the formation of tau tangles. Likewise, excess cholesterol has been shown to increase amyloidogenesis by stimulating amyloidogenic processing of APP at the expense of the non-amyloidogenic pathway, resulting in increased levels of Aβ. During this amyloidogenic processing, high levels of the intermediate βCTF fragment are produced, which have been shown to trigger endosomal-lysosomal abnormalities similar to those observed in early AD progression. (Presumably, the reason Aß levels are much lower in NPC than in AD is because cholesterol buildup tends to affect late endosomes in the former disease, rather than early endosomes where $A\beta$ is produced.)

929

930

931

932

933

934

But cholesterol is not the whole story here. Breakdown of the BBB also exposes the brain to higher levels of FFAs. It is argued here that such exposure will lead to neuroinflammation, as a result of these FFAs stimulating microglia by binding to TLR4 and other microglial receptors, similar to how FFAs activate macrophages outside the CNS and to how ethanol triggers microglial-mediated neuroinflammation.

This may help explain why the overall structural pattern of damage to the brain inflicted by longterm alcohol abuse so strongly resembles that seen in AD, and why there are similar behavioural deficits. In particular, frontal regions of the brain (especially the prefrontal cortex and basal forebrain) suffer significant shrinkage in both ARBD and AD, helping to explain why both diseases are associated with deficits both in olfaction and in executive functions requiring attentional and inhibitory control, reasoning, problem-solving, the setting of goals and of planning. Similarly both ARBD and AD are associated with shrinkage of the medial temporal lobes, including pronounced atrophy of the hippocampus and entorhinal cortex, resulting in the anterograde amnesia so characteristic of AD, along with more specific deficits in spatial memory.

946

947

948

949

950

951

952

953

954

955

956

957

958

936

937

938

939

940

941

942

943

944

945

However, it is hard to explain how such similarities might occur as a result of neuroinflammation alone. Studies have shown that inhibition of neurogenesis plays almost as important a role in ARBD, which would better explain why the principal areas of brain atrophy in ARBD and AD, the frontal and medial temporal regions, also host two of the principal neurogenic niches of the brain, the subventricular and subgranular zones. These provide new cells for the prefrontal cortex and the hippocampus, respectively. It is argued here that the principal mechanism by which ethanol inhibits such neurogenesis, involving extrasynaptic GABAARs, means that such regions are also likely to be similarly affected by long-term exposure to other molecules with weakly anaesthetic properties, including FFAs. Whilst the mechanism by which such inhibition occurs appears to be complex, and may well involve other receptors and pathways, these shared properties, and the shared mechanism seen in most forms of anaesthesia [references?], suggest that long-term neurodegeneration will result in both cases.

960

961

962

963

964

965

966

967

968

969

Whilst this aspect of the lipid-leakage model might be considered to be its most speculative, it may help to explain why general anaesthesia is also considered a potential risk factor for AD (and dementia in general) amongst elderly patients [Bohnen 1994; Chen 2014; Vanderweyde 2010; Xie 2006; Fodale 2010; Papon 2011; Eckenhoff 2004], as well as being associated with marked deterioration in those already affected with AD [Bone 2001; Planel 2007; Xie 2007; Papon 2011]. However, such an association is still a matter of dispute [Needham 2017], and a number of studies suggest that, where it does occur, anaesthesia-related deterioration is accompanied by increases in Aβ synthesis and oligomerisation, and by tau hyperphosphorylation [Papon 2011; Eckenhoff 2004; Xie 2006 & 2007; Fodale 2010; Planel 2007]. If so, this tends to rule out any GABA-related mechanism.

970

971

972

973

974

975

976

977

978

979

But these are not the only reasons for suspecting a link with GABAARs. Ever since the first practical anaesthetic agents were discovered in the middle of 19th century [reference?], and later shown (independently) by Hans Horst Meyer and Charles Ernest Overton to display a remarkable correlation between potency and hydrophobicity [reference?], there has been considerable interest in their mechanism of action. Following the findings of Franks and Lieb in the 1980s this interest has focused on hydrophobic sites on membrane proteins, particularly those of the Cys-loop ligand-gated ion channel superfamily, which includes inhibitory GABAARs and glycine receptors, as well as the excitatory acetylcholine and 5-HT3 serotonin receptors [references?].

In terms of the obvious therapeutic endpoints of anaesthesia, including coma and analgesia, the findings of such research are not likely to have any relevance either to AD or ARBD. But the role of extrasynaptic GABAARs in anaesthesia-mediated anterograde amnesia clearly does, given the importance of such amnesia in ARBD and, especially, in AD. This is especially the case now that research has shown that the same high-affinity extrasynaptic GABAARs that have been shown to play a critical role in such amnesia, also play a critical role in neurogenesis. Given that the hippocampal region is a principal region of such neurogenesis [references?], and is also known to be central to the formation of new memories (as well as being heavily degraded in both ARBD and AD), it is readily apparent how chronic exposure to ethanol, with its weakly anaesthetic properties, is able to cause progressive deterioration of this region.

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

981

982

983

984

985

986

987

988

989

990

But this same mechanism also appears to explain why FFAs, with similar anaesthetic potencies, Discussion are largely excluded from the brain by the BBB. This despite FFAs being highly energy-rich molecules and despite the brain being one of the most highly energy-consuming organs of the body. However one explains the requirement for the BBB to in some way protect the brain from damage from external sources, it is not clear that FFAs could not be transported across it in the way many other macromolecules, including ketone bodies, are. They could thus provide the brain with a much-needed additional energy source. Indeed, the transporter ABCB1 (also known as P-glycoprotein 1 or multidrug resistance protein 1) is already known to transport lipids, including FFAs, across the BBB in the reverse direction [Gonçalves 2011;], and its decreased expression has been associated with increased AD risk [van Assema & van Berckel 2016]. Therefore there seems little reason why the BBB could not have evolved a similar transporter in the reverse direction. That the BBB has not evolved to do so, it is argued here, is

because FFAs, at levels commonly seen in the rest of the body, would be inimical to the normal working of the brain. As would be the case if more cholesterol-rich lipoproteins could gain access to the brain, for the reasons discussed above.

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1004

1005

1006

It is been shown how breakdown of the BBB, by allowing such lipid invasion, is predicted to result in the anterograde amnesia, amyloid plaques and tau tangles, so characteristic of AD, as well as endosomal-lysosomal pathology and neural inflammation. However, in pointing to GABAARs as major agents of AD progression, the lipid-leakage model may also help to explain the severe disruptions of the normal "body clock" commonly seen in patients with AD. Although the neurological mechanism behind this biological clock is yet to be fully elucidated, it is generally agreed that, in vertebrates, the neurons of the suprachiasmatic nucleus (SCN) provide a central role [Ehlen, 2009; other references?]. Furthermore, within the SCN it is clear that GABAARs play a critical role, including in their extrasynaptic form [McNeill 2018; Ehlen 2009; McElroy 2009; Hu 2016; other references?], with some estimates suggesting that over 90% of SCN neurons express and respond to GABA [McNeill 2018]. A number of studies have shown that ethanol modulates circadian clock regulation [Ruby 2009; Prosser 2008 & 2015; Brager 2011], including by its action at low concentrations on extrasynaptic GABAARs [McElroy 2009]. Given that the lipid-leakage model already proposes that FFAs inhibit neurogenesis by acting at low concentrations on extrasynaptic GABAARs to disrupt their normal behaviour, there is therefore a good reason to believe that FFAs might also be disrupting normal circadian rhythms by a very similar mechanism.

Of course, given that disruption of the body clock in AD is primarily inferred from behavioural
abnormalities, particularly in regard to sleep patterns, it may be that what is being observed is
merely a secondary consequence of amnesia and the general loss of self-control associated with
AD. However, given that such sleep disturbances seem to be apparent very early in AD
progression [Macedo, 2017], when amnesia and other AD-associated deficits are only beginning
to be noticeable, it seems likely that what is being seen has a physiological as well as a purely
psychological basis.

4 Conclusion

This all points to a much more complex explanation of AD progression, in which $A\beta$ and tau tangles are only two of the more visible factors, in many ways as much symptomatic as causative....

1039	5 Bibliography
1040	
1041	Aizenstein H, Nebes RD, Saxton JA, et al. 2008. FRequent amyloid deposition without
1042	significant cognitive impairment among the elderly. Archives of Neurology 65:1509-
1043	1517. DOI: 10.1001/archneur.65.11.1509.
1044	Alcoholic dementia, MRI scan. Available at
1045	http://www.sciencephoto.com/media/131152/enlarge
1046	Alfonso-Loeches S, Pascual-Lucas M, Blanco AM, Sanchez-Vera I, Guerri C. 2010. Pivotal
1047	Role of TLR4 Receptors in Alcohol-Induced Neuroinflammation and Brain Damage. The
1048	Journal of Neuroscience 30:8285–8295. DOI: 10.1523/JNEUROSCI.0976-10.2010.
1049	Alifimoff JK, Firestone LL, Miller KW. 1989. Anaesthetic potencies of primary alkanols:
1050	implications for the molecular dimensions of the anaesthetic site. British Journal of
1051	Pharmacology 96:9–16.
1052	Alluri H, Wiggins-Dohlvik K, Davis ML, Huang JH, Tharakan B. 2015. Blood-brain barrier
1053	dysfunction following traumatic brain injury. Metabolic Brain Disease 30:1093–1104.
1054	DOI: 10.1007/s11011-015-9651-7.
1055	Alonzo NC, Hyman BT, Rebeck GW, Greenberg SM. 1998. Progression of cerebral amyloid
1056	angiopathy: accumulation of amyloid-beta40 in affected vessels. Journal of
1057	neuropathology and experimental neurology 57:353–359.
1058	Arendt T, Allen Y, Marchbanks RM, Schugens MM, Sinden J, Lantos PL, Gray JA. 1989a.
1059	Cholinergic system and memory in the rat: Effects of chronic ethanol, embryonic basal

1060	forebrain brain transplants and excitotoxic lesions of cholinergic basal forebrain
1061	projection system. Neuroscience 33:435-462. DOI: 16/0306-4522(89)90397-7.
1062	Arendt T, Allen Y, Marchbanks RM, Schugens MM, Sinden J, Lantos PL, Gray JA. 1989b.
1063	Cholinergic system and memory in the rat: Effects of chronic ethanol, embryonic basal
1064	forebrain brain transplants and excitotoxic lesions of cholinergic basal forebrain
1065	projection system. Neuroscience 33:435-462. DOI: 10.1016/0306-4522(89)90397-7.
1066	Arriagada C, Astorga C, Atwater I, Rojas E, Mears D, Caviedes R, Caviedes P. 2007.
1067	Endosomal abnormalities related to amyloid precursor protein in cholesterol treated
1068	cerebral cortex neuronal cells derived from trisomy 16 mice, an animal model of Down
1069	syndrome. Neuroscience Letters 423:172–177. DOI: 16/j.neulet.2007.06.054.
1070	Assunção M, Santos-Marques MJ, de Freitas V, Carvalho F, Andrade JP, Lukoyanov NV, Paula-
1071	Barbosa MM. 2007. Red wine antioxidants protect hippocampal neurons against ethanol-
1072	induced damage: a biochemical, morphological and behavioral study. Neuroscience
1073	146:1581–1592. DOI: 10.1016/j.neuroscience.2007.03.040.
1074	Attali E, De Anna F, Dubois B, Barba GD. 2009. Confabulation in Alzheimer's disease: poor
1075	encoding and retrieval of over-learned information. Brain 132:204–212. DOI:
1076	10.1093/brain/awn241.
1077	Augustinack JC, Huber KE, Stevens AA, Roy M, Frosch MP, van der Kouwe AJW, Wald LL,
1078	Van Leemput K, McKee A, Fischl B. 2013. Predicting the Location of Human Perirhinal
1079	Cortex, Brodmann's area 35, from MRI. NeuroImage 64C:32-42. DOI:
1080	10.1016/j.neuroimage.2012.08.071.
1081	Ayciriex S, Djelti F, Alves S, Regazzetti A, Gaudin M, Varin J, Langui D, Bièche I, Hudry E,
1082	Dargère D, Aubourg P, Auzeil N, Laprévote O, Cartier N. 2017. Neuronal Cholesterol

1083	Accumulation Induced by Cyp46a1 Down-Regulation in Mouse Hippocampus Disrupts
1084	Brain Lipid Homeostasis. Frontiers in Molecular Neuroscience 10. DOI:
1085	10.3389/fnmol.2017.00211.
1086	Ball SL, Holland AJ, Treppner P, Watson PC, Huppert FA. 2008a. Executive dysfunction and its
1087	association with personality and behaviour changes in the development of Alzheimer's
1088	disease in adults with Down syndrome and mild to moderate learning disabilities. British
1089	Journal of Clinical Psychology 47:1–29. DOI: 10.1348/014466507X230967.
1090	Ball SL, Holland AJ, Treppner P, Watson PC, Huppert FA. 2008b. Executive dysfunction and its
1091	association with personality and behaviour changes in the development of Alzheimer's
1092	disease in adults with Down syndrome and mild to moderate learning disabilities. British
1093	Journal of Clinical Psychology 47:1–29. DOI: 10.1348/014466507X230967.
1094	Ballmer PE. 2001. Causes and mechanisms of hypoalbuminaemia. Clinical Nutrition 20:271–
1095	273. DOI: 10.1054/clnu.2001.0439.
1096	Banks WA. 2006. The dam breaks: disruption of the blood-brain barrier in diabetes mellitus.
1097	American journal of physiology. Heart and circulatory physiology 291:H2595-2596.
1098	DOI: 10.1152/ajpheart.00751.2006.
1099	Banks WA. 2008. Developing drugs that can cross the blood-brain barrier: applications to
1100	Alzheimer's disease. BMC Neuroscience 9:S2. DOI: 10.1186/1471-2202-9-S3-S2.
1101	Barak B, Feldman N, Okun E. 2014. Toll-like receptors as developmental tools that regulate
1102	neurogenesis during development: an update. Frontiers in Neuroscience 8:272. DOI:
1103	10.3389/fnins.2014.00272.

1104	Barker JL, Behar T, Li YX, Liu QY, Ma W, Maric D, Maric I, Schaffner AE, Serafini R, Smith
1105	SV, Somogyi R, Vautrin JY, Wen XL, Xian H. 1998. GABAergic cells and signals in
1106	CNS development. Perspectives on Developmental Neurobiology 5:305–322.
1107	Baskin DS, Browning JL, Pirozzolo FJ, Korporaal S, Baskin JA, Appel SH. 1999. Brain Choline
1108	Acetyltransferase and Mental Function in Alzheimer Disease. Arch Neurol 56:1121-
1109	1123. DOI: 10.1001/archneur.56.9.1121.
1110	Belelli D, Lambert JJ. 2005. Neurosteroids: endogenous regulators of the GABAA receptor. Nat
1111	Rev Neurosci 6:565–575. DOI: 10.1038/nrn1703.
1112	Bell RD, Winkler EA, Singh I, Sagare AP, Deane R, WU Z, Holtzman DM, Betsholtz C,
1113	Armulik A, Sallstrom J, Berk BC, Zlokovic BV. 2012. Apolipoprotein E controls
1114	cerebrovascular integrity via cyclophilin A. Nature 485:512–516. DOI:
1115	10.1038/nature11087.
1116	Ben-Ari Y, Gaiarsa J-L, Tyzio R, Khazipov R. 2007. GABA: A Pioneer Transmitter That
1117	Excites Immature Neurons and Generates Primitive Oscillations. Physiological Reviews
1118	87:1215–1284. DOI: 10.1152/physrev.00017.2006.
1119	Ben-Ari Y, Holmes GL. 2005. The multiple facets of gamma-aminobutyric acid dysfunction in
1120	epilepsy. Current Opinion in Neurology 18:141–145.
1121	Bengochea O, Gonzalo LM. 1990. Effect of chronic alcoholism on the human hippocampus.
1122	Histology and Histopathology 5:349–357.
1123	Beresford TP, Arciniegas DB, Alfers J, Clapp L, Martin B, Du Y, Liu D, Shen D, Davatzikos C.
1124	2006. Hippocampus Volume Loss Due to Chronic Heavy Drinking. Alcoholism: Clinical
1125	and Experimental Research 30:1866–1870. DOI: 10.1111/j.1530-0277.2006.00223.x.

1126	Binge Drinking in Midlife and Dementia Risk: Epidemiology. Available at
1127	http://journals.lww.com/epidem/Fulltext/2005/11000/Binge_Drinking_in_Midlife_and_D
1128	ementia_Risk.9.aspx (accessed December 21, 2016).
1129	Björkhem I, Meaney S. 2004. Brain cholesterol: long secret life behind a barrier.
1130	Arteriosclerosis, thrombosis, and vascular biology 24:806–815. DOI:
1131	10.1161/01.ATV.0000120374.59826.1b.
1132	Blanc EM, Toborek M, Mark RJ, Hennig B, Mattson MP. 1997. Amyloid beta-peptide induces
1133	cell monolayer albumin permeability, impairs glucose transport, and induces apoptosis in
1134	vascular endothelial cells. Journal of Neurochemistry 68:1870–1881.
1135	Bodovitz S, Klein WL. 1996. Cholesterol Modulates -Secretase Cleavage of Amyloid Precursor
1136	Protein. Journal of Biological Chemistry 271:4436–4440. DOI: 10.1074/jbc.271.8.4436.
1137	Bonin RP, Orser BA. 2008a. GABAA receptor subtypes underlying general anesthesia.
1138	Pharmacology Biochemistry and Behavior 90:105–112. DOI:
1139	10.1016/j.pbb.2007.12.011.
1140	Bonin RP, Orser BA. 2008b. GABAA receptor subtypes underlying general anesthesia.
1141	Pharmacology Biochemistry and Behavior 90:105–112. DOI:
1142	10.1016/j.pbb.2007.12.011.
1143	Bordey A. 2007a. Enigmatic GABAergic networks in adult neurogenic zones. Brain Research
1144	Reviews 53:124–134. DOI: 16/j.brainresrev.2006.07.004.
1145	Bordey A. 2007b. Enigmatic GABAergic networks in adult neurogenic zones. Brain Research
1146	Reviews 53:124–134. DOI: 16/j.brainresrev.2006.07.004.

1147	Bowden SC, McCarter RJ. 1993. Spatial memory in alcohol-dependent subjects: using a push-
1148	button maze to test the principle of equiavailability. Brain and Cognition 22:51-62. DOI:
1149	10.1006/brcg.1993.1024.
1150	Bowman GL, Quinn JF. 2008. Alzheimer's disease and the blood-brain barrier: past, present and
1151	future. Aging Health 4:47–57. DOI: 10.2217/1745509X.4.1.47.
1152	Brain With Alzheimer's Disease. Available at
1153	http://www.ahaf.org/alzheimers/about/understanding/brain-with-alzheimers.html
1154	(accessed April 26, 2012).
1155	Brickley SG, Mody I. 2012. Extrasynaptic GABAA receptors: Their function in the CNS and
1156	implications for disease. <i>Neuron</i> 73:23–34. DOI: 10.1016/j.neuron.2011.12.012.
1157	Brown RE. 1998. Sphingolipid organization in biomembranes: what physical studies of model
1158	membranes reveal. Journal of cell science 111:1–9.
1159	Brun A, Andersson J. 2001. Frontal Dysfunction and Frontal Cortical Synapse Loss in
1160	Alcoholism –The Main Cause of Alcohol Dementia? Dementia and Geriatric
1161	Cognitive Disorders 12:289–294. DOI: 10.1159/000051271.
1162	Bundgaard M, Abbott NJ. 2008. All vertebrates started out with a glial blood-brain barrier 4-500
1163	million years ago. <i>Glia</i> 56:699–708. DOI: 10.1002/glia.20642.
1164	Carrano A, Hoozemans JJM, van der Vies SM, Rozemuller AJM, van Horssen J, de Vries HE.
1165	2011. Amyloid Beta induces oxidative stress-mediated blood-brain barrier changes in
1166	capillary amyloid angiopathy. Antioxidants & Redox Signaling 15:1167–1178. DOI:
1167	10.1089/ars.2011.3895.

1168	Carson MJ, Doose JM, Melchior B, Schmid CD, Ploix CC. 2006. CNS immune privilege: hiding
1169	in plain sight. Immunological reviews 213:48-65. DOI: 10.1111/j.1600-
1170	065X.2006.00441.x.
1171	Cataldo AM, Mathews PM, Boiteau AB, Hassinger LC, Peterhoff CM, Jiang Y, Mullaney K,
1172	Neve RL, Gruenberg J, Nixon RA. 2008. Down Syndrome Fibroblast Model of
1173	Alzheimer-Related Endosome Pathology: Accelerated Endocytosis Promotes Late
1174	Endocytic Defects. American Journal Of Pathology 173:370–384. DOI:
1175	10.2353/ajpath.2008.071053.
1176	Cataldo AM, Peterhoff CM, Troncoso JC, Gomez-Isla T, Hyman BT, Nixon RA. 2000.
1177	Endocytic pathway abnormalities precede amyloid beta deposition in sporadic
1178	Alzheimer's disease and Down syndrome: differential effects of APOE genotype and
1179	presenilin mutations. The American Journal of Pathology 157:277–286.
1180	Chait A, Kim F. 2010. Saturated fatty acids and inflammation: who pays the toll?
1181	Arteriosclerosis, Thrombosis, and Vascular Biology 30:692–693. DOI:
1182	10.1161/ATVBAHA.110.203984.
1183	Cheng VY, Martin LJ, Elliott EM, Kim JH, Mount HTJ, Taverna FA, Roder JC, MacDonald JF,
1184	Bhambri A, Collinson N, Wafford KA, Orser BA. 2006. α5GABAA Receptors Mediate
1185	the Amnestic But Not Sedative-Hypnotic Effects of the General Anesthetic Etomidate.
1186	The Journal of Neuroscience 26:3713–3720. DOI: 10.1523/JNEUROSCI.5024-05.2006.
1187	Chiou JS, Ma SM, Kamaya H, Ueda I. 1990. Anesthesia cutoff phenomenon: interfacial
1188	hydrogen bonding. Science (New York, N.Y.) 248:583–585.
1189	Choi JHK, Berger JD, Mazzella MJ, Morales-Corraliza J, Cataldo AM, Nixon RA, Ginsberg SD,
1190	Levy E, Mathews PM. 2009. Age-dependent dysregulation of brain amyloid precursor
	Page 55

1191	protein in the Ts65Dn Down syndrome mouse model. Journal of Neurochemistry
1192	110:1818–1827. DOI: 10.1111/j.1471-4159.2009.06277.x.
1193	Christen-Zaech S, Kraftsik R, Pillevuit O, Kiraly M, Martins R, Khalili K, Miklossy J. 2003.
1194	Early olfactory involvement in Alzheimer's disease. The Canadian Journal of
1195	Neurological Sciences. Le Journal Canadien Des Sciences Neurologiques 30:20–25.
1196	Cippitelli A, Zook M, Bell L, Damadzic R, Eskay RL, Schwandt M, Heilig M. 2010.
1197	Reversibility of object recognition but not spatial memory impairment following binge-
1198	like alcohol exposure in rats. Neurobiology of learning and memory 94:538. DOI:
1199	10.1016/j.nlm.2010.09.006.
1200	Clarkson AN. 2012.Perisynaptic GABA Receptors: The Overzealous Protector. Available at
1201	https://www.hindawi.com/journals/aps/2012/708428/ (accessed October 31, 2017). DOI:
1202	10.1155/2012/708428.
1203	Clarkson AN, Huang BS, MacIsaac SE, Mody I, Carmichael ST. 2010. Reducing excessive
1204	GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature
1205	468:305–309. DOI: 10.1038/nature09511.
1206	Collins MA, Corso TD, Neafsey EJ. 1996. Neuronal degeneration in rat cerebrocortical and
1207	olfactory regions during subchronic "binge" intoxication with ethanol: possible
1208	explanation for olfactory deficits in alcoholics. Alcoholism, Clinical and Experimental
1209	Research 20:284–292.
1210	Collinson N, Kuenzi FM, Jarolimek W, Maubach KA, Cothliff R, Sur C, Smith A, Otu FM,
1211	Howell O, Atack JR, McKernan RM, Seabrook GR, Dawson GR, Whiting PJ, Rosahl
1212	TW. 2002. Enhanced learning and memory and altered GABAergic synaptic transmission
1213	in mice lacking the alpha 5 subunit of the GABAA receptor. The Journal of

1214	Neuroscience: The Official Journal of the Society for Neuroscience 22:5572–5580. DOI:
1215	20026436.
1216	Contestabile A. 2011. The history of the cholinergic hypothesis. Behavioural Brain Research
1217	221:334–340. DOI: 10.1016/j.bbr.2009.12.044.
1218	Cortes-Canteli M, Strickland S. 2009. Fibrinogen, a possible key player in Alzheimer's disease.
1219	Journal of Thrombosis and Haemostasis 7:146–150. DOI: 10.1111/j.1538-
1220	7836.2009.03376.x.
1221	Cossec J-C, Marquer C, Panchal M, Lazar AN, Duyckaerts C, Potier M-C. 2010. Cholesterol
1222	changes in Alzheimer's disease: methods of analysis and impact on the formation of
1223	enlarged endosomes. Biochimica Et Biophysica Acta 1801:839–845. DOI:
1224	10.1016/j.bbalip.2010.03.010.
1225	Coyne L, Lees G, Nicholson RA, Zheng J, Neufield KD. 2002. The sleep hormone oleamide
1226	modulates inhibitory ionotropic receptors in mammalian CNS in vitro. British Journal of
1227	Pharmacology 135:1977–1987. DOI: 10.1038/sj.bjp.0704651.
1228	Crews FT. 2008. Alcohol-Related Neurodegeneration and Recovery. Alcohol Research & Health
1229	31:377–388.
1230	Crews FT.NIAAA Publications: Alcohol-Related Neurodegeneration and Recovery. Available at
1231	http://pubs.niaaa.nih.gov/publications/arh314/377-388.htm (accessed March 21, 2011).
1232	Crews FT, Boettiger CA. 2009. Impulsivity, frontal lobes and risk for addiction. <i>Pharmacology</i> ,
1233	Biochemistry, and Behavior 93:237–247. DOI: 10.1016/j.pbb.2009.04.018.
1234	Crews FT, Nixon K. 2009a. Mechanisms of Neurodegeneration and Regeneration in Alcoholism.
1235	Alcohol and Alcoholism 44:115–127. DOI: 10.1093/alcalc/agn079.

1236	Crews FT, Nixon K. 2009b. Mechanisms of neurodegeneration and regeneration in alcoholism.
1237	Alcohol and Alcoholism (Oxford, Oxfordshire) 44:115–127. DOI: 10.1093/alcalc/agn079.
1238	Cummings JL, Vinters HV, Cole GM, Khachaturian ZS. 1998. Alzheimer's disease: etiologies,
1239	pathophysiology, cognitive reserve, and treatment opportunities. Neurology 51:S2-17;
1240	discussion S65-67.
1241	Dahl DR. 1968. Short chain fatty acid inhibition of rat brain Na-K adenosine triphosphatase.
1242	Journal of Neurochemistry 15:815–820.
1243	Dalvi S, On N, Nguyen H, Pogorzelec M, Miller DW, Hatch GM. 2014. The Blood Brain Barrier
1244	— Regulation of Fatty Acid and Drug Transport. DOI: 10.5772/57604.
1245	D'Andrea MR. 2003. Evidence linking neuronal cell death to autoimmunity in Alzheimer's
1246	disease. Brain Research 982:19–30. DOI: 10.1016/S0006-8993(03)02881-6.
1247	Danik M, Champagne D, Petit-Turcotte C, Beffert U, Poirier J. 1999. Brain lipoprotein
1248	metabolism and its relation to neurodegenerative disease. Critical Reviews in
1249	Neurobiology 13:357–407.
1250	Davies M. 2003. The role of GABAA receptors in mediating the effects of alcohol in the central
1251	nervous system. Journal of Psychiatry and Neuroscience 28:263-274.
1252	de la Monte SM. 1988. Disproportionate atrophy of cerebral white matter in chronic alcoholics.
1253	Archives of Neurology 45:990–992. DOI: 10.1001/archneur.1988.00520330076013.
1254	Deane R, Bell RD, Sagare A, Zlokovic BV. 2009. Clearance of Amyloid-β Peptide Across the
1255	Blood-Brain Barrier: Implication for Therapies in Alzheimer's Disease. CNS &
1256	Neurological Disorders - Drug Targets (Formerly Current Drug Targets - CNS &
1257	Neurological Disorders) 8:16–30. DOI: 10.2174/187152709787601867.

1258	Deneer JW, Seinen W, Hermens JLM. 1988. The acute toxicity of aldehydes to the guppy.
1259	Aquatic Toxicology 12:185–192. DOI: 10.1016/0166-445X(88)90035-5.
1260	Dickstein DL, Biron KE, Ujiie M, Pfeifer CG, Jeffries AR, Jefferies WA. 2006. Abeta peptide
1261	immunization restores blood-brain barrier integrity in Alzheimer disease. FASEB
1262	journal: official publication of the Federation of American Societies for Experimental
1263	Biology 20:426–433. DOI: 10.1096/fj.05-3956com.
1264	Dietschy JM, Turley SD. 2004. Cholesterol metabolism in the central nervous system during
1265	early development and in the mature animal. Journal of lipid research 45:1375.
1266	Dissing-Olesen L, Ladeby R, Nielsen HH, Toft-Hansen H, Dalmau I, Finsen B. 2007. Axonal
1267	lesion-induced microglial proliferation and microglial cluster formation in the mouse.
1268	Neuroscience 149:112-122. DOI: 10.1016/j.neuroscience.2007.06.037.
1269	Ditraglia GM, Press DS, Butters N, Jernigan TL, Cermak LS, Velin RA, Shear PK, Irwin M,
1270	Schuckit M. 1991. Assessment of olfactory deficits in detoxified alcoholics. Alcohol
1271	8:109–115. DOI: 10.1016/0741-8329(91)91318-V.
1272	Djelti F, Braudeau J, Hudry E, Dhenain M, Varin J, Bièche I, Marquer C, Chali F, Ayciriex S,
1273	Auzeil N, Alves S, Langui D, Potier M-C, Laprevote O, Vidaud M, Duyckaerts C, Miles
1274	R, Aubourg P, Cartier N. 2015. CYP46A1 inhibition, brain cholesterol accumulation and
1275	neurodegeneration pave the way for Alzheimer's disease. Brain: A Journal of Neurology
1276	138:2383–2398. DOI: 10.1093/brain/awv166.
1277	Doherty CP, O'Keefe E, Wallace E, Loftus T, Keaney J, Kealy J, Humphries MM, Molloy MG,
1278	Meaney JF, Farrell M, Campbell M. 2016. Blood-Brain Barrier Dysfunction as a
1279	Hallmark Pathology in Chronic Traumatic Encephalopathy. Journal of Neuropathology
1280	and Experimental Neurology 75:656-662. DOI: 10.1093/jnen/nlw036.

1281	Doty RL. 2005. Clinical Studies of Olfaction. Chemical Senses 30:i207–i209. DOI:
1282	10.1093/chemse/bjh187.
1283	Doty RL, Reyes PF, Gregor T. 1987. Presence of both odor identification and detection deficits
1284	in alzheimer's disease. Brain Research Bulletin 18:597-600. DOI: 16/0361-
1285	9230(87)90129-8.
1286	D'Souza RD, Vijayaraghavan S. 2014. Paying attention to smell: cholinergic signaling in the
1287	olfactory bulb. Frontiers in Synaptic Neuroscience 6. DOI: 10.3389/fnsyn.2014.00021.
1288	Duara R, Loewenstein DA, Potter E, Appel J, Greig MT, Urs R, Shen Q, Raj A, Small B, Barker
1289	W, Schofield E, Wu Y, Potter H. 2008. Medial temporal lobe atrophy on MRI scans and
1290	the diagnosis of Alzheimer disease. Neurology 71:1986–1992. DOI:
1291	10.1212/01.wnl.0000336925.79704.9f.
1292	Duarte A, Hayasaka S, Du A, Schuff N, Jahng G-H, Kramer J, Miller B, Weiner M. 2006.
1293	Volumetric correlates of memory and executive function in normal elderly, mild
1294	cognitive impairment and Alzheimer's disease. Neuroscience Letters 406:60-65. DOI:
1295	10.1016/j.neulet.2006.07.029.
1296	Durazzo TC, Mattsson N, Weiner MW, Alzheimer's Disease Neuroimaging Initiative. 2014.
1297	Smoking and increased Alzheimer's disease risk: a review of potential mechanisms.
1298	Alzheimer's & Dementia: The Journal of the Alzheimer's Association 10:S122-145. DOI:
1299	10.1016/j.jalz.2014.04.009.
1300	Duveau V, Laustela S, Barth L, Gianolini F, Vogt KE, Keist R, Chandra D, Homanics GE,
1301	Rudolph U, Fritschy J-M. 2011. Spatio-temporal specificity of GABAA receptor-
1302	mediated regulation of adult hippocampal neurogenesis. The European journal of
1303	neuroscience 34:362–373. DOI: 10.1111/j.1460-9568.2011.07782.x.

Page 60

1304	Ehehalt R, Keller P, Haass C, Thiele C, Simons K. 2003. Amyloidogenic processing of the
1305	Alzheimer β-amyloid precursor protein depends on lipid rafts. The Journal of Cell
1306	Biology 160:113–123. DOI: 10.1083/jcb.200207113.
1307	Elliott DA, Weickert CS, Garner B. 2010. Apolipoproteins in the brain: implications for
1308	neurological and psychiatric disorders. Clinical lipidology 51:555–573. DOI:
1309	10.2217/CLP.10.37.
1310	Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn A-M, Nordborg C, Peterson DA, Gage FH.
1311	1998. Neurogenesis in the adult human hippocampus. <i>Nature Medicine</i> 4:1313–1317.
1312	DOI: 10.1038/3305.
1313	Estruch R, Nicolás JM, Salamero M, Aragón C, Sacanella E, Fernández-Solá J, Urbano-Márquez
1314	A. 1997. Atrophy of the corpus callosum in chronic alcoholism. Journal of the
1315	Neurological Sciences 146:145–151. DOI: 10.1016/S0022-510X(96)00298-5.
1316	Evers AS, Crowder CM. 2009. Mechanisms of Anesthesia and Consciousness. In: Clinical
1317	Anesthesia. Lippincott Williams & Wilkins, 95-114.
1318	Fadda F, Rossetti ZL. 1998a. Chronic ethanol consumption: from neuroadaptation to
1319	neurodegeneration. Progress in neurobiology 56:385-431.
1320	Fadda F, Rossetti ZL. 1998b. Chronic ethanol consumption: from neuroadaptation to
1321	neurodegeneration. Progress in neurobiology 56:385-431.
1322	Farkas IG, Czigner A, Farkas E, Dobó E, Soós K, Penke B, Endrész V, Mihály A. 2003. Beta-
1323	amyloid peptide-induced blood-brain barrier disruption facilitates T-cell entry into the rat
1324	brain. Acta Histochemica 105:115–125. DOI: 10.1078/0065-1281-00696.

1325	Farrall AJ, Wardlaw JM. 2009. Blood-brain barrier: Ageing and microvascular disease –
1326	systematic review and meta-analysis. Neurobiology of Aging 30:337–352. DOI:
1327	10.1016/j.neurobiolaging.2007.07.015.
1328	Farrell M, Aherne S, O'Riordan S, O'Keeffe E, Greene C, Campbell M. 2019. Blood-brain
1329	barrier dysfunction in a boxer with chronic traumatic encephalopathy and schizophrenia.
1330	Clinical Neuropathology 38:51–58. DOI: 10.5414/NP301130.
1331	Fernandez-Lizarbe S, Montesinos J, Guerri C. 2013. Ethanol induces TLR4/TLR2 association,
1332	triggering an inflammatory response in microglial cells - Fernandez-Lizarbe - 2013 -
1333	Journal of Neurochemistry - Wiley Online Library. DOI: 10.1111/jnc.12276.
1334	Fernando RN, Eleuteri B, Abdelhady S, Nussenzweig A, Andäng M, Ernfors P. 2011. Cell cycle
1335	restriction by histone H2AX limits proliferation of adult neural stem cells. Proceedings
1336	of the National Academy of Sciences of the United States of America 108:5837–5842.
1337	DOI: 10.1073/pnas.1014993108.
1338	Floyd EA, Young-Seigler AC, Ford BD, Reasor JD, Moore EL, Townsel JG, Rucker HK.
1339	January. Chronic ethanol ingestion produces cholinergic hypofunction in rat brain.
1340	Alcohol 14:93–98. DOI: 10.1016/S0741-8329(97)86147-2.
1341	Fossati S, Ghiso J, Rostagno A. 2012. Insights into caspase-mediated apoptotic pathways
1342	induced by amyloid-β in cerebral microvascular endothelial cells. Neuro-Degenerative
1343	Diseases 10:324–328. DOI: 10.1159/000332821.
1344	Fox NC, Crum WR, Scahill RI, Stevens JM, Janssen JC, Rossor MN. 2001. Imaging of onset
1345	and progression of Alzheimer's disease with voxel-compression mapping of serial
1346	magnetic resonance images. The Lancet 358:201-205. DOI: 10.1016/S0140-
1347	6736(01)05408-3.

1348	Frangopol P. 2001. Interactions of some local anesthetics and alcohols with membranes.
1349	Colloids and Surfaces B: Biointerfaces 22:3–22. DOI: 10.1016/S0927-7765(01)00153-9.
1350	Frangopol PT, Mihailescu D. 2001. Interactions of some local anesthetics and alcohols with
1351	membranes. Colloids and Surfaces. B, Biointerfaces 22:3-22.
1352	Frederiksen KS, Garde E, Skimminge A, Ryberg C, Rostrup E, Baaré WFC, Siebner HR, Hejl
1353	A-M, Leffers A-M, Waldemar G. 2011. Corpus Callosum Atrophy in Patients with Mild
1354	Alzheimer's Disease. Neurodegenerative Diseases 8:476–482. DOI: 10.1159/000327753
1355	Frölich L. 2002. The cholinergic pathology in Alzheimer's diseasediscrepancies between
1356	clinical experience and pathophysiological findings. Journal of neural transmission
1357	(Vienna, Austria: 1996) 109:1003–1013. DOI: 10.1007/s007020200083.
1358	Frolov A, Srivastava K, Daphna-Iken D, Traub LM, Schaffer JE, Ory DS. 2001. Cholesterol
1359	Overload Promotes Morphogenesis of a Niemann-Pick C (NPC)-like Compartment
1360	Independent of Inhibition of NPC1 or HE1/NPC2 Function. Journal of Biological
1361	Chemistry 276:46414–46421. DOI: 10.1074/jbc.M108099200.
1362	Gallagher M, Colombo PJ. 1995. Ageing: the cholinergic hypothesis of cognitive decline.
1363	Current Opinion in Neurobiology 5:161–168. DOI: 10.1016/0959-4388(95)80022-0.
1364	Galloway S, Jian L, Johnsen R, Chew S, Mamo JCL. 2007. [beta]-Amyloid or its precursor
1365	protein is found in epithelial cells of the small intestine and is stimulated by high-fat
1366	feeding. The Journal of Nutritional Biochemistry 18:279–284. DOI:
1367	10.1016/j.jnutbio.2006.07.003.
1368	García-Moreno LM, Cimadevilla JM. 2012. Acute and chronic ethanol intake: effects on spatial
1369	and non-spatial memory in rats. Alcohol (Fayetteville, N.Y.) 46:757–762. DOI:
1370	10.1016/j.alcohol.2012.08.001.

Page 63

1371	Ge S, Pradhan DA, Ming G, Song H. 2007. GABA sets the tempo for activity-dependent adult
1372	neurogenesis. Trends in Neurosciences 30:1-8. DOI: 10.1016/j.tins.2006.11.001.
1373	Gehrmann J, Matsumoto Y, Kreutzberg GW. 1995. Microglia: intrinsic immuneffector cell of
1374	the brain. Brain Research. Brain Research Reviews 20:269–287.
1375	Girouard H. 2016. Hypertension and the Brain as an End-Organ Target. Springer.
1376	Gorvel JP, Chavrier P, Zerial M, Gruenberg J. 1991. rab5 controls early endosome fusion in
1377	vitro. Cell 64:915–925.
1378	Gosselet F, Saint-Pol J, Candela P, Fenart L. 2013. Amyloid-β peptides, Alzheimer's disease and
1379	the blood-brain barrier. Current Alzheimer Research 10:1015-1033.
1380	Gottlieb S. 2000. Head injury doubles the risk of Alzheimer's disease. BMJ: British Medical
1381	Journal 321:1100–1100.
1382	Grbovic OM, Mathews PM, Jiang Y, Schmidt SD, Dinakar R, Summers-Terio NB, Ceresa BP,
1383	Nixon RA, Cataldo AM. 2003. Rab5-stimulated Up-regulation of the Endocytic Pathway
1384	Increases Intracellular β-Cleaved Amyloid Precursor Protein Carboxyl-terminal
1385	Fragment Levels and Aβ Production. Journal of Biological Chemistry 278:31261–31268.
1386	DOI: 10.1074/jbc.M304122200.
1387	Grimm MOW, Haupenthal VJ, Rothhaar TL, Zimmer VC, Grösgen S, Hundsdörfer B, Lehmann
1388	J, Grimm HS, Hartmann T. 2013. Effect of Different Phospholipids on α -Secretase
1389	Activity in the Non-Amyloidogenic Pathway of Alzheimer's Disease. International
1390	Journal of Molecular Sciences 14:5879–5898. DOI: 10.3390/ijms14035879.
1391	Grodin EN, Lin H, Durkee CA, Hommer DW, Momenan R. 2013. Deficits in cortical,
1392	diencephalic and midbrain gray matter in alcoholism measured by VBM: Effects of co-

1393	morbid substance abuse. <i>NeuroImage</i> : <i>Clinical</i> 2:469–476. DOI:
1394	10.1016/j.nicl.2013.03.013.
1395	Hafezi-Moghadam A, Thomas KL, Wagner DD. 2007. ApoE deficiency leads to a progressive
1396	age-dependent blood-brain barrier leakage. American Journal of Physiology - Cell
1397	Physiology 292:C1256–C1262. DOI: 10.1152/ajpcell.00563.2005.
1398	Hall AM, Moore RY, Lopez OL, Kuller L, Becker JT. 2008a. Basal forebrain atrophy is a
1399	presymptomatic marker for Alzheimer's disease. Alzheimer's and Dementia 4:271-279
1400	DOI: 10.1016/j.jalz.2008.04.005.
1401	Hall AM, Moore RY, Lopez OL, Kuller L, Becker JT. 2008b. Basal forebrain atrophy is a
1402	presymptomatic marker for Alzheimer's disease. Alzheimer's and Dementia 4:271-279
1403	DOI: 10.1016/j.jalz.2008.04.005.
1404	Hanada R, Tatara T, Iwao Y. 2004. Antagonizing potencies of saturated and unsaturated long-
1405	chain free fatty acids to isoflurane in goldfish. Journal of Anesthesia 18:89-93. DOI:
1406	10.1007/s00540-003-0216-2.
1407	Harper C, Kril J. 1985. Brain atrophy in chronic alcoholic patients: a quantitative pathological
1408	study. Journal of Neurology, Neurosurgery & Psychiatry 48:211-217. DOI:
1409	10.1136/jnnp.48.3.211.
1410	Harris MG, Hulseberg P, Ling C, Karman J, Clarkson BD, Harding JS, Zhang M, Sandor A,
1411	Christensen K, Nagy A, Sandor M, Fabry Z. 2014. Immune privilege of the CNS is not
1412	the consequence of limited antigen sampling. Scientific Reports 4. DOI:
1413	10.1038/srep04422.
1414	Hartz AMS, Bauer B, Soldner ELB, Wolf A, Boy S, Backhaus R, Mihaljevic I, Bogdahn U,
1415	Klünemann HH, Schuierer G, Schlachetzki F. 2012. Amyloid-β contributes to blood-

1416	brain barrier leakage in transgenic human amyloid precursor protein mice and in humans
1417	with cerebral amyloid angiopathy. Stroke; a Journal of Cerebral Circulation 43:514-
1418	523. DOI: 10.1161/STROKEAHA.111.627562.
1419	Hau KM, Connell DW, Richardson BJ. 2002. A Study of the Biological Partitioning Behavior of
1420	n-Alkanes and n-Alkanols in Causing Anesthetic Effects. Regulatory Toxicology and
1421	Pharmacology 35:273–279. DOI: 06/rtph.2001.1531.
1422	Henschel O, Gipson KE, Bordey A. 2008. GABAA receptors, anesthetics and anticonvulsants in
1423	brain development. CNS & neurological disorders drug targets 7:211.
1424	Hirni DI, Kivisaari SL, Krumm S, Monsch AU, Berres M, Oeksuez F, Reinhardt J, Ulmer S,
1425	Kressig RW, Stippich C, Taylor KI. 2016. Neuropsychological Markers of Medial
1426	Perirhinal and Entorhinal Cortex Functioning are Impaired Twelve Years Preceding
1427	Diagnosis of Alzheimer's Dementia. Journal of Alzheimer's disease: JAD 52:573-580.
1428	DOI: 10.3233/JAD-150158.
1429	Hof PR, Morrison JH, Cox K. 1990. Quantitative analysis of a vulnerable subset of pyramidal
1430	neurons in Alzheimer's disease: I. Superior frontal and inferior temporal cortex. The
1431	Journal of Comparative Neurology 301:44-54. DOI: 10.1002/cne.903010105.
1432	Houston RJ, Derrick J, Leonard K, Testa M, Quigley B, Kubiak A. 2014. Effects of Heavy
1433	Drinking on Executive Cognitive Functioning in a Community Sample. Addictive
1434	behaviors 39:345–349.
1435	Hua X, Leow AD, Lee S, Klunder AD, Toga AW, Lepore N, Chou Y-Y, Brun C, Chiang M-C,
1436	Barysheva M, Jack Jr. CR, Bernstein MA, Britson PJ, Ward CP, Whitwell JL, Borowski
1437	B, Fleisher AS, Fox NC, Boyes RG, Barnes J, Harvey D, Kornak J, Schuff N, Boreta L,
1438	Alexander GE, Weiner MW, Thompson PM, the Alzheimer's Disease Neuroimaging
	Page 66

1439	Initiative. 2008. 3D characterization of brain atrophy in Alzheimer's disease and mild
1440	cognitive impairment using tensor-based morphometry. NeuroImage 41:19-34. DOI:
1441	10.1016/j.neuroimage.2008.02.010.
1442	Hwang D. 2001. Modulation of the expression of cyclooxygenase-2 by fatty acids mediated
1443	through Toll-like receptor 4-derived signaling pathways. The FASEB Journal 15:2556-
1444	2564. DOI: 10.1096/fj.01-0432com.
1445	Iadecola C, Gorelick PB. 2003. Converging Pathogenic Mechanisms in Vascular and
1446	Neurodegenerative Dementia. Stroke 34:335–337. DOI:
1447	10.1161/01.STR.0000054050.51530.76.
1448	Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M, Hosoki E, Kawashima-Morishima M,
1449	Lee H-J, Hama E, Sekine-Aizawa Y, Saido TC. 2000. Identification of the major Aβ1–
1450	42-degrading catabolic pathway in brain parenchyma: Suppression leads to biochemical
1451	and pathological deposition. <i>Nature Medicine</i> 6:143–150. DOI: 10.1038/72237.
1452	Jaatinen P, Rintala J. 2008. Mechanisms of ethanol-induced degeneration in the developing,
1453	mature, and aging cerebellum. The Cerebellum 7:332-347. DOI: 10.1007/s12311-008-
1454	0034-z.
1455	Jancsó G, Domoki F, Sántha P, Varga J, Fischer J, Orosz K, Penke B, Becskei A, Dux M, Tóth
1456	L. 1998. Beta-amyloid (1-42) peptide impairs blood-brain barrier function after
1457	intracarotid infusion in rats. Neuroscience Letters 253:139–141.
1458	Jia F, Pignataro L, Schofield CM, Yue M, Harrison NL, Goldstein PA. 2005. An Extrasynaptic
1459	GABAA Receptor Mediates Tonic Inhibition in Thalamic VB Neurons. Journal of
1460	Neurophysiology 94:4491–4501. DOI: 10.1152/jn.00421.2005.

1461	Jiang Y, Mullaney KA, Peterhoff CM, Che S, Schmidt SD, Boyer-Boiteau A, Ginsberg SD,
1462	Cataldo AM, Mathews PM, Nixon RA. 2010. Alzheimer's-related endosome dysfunction
1463	in Down syndrome is Abeta-independent but requires APP and is reversed by BACE-1
1464	inhibition. Proceedings of the National Academy of Sciences of the United States of
1465	America 107:1630–1635. DOI: 10.1073/pnas.0908953107.
1466	Jin L-W, Shie F-S, Maezawa I, Vincent I, Bird T. 2004. Intracellular accumulation of
1467	amyloidogenic fragments of amyloid-beta precursor protein in neurons with Niemann-
1468	Pick type C defects is associated with endosomal abnormalities. The American Journal of
1469	Pathology 164:975–985.
1470	Jo S, Yarishkin O, Hwang YJ, Chun YE, Park M, Woo DH, Bae JY, Kim T, Lee J, Chun H, Park
1471	HJ, Lee DY, Hong J, Kim HY, Oh S-J, Park SJ, Lee H, Yoon B-E, Kim Y, Jeong Y,
1472	Shim I, Bae YC, Cho J, Kowall NW, Ryu H, Hwang E, Kim D, Lee CJ. 2014. GABA
1473	from reactive astrocytes impairs memory in mouse models of Alzheimer's disease.
1474	Nature Medicine 20:886-896. DOI: 10.1038/nm.3639.
1475	Jobst KA, Smith AD, Szatmari M, Molyneux A, Esiri ME, King E, Smith A, Jaskowski A,
1476	McDonald B, Wald N. 1992. Detection in life of confirmed Alzheimer's disease using a
1477	simple measurement of medial temporal lobe atrophy by computed tomography. Lancet
1478	(London, England) 340:1179–1183.
1479	Kaila K. 1994. Ionic basis of GABAA receptor channel function in the nervous system. <i>Progress</i>
1480	in Neurobiology 42:489–537. DOI: 10.1016/0301-0082(94)90049-3.
1481	Kappas A, Palmer RH. 1963. Selected aspects of steroid pharmacology. <i>Pharmacological</i>
1482	Reviews 15:123–167.

1483	Kaur G, Han SJ, Yang I, Crane C. 2010. Microglia and central nervous system immunity.
1484	Neurosurgery Clinics of North America 21:43-51. DOI: 10.1016/j.nec.2009.08.009.
1485	Kay AD, Day SP, Nicoll JAR, Packard CJ, Caslake MJ. 2003. Remodelling of cerebrospinal
1486	fluid lipoproteins after subarachnoid hemorrhage. Atherosclerosis 170:141–146.
1487	Kim S, Sato Y, Mohan PS, Peterhoff C, Pensalfini A, Rigoglioso A, Jiang Y, Nixon RA. 2016.
1488	Evidence that the rab5 effector APPL1 mediates APP-βCTF-induced dysfunction of
1489	endosomes in Down syndrome and Alzheimer's disease. Molecular Psychiatry 21:707-
1490	716. DOI: 10.1038/mp.2015.97.
1491	Kiskis J, Fink H, Nyberg L, Thyr J, Li J-Y, Enejder A. 2015. Plaque-associated lipids in
1492	Alzheimer's diseased brain tissue visualized by nonlinear microscopy. Scientific Reports
1493	5. DOI: 10.1038/srep13489.
1494	Kivipelto M, Laakso MP, Tuomilehto J, Nissinen A, Soininen H. 2002. Hypertension and
1495	hypercholesterolaemia as risk factors for Alzheimer's disease: potential for
1496	pharmacological intervention. CNS drugs 16:435-444.
1497	Koenig JA, Martin IL. 1992. Effect of free fatty acids on GABAA receptor ligand binding.
1498	Biochemical Pharmacology 44:11–15. DOI: 10.1016/0006-2952(92)90031-D.
1499	Kojro E, Gimpl G, Lammich S, Marz W, Fahrenholz F. 2001. Low cholesterol stimulates the
1500	nonamyloidogenic pathway by its effect on the α-secretase ADAM 10. Proceedings of
1501	the National Academy of Sciences of the United States of America 98:5815–5820. DOI:
1502	10.1073/pnas.081612998.
1503	Kook S-Y, Hong HS, Moon M, Ha CM, Chang S, Mook-Jung I. 2012. Aβ1–42-RAGE
1504	Interaction Disrupts Tight Junctions of the Blood-Brain Barrier Via Ca2+-Calcineurin

1505	Signaling. The Journal of Neuroscience 32:8845–8854. DOI:
1506	10.1523/JNEUROSCI.6102-11.2012.
1507	Korf ESC, Wahlund L-O, Visser PJ, Scheltens P. 2004. Medial temporal lobe atrophy on MRI
1508	predicts dementia in patients with mild cognitive impairment. Neurology 63:94–100.
1509	DOI: 10.1212/01.WNL.0000133114.92694.93.
1510	Krasowski MD. 2003. Contradicting a unitary theory of general anesthetic action: a history of
1511	three compounds from 1901 to 2001. Bulletin of anesthesia history 21:1.
1512	Krasowski MD, Harrison NL. 1999. General anaesthetic actions on ligand-gated ion channels.
1513	Cellular and Molecular Life Sciences 55:1278–1303.
1514	Laffel L, Lori Laffel. 1999. Ketone bodies: a review of physiology, pathophysiology and
1515	application of monitoring to diabetes. Diabetes/Metabolism Research and Reviews
1516	15:412–426. DOI: 10.1002/(SICI)1520-7560(199911/12)15:6<412::AID-
1517	DMRR72>3.0.CO;2-8.
1518	Lam FC, Liu R, Lu P, Shapiro AB, Renoir J-M, Sharom FJ, Reiner PB. 2001. β-Amyloid efflux
1519	mediated by p-glycoprotein. Journal of Neurochemistry 76:1121-1128. DOI:
1520	10.1046/j.1471-4159.2001.00113.x.
1521	Laws D, Verdon B, Coyne L, Lees G. 2001. Fatty acid amides are putative endogenous ligands
1522	for anaesthetic recognition sites in mammalian CNS. British Journal of Anaesthesia
1523	87:380–384. DOI: 10.1093/bja/87.3.380.
1524	Lees G, Edwards MD, Hassoni AA, Ganellin CR, Galanakis D. 1998. Modulation of GABA(A)
1525	receptors and inhibitory synaptic currents by the endogenous CNS sleep regulator cis-
1526	9,10-octadecenoamide (cOA). British Journal of Pharmacology 124:873–882. DOI:
1527	10.1038/sj.bjp.0701918.

1528	Li K, Xu E. 2008. The role and the mechanism of γ -aminobutyric acid during central nervous
1529	system development. Neuroscience Bulletin 24:195. DOI: 10.1007/s12264-008-0109-3.
1530	Lim DA, Alvarez-Buylla A. 2016. The Adult Ventricular–Subventricular Zone (V-SVZ) and
1531	Olfactory Bulb (OB) Neurogenesis. Cold Spring Harbor Perspectives in Biology
1532	8:a018820. DOI: 10.1101/cshperspect.a018820.
1533	Liscum L, Faust JR. 1987. Low density lipoprotein (LDL)-mediated suppression of cholesterol
1534	synthesis and LDL uptake is defective in Niemann-Pick type C fibroblasts. Journal of
1535	Biological Chemistry 262:17002–17008.
1536	Liu C-C, Kanekiyo T, Xu H, Bu G. 2013. Apolipoprotein E and Alzheimer disease: risk,
1537	mechanisms and therapy. Nature Reviews Neurology 9:106–118. DOI:
1538	10.1038/nrneurol.2012.263.
1539	Liu Y, Namba T, Liu J, Suzuki R, Shioda S, Seki T. 2010. Glial fibrillary acidic protein-
1540	expressing neural progenitors give rise to immature neurons via early intermediate
1541	progenitors expressing both glial fibrillary acidic protein and neuronal markers in the
1542	adult hippocampus. Neuroscience 166:241–251. DOI:
1543	10.1016/j.neuroscience.2009.12.026.
1544	Liu X, Wang Q, Haydar TF, Bordey A. 2005. Nonsynaptic GABA signaling in postnatal
1545	subventricular zone controls proliferation of GFAP-expressing progenitors. Nat Neurosci
1546	8:1179–1187. DOI: 10.1038/nn1522.
1547	Lönnfors M, Doux JPF, Killian JA, Nyholm TKM, Slotte JP. 2011. Sterols Have Higher Affinity
1548	for Sphingomyelin than for Phosphatidylcholine Bilayers even at Equal Acyl-Chain
1549	Order. Biophysical Journal 100:2633–2641. DOI: 10.1016/j.bpj.2011.03.066.

1550	LoTurco JJ, Owens DF, Heath MJS, Davis MBE, Kriegstein AR. 1995. GABA and glutamate
1551	depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15:1287-1298.
1552	DOI: 10.1016/0896-6273(95)90008-X.
1553	Lugli AK, Yost CS, Kindler CH. 2009. Anaesthetic mechanisms: update on the challenge of
1554	unravelling the mystery of anaesthesia. European journal of anaesthesiology 26:807-
1555	820. DOI: 10.1097/EJA.0b013e32832d6b0f.
1556	Lund EG, Guileyardo JM, Russell DW. 1999. cDNA cloning of cholesterol 24-hydroxylase, a
1557	mediator of cholesterol homeostasis in the brain. Proceedings of the National Academy of
1558	Sciences of the United States of America 96:7238–7243.
1559	Luria AR. 1965. Two kinds of motor perseveration in massive injury of the frontal lobes. Brain
1560	88:1–10. DOI: 10.1093/brain/88.1.1.
1561	Lütjohann D, Breuer O, Ahlborg G, Nennesmo I, Sidén A, Diczfalusy U, Björkhem I. 1996.
1562	Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-
1563	hydroxycholesterol from the brain into the circulation. Proceedings of the National
1564	Academy of Sciences of the United States of America 93:9799–9804.
1565	MacIver MB. 2014. Anesthetic Agent-Specific Effects on Synaptic Inhibition. Anesthesia and
1566	analgesia 119:558–569. DOI: 10.1213/ANE.000000000000321.
1567	Magaki S, Tang Z, Tung S, Williams CK, Lo D, Yong WH, Khanlou N, Vinters HV. 2018. The
1568	effects of cerebral amyloid angiopathy on integrity of the blood-brain barrier.
1569	Neurobiology of Aging 70:70–77. DOI: 10.1016/j.neurobiolaging.2018.06.004.
1570	Mamo JCL, Jian L, James AP, Flicker L, Esselmann H, Wiltfang J. 2008. Plasma lipoprotein
1571	beta-amyloid in subjects with Alzheimer's disease or mild cognitive impairment. Annals
1572	of Clinical Biochemistry 45:395-403. DOI: 10.1258/acb.2008.007214.

1573	Mandyam CD. 2013. Neurogenesis and Addictive Disorders. In: Biological Research on
1574	Addiction: Comprehensive Addictive Behaviors and Disorders. Academic Press, 760.
1575	Marchi N, Cavaglia M, Fazio V, Bhudia S, Hallene K, Janigro D. 2004. Peripheral markers of
1576	blood-brain barrier damage. Clinica Chimica Acta; International Journal of Clinical
1577	Chemistry 342:1–12. DOI: 10.1016/j.cccn.2003.12.008.
1578	Marco S, Skaper SD. 2006. Amyloid beta-peptide1-42 alters tight junction protein distribution
1579	and expression in brain microvessel endothelial cells. Neuroscience letters 401:219–224.
1580	DOI: 10.1016/j.neulet.2006.03.047.
1581	Marshall GA, Rentz DM, Frey MT, Locascio JJ, Johnson KA, Sperling RA. 2011. Executive
1582	function and instrumental activities of daily living in mild cognitive impairment and
1583	Alzheimer's disease. Alzheimer's & Dementia 7:300-308. DOI:
1584	10.1016/j.jalz.2010.04.005.
1585	Martin LJ, Zurek AA, MacDonald JF, Roder JC, Jackson MF, Orser BA. 2010. Alpha5GABAA
1586	receptor activity sets the threshold for long-term potentiation and constrains
1587	hippocampus-dependent memory. The Journal of Neuroscience: The Official Journal of
1588	the Society for Neuroscience 30:5269–5282. DOI: 10.1523/JNEUROSCI.4209-09.2010.
1589	Matsuki H, Suzuki A, Kamaya H, Ueda I. 1999. Specific and non-specific binding of long-chain
1590	fatty acids to firefly luciferase: cutoff at octanoate. Biochimica et Biophysica Acta (BBA)
1591	- General Subjects 1426:143–150. DOI: 10.1016/S0304-4165(98)00148-2.
1592	Matsuzaki M, Takagi H. 1967. Sleep induced by sodium butyrate in the cat. Brain Research
1593	4:206–222.
1594	Maurage P, Callot C, Chang B, Philippot P, Rombaux P, de Timary P. 2011. Olfactory
1595	Impairment Is Correlated with Confabulation in Alcoholism: Towards a Multimodal

1596	Testing of Orbitofrontal Cortex. <i>PLoS ONE</i> 6:e23190. DOI:
1597	10.1371/journal.pone.0023190.
1598	Mazzone P, Tierney W, Hossain M, Puvenna V, Janigro D, Cucullo L. 2010. Pathophysiological
1599	Impact of Cigarette Smoke Exposure on the Cerebrovascular System with a Focus on the
1600	Blood-brain Barrier: Expanding the Awareness of Smoking Toxicity in an
1601	Underappreciated Area. International Journal of Environmental Research and Public
1602	Health 7:4111–4126. DOI: 10.3390/ijerph7124111.
1603	McCandless DW. 1985. Octanoic acid-induced coma and reticular formation energy metabolism
1604	Brain Research 335:131–137. DOI: 10.1016/0006-8993(85)90283-5.
1605	Meera P, Olsen RW, Otis TS, Wallner M. 2010. Alcohol- and Alcohol Antagonist-Sensitive
1606	Human GABAA Receptors: Tracking δ Subunit Incorporation into Functional Receptors
1607	Molecular Pharmacology 78:918–924. DOI: 10.1124/mol.109.062687.
1608	Mesholam RI, Moberg PJ, Mahr RN, Doty RL. 1998. Olfaction in neurodegenerative disease: A
1609	meta-analysis of olfactory functioning in alzheimer's and parkinson's diseases. Archives
1610	of Neurology 55:84–90. DOI: 10.1001/archneur.55.1.84.
1611	Methia N, André P, Hafezi-Moghadam A, Economopoulos M, Thomas KL, Wagner DD. 2001.
1612	ApoE deficiency compromises the blood brain barrier especially after injury. Molecular
1613	Medicine 7:810–815.
1614	Miaczynska M, Christoforidis S, Giner A, Shevchenko A, Uttenweiler-Joseph S, Habermann B,
1615	Wilm M, Parton RG, Zerial M. 2004. APPL Proteins Link Rab5 to Nuclear Signal
1616	Transduction via an Endosomal Compartment. Cell 116:445–456. DOI: 10.1016/S0092-
1617	8674(04)00117-5.

1618	Miki T, Kusaka T, Yokoyama T, Ohta K, Suzuki S, Warita K, Jamal M, Wang Z-Y, Ueki M, Liu
1619	J-Q, Yakura T, Tamai M, Sumitani K, Hosomi N, Takeuchi Y. 2014. Short-term ethanol
1620	exposure causes imbalanced neurotrophic factor allocation in the basal forebrain
1621	cholinergic system: a novel insight into understanding the initial processes of alcohol
1622	addiction. Journal of Neural Transmission 121:201–210. DOI: 10.1007/s00702-013-
1623	1085-y.
1624	Ming G-L, Song H. 2011. Adult neurogenesis in the mammalian brain: significant answers and
1625	significant questions. Neuron 70:687–702. DOI: 10.1016/j.neuron.2011.05.001.
1626	Mishra A, Eathiraj S, Corvera S, Lambright DG. 2010. Structural basis for Rab GTPase
1627	recognition and endosome tethering by the C2H2 zinc finger of Early Endosomal
1628	Autoantigen 1 (EEA1). Proceedings of the National Academy of Sciences 107:10866-
1629	10871. DOI: 10.1073/pnas.1000843107.
1630	Mitchell RW, Hatch GM. 2011. Fatty acid transport into the brain: Of fatty acid fables and lipid
1631	tails. Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA) 85:293-302. DOI:
1632	10.1016/j.plefa.2011.04.007.
1633	Morris SA, Eaves DW, Smith AR, Nixon K. 2010. Alcohol inhibition of neurogenesis: A
1634	mechanism of hippocampal neurodegeneration in an adolescent alcohol abuse model.
1635	Hippocampus 20:596-607. DOI: 10.1002/hipo.20665.
1636	Morrison JH, Hof PR. 2002. Selective vulnerability of corticocortical and hippocampal circuits
1637	in aging and Alzheimer's disease. Progress in Brain Research 136:467-486.
1638	Mufson EJ, Ginsberg SD, Ikonomovic MD, DeKosky ST. 2003. Human cholinergic basal
1639	forebrain: chemoanatomy and neurologic dysfunction. Journal of Chemical
1640	Neuroanatomy 26:233–242.

1641	Muir JL. 1997. Acetylcholine, Aging, and Alzheimer's Disease. <i>Pharmacology Biochemistry</i>
1642	and Behavior 56:687–696. DOI: 10.1016/S0091-3057(96)00431-5.
1643	Mulder M, Blokland A, van den Berg DJ, Schulten H, Bakker AH, Terwel D, Honig W, de Kloet
1644	ER, Havekes LM, Steinbusch HW, de Lange EC. 2001. Apolipoprotein E protects
1645	against neuropathology induced by a high-fat diet and maintains the integrity of the
1646	blood-brain barrier during aging. Laboratory Investigation; a Journal of Technical
1647	Methods and Pathology 81:953–960.
1648	Mundiñano I-C, Hernandez M, Dicaudo C, Ordoñez C, Marcilla I, Tuñon M-T, Luquin M-R.
1649	2013. Reduced cholinergic olfactory centrifugal inputs in patients with neurodegenerative
1650	disorders and MPTP-treated monkeys. Acta Neuropathologica 126:411–425. DOI:
1651	10.1007/s00401-013-1144-3.
1652	Nag S. 2003. Pathophysiology of Blood-Brain Barrier Breakdown. In: <i>The blood-brain barrier:</i>
1653	biology and research protocols. Humana Press, 97.
1654	Nagahama Y, Okina T, Suzuki N, Matsuzaki S, Yamauchi H, Nabatame H, Matsuda M. 2003.
1655	Factor Structure of a Modified Version of the Wisconsin Card Sorting Test: An Analysis
1656	of Executive Deficit in Alzheimer's Disease and Mild Cognitive Impairment.
1657	Dementia and Geriatric Cognitive Disorders 16:103–112. DOI: 10.1159/000070683.
1658	Nagy LE. 2003. Recent insights into the role of the innate immune system in the development of
1659	alcoholic liver disease. Experimental biology and medicine (Maywood, N.J.) 228:882-
1660	890.
1661	Namba Y, Tsuchiya H, Ikeda K. 1992. Apolipoprotein B immunoreactivity in senile plaque and
1662	vascular amyloids and neurofibrillary tangles in the brains of patients with Alzheimer's
1663	disease. Neuroscience Letters 134:264–266. DOI: 16/0304-3940(92)90531-B.

1664	Nguyen L, Malgrange B, Breuskin I, Bettendorff L, Moonen G, Belachew S, Rigo J-M. 2003.
1665	Autocrine/paracrine activation of the GABAA receptor inhibits the proliferation of
1666	neurogenic polysialylated neural cell adhesion molecule-positive (PSA-NCAM+)
1667	precursor cells from postnatal striatum. Journal of Neuroscience 23:3278-3294.
1668	Nicholson AM, Ferreira A. 2010. Cholesterol and neuronal susceptibility to beta-amyloid
1669	toxicity. Cognitive sciences 5:35–56.
1670	Nieuwenhuis-Mark RE. 2009. Diagnosing Alzheimer's dementia in Down syndrome: problems
1671	and possible solutions. Research in developmental disabilities 30:827–838. DOI:
1672	10.1016/j.ridd.2009.01.010.
1673	Nishitsuji K, Hosono T, Nakamura T, Bu G, Michikawa M. 2011. Apolipoprotein E regulates the
1674	integrity of tight junctions in an isoform-dependent manner in an in vitro blood-brain-
1675	barrier model. Journal of Biological Chemistry. DOI: 10.1074/jbc.M111.225532.
1676	Nixon RA. 2004. Niemann-Pick Type C Disease and Alzheimer's Disease. The American
1677	Journal of Pathology 164:757–761.
1678	Nixon K. 2006. Alcohol and adult neurogenesis: roles in neurodegeneration and recovery in
1679	chronic alcoholism. Hippocampus 16:287–295. DOI: 10.1002/hipo.20162.
1680	Nixon RA. 2017. Amyloid precursor protein and endosomal-lysosomal dysfunction in
1681	Alzheimer's disease: inseparable partners in a multifactorial disease. The FASEB Journal
1682	31:2729–2743. DOI: 10.1096/fj.201700359.
1683	Nixon K, Crews FT. 2002. Binge ethanol exposure decreases neurogenesis in adult rat
1684	hippocampus. Journal of Neurochemistry 83:1087–1093.

1685	Nutt DJ, Besson M, Wilson SJ, Dawson GR, Lingford-Hughes AR. 2007. Blockade of alcohol's
1686	amnestic activity in humans by an [alpha]5 subtype benzodiazepine receptor inverse
1687	agonist. Neuropharmacology 53:810–820. DOI: 10.1016/j.neuropharm.2007.08.008.
1688	Obernier JA, White AM, Swartzwelder HS, Crews FT. 2002a. Cognitive deficits and CNS
1689	damage after a 4-day binge ethanol exposure in rats. Pharmacology Biochemistry and
1690	Behavior 72:521–532. DOI: 16/S0091-3057(02)00715-3.
1691	Obernier JA, White AM, Swartzwelder HS, Crews FT. 2002b. Cognitive deficits and CNS
1692	damage after a 4-day binge ethanol exposure in rats. Pharmacology Biochemistry and
1693	Behavior 72:521–532. DOI: 16/S0091-3057(02)00715-3.
1694	OECD. 2013. Dementia prevalence. In: OECD, Health at a Glance 2013: OECD Indicators.
1695	OECD Publishing,.
1696	Ohm TG, Braak H. 1987. Olfactory bulb changes in Alzheimer's disease. Acta
1697	Neuropathologica 73:365–369.
1698	Ohtsuki S, Sato S, Yamaguchi H, Kamoi M, Asashima T, Terasaki T. 2007. Exogenous
1699	expression of claudin-5 induces barrier properties in cultured rat brain capillary
1700	endothelial cells. <i>Journal of Cellular Physiology</i> 210:81–86. DOI: 10.1002/jcp.20823.
1701	Orser BA. 2007. Lifting the fog around Anesthesia. Scientific American:54-61.
1702	Orser BA, McAdam LC, Roder S, MacDonald JF. 1998. General anaesthetics and their effects
1703	on GABAA receptor desensitization. Toxicology Letters 100–101:217–224. DOI:
1704	10.1016/S0378-4274(98)00188-X.
1705	Orth M, Bellosta S. 2012. Cholesterol: Its Regulation and Role in Central Nervous System
1706	Disorders. Cholesterol 2012. DOI: 10.1155/2012/292598.

1707	Oscar-Berman M, Shagrin B, Evert DL, Epstein C. 1997. Impairments of brain and behavior: the
1708	neurological effects of alcohol. Alcohol Health and Research World 21:65-75.
1709	Paik N-J, Yang E. 2014. Role of GABA plasticity in stroke recovery. Neural Regeneration
1710	Research 9:2026–2028. DOI: 10.4103/1673-5374.147920.
1711	Pallebage-Gamarallage MMS, Takechi R, Lam V, Galloway S, Dhaliwal S, Mamo JCL. 2010.
1712	Post-prandial lipid metabolism, lipid-modulating agents and cerebrovascular integrity:
1713	Implications for dementia risk. Atherosclerosis Supplements 11:49–54. DOI:
1714	10.1016/j.atherosclerosissup.2010.04.002.
1715	Pallotto M, Deprez F. 2014. Regulation of adult neurogenesis by GABAergic transmission:
1716	signaling beyond GABAA-receptors. Frontiers in Cellular Neuroscience 8. DOI:
1717	10.3389/fncel.2014.00166.
1718	Pardridge WM, Mietus LJ. 1980. Palmitate and Cholesterol Transport Through the Blood-Brain
1719	Barrier. Journal of Neurochemistry 34:463-466. DOI: 10.1111/j.1471-
1720	4159.1980.tb06621.x.
1721	Parent MB, Baxter MG. 2004. Septohippocampal Acetylcholine: Involved in but not Necessary
1722	for Learning and Memory? Learning & Memory 11:9–20. DOI: 10.1101/lm.69104.
1723	Paul J, Strickland S, Melchor JP. 2007. Fibrin deposition accelerates neurovascular damage and
1724	neuroinflammation in mouse models of Alzheimer's disease. The Journal of
1725	Experimental Medicine 204:1999–2008. DOI: 10.1084/jem.20070304.
1726	Perlman BJ, Goldstein DB. 1984. Membrane-disordering potency and anticonvulsant action of
1727	valproic acid and other short-chain fatty acids. Molecular Pharmacology 26:83-89.

1728	Petrini EM, Marchionni I, Zacchi P, Sieghart W, Cherubini E. 2004. Clustering of Extrasynaptic
1729	GABAA Receptors Modulates Tonic Inhibition in Cultured Hippocampal Neurons.
1730	Journal of Biological Chemistry 279:45833–45843. DOI: 10.1074/jbc.M407229200.
1731	Pfefferbaum A, Sullivan EV, Mathalon DH, Lim KO. 1997. Frontal Lobe Volume Loss
1732	Observed with Magnetic Resonance Imaging in Older Chronic Alcoholics. <i>Alcoholism:</i>
1733	Clinical and Experimental Research 21:521-529. DOI: 10.1111/j.1530-
1734	0277.1997.tb03798.x.
1735	Pfrieger FW. 2003. Outsourcing in the brain: Do neurons depend on cholesterol delivery by
1736	astrocytes? BioEssays 25:72-78. DOI: 10.1002/bies.10195.
1737	Pimplikar SW. 2009. Reassessing the amyloid cascade hypothesis of Alzheimer's disease. The
1738	International Journal of Biochemistry & Cell Biology 41:1261–1268. DOI:
1739	10.1016/j.biocel.2008.12.015.
1740	Pompey S, Zhao Z, Luby-Phelps K, Michaely P. 2013. Quantitative fluorescence imaging
1741	reveals point of release for lipoproteins during LDLR-dependent uptake. Journal of Lipid
1742	Research 54:744–753. DOI: 10.1194/jlr.M033548.
1743	Popescu BO, Toescu EC, Popescu LM, Bajenaru O, Muresanu DF, Schultzberg M, Bogdanovic
1744	N. 2009. Blood-brain barrier alterations in ageing and dementia. Journal of the
1745	Neurological Sciences 283:99–106. DOI: 16/j.jns.2009.02.321.
1746	Prasad S, Sajja RK, Naik P, Cucullo L. 2014. Diabetes Mellitus and Blood-Brain Barrier
1747	Dysfunction: An Overview. Journal of Pharmacovigilance 2:125. DOI: 10.4172/2329-
1748	6887.1000125.

1749	Pringle MJ, Brown KB, Miller KW. 1981. Can the Lipid Theories of Anesthesia Account for the
1750	Cutoff in Anesthetic Potency in Homologous Series of Alcohols? Molecular
1751	Pharmacology 19:49–55.
1752	Puri V, Watanabe R, Dominguez M, Sun X, Wheatley CL, Marks DL, Pagano RE. 1999.
1753	Cholesterol modulates membrane traffic along the endocytic pathway in sphingolipid-
1754	storage diseases. Nature Cell Biology 1:386–388. DOI: 10.1038/14084.
1755	Rando K, Hong K-I, Bhagwagar Z, Li C-SR, Bergquist K, Guarnaccia J, Sinha R. 2011.
1756	Association of frontal and posterior cortical gray matter volume with time to alcohol
1757	relapse: a prospective study. <i>The American journal of psychiatry</i> 168:183–192. DOI:
1758	10.1176/appi.ajp.2010.10020233.
1759	Rang HP. 2012. 23. Atherosclerosis and lipoprotein metabolism. In: Rang & Dale's
1760	pharmacology. Edinburgh: Churchill Livingstone,.
1761	Rissman RA, Mobley WC. 2011. Implication for treatment: GABAA receptors in aging, Down
1762	syndrome and Alzheimer's disease. Journal of neurochemistry 117:613-622. DOI:
1763	10.1111/j.1471-4159.2011.07237.x.
1764	Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR, Peterson PK. 2004. Role of
1765	Microglia in Central Nervous System Infections. Clinical Microbiology Reviews 17:942-
1766	964. DOI: 10.1128/CMR.17.4.942-964.2004.
1767	Roff CF, Goldin E, Comly ME, Cooney A, Brown A, Vanier MT, Miller SP, Brady RO,
1768	Pentchev PG. 1991. Type C Niemann-Pick disease: use of hydrophobic amines to study
1769	defective cholesterol transport. Developmental Neuroscience 13:315–319.
1770	Rubin LL, Staddon JM. 1999. The cell biology of the blood-brain barrier. Annual Review of
1771	Neuroscience 22:11–28. DOI: 10.1146/annurev.neuro.22.1.11.

1772	Rupp CI, Fleischhacker WW, Drexler A, Hausmann A, Hinterhuber H, Kurz M. 2006. Executive
1773	Function and Memory in Relation to Olfactory Deficits in Alcohol-dependent Patients.
1774	Alcoholism: Clinical and Experimental Research 30:1355–1362. DOI: 10.1111/j.1530-
1775	0277.2006.00162.x.
1776	Rushworth JV, Hooper NM. 2011.Lipid Rafts: Linking Alzheimer's Amyloid-β Production,
1777	Aggregation, and Toxicity at Neuronal Membranes. Available at
1778	https://www.hindawi.com/journals/ijad/2011/603052/ (accessed April 14, 2019). DOI:
1779	10.4061/2011/603052.
1780	Ryu JK, McLarnon JG. 2009. A leaky blood-brain barrier, fibrinogen infiltration and microglial
1781	reactivity in inflamed Alzheimer's disease brain. Journal of Cellular and Molecular
1782	Medicine 13:2911–2925. DOI: 10.1111/j.1582-4934.2008.00434.x.
1783	Saito Y, Suzuki K, Nanba E, Yamamoto T, Ohno K, Murayama S. 2002. Niemann-Pick type C
1784	disease: accelerated neurofibrillary tangle formation and amyloid beta deposition
1785	associated with apolipoprotein E epsilon 4 homozygosity. Annals of Neurology 52:351-
1786	355. DOI: 10.1002/ana.10266.
1787	Salehi A, Delcroix J-D, Belichenko PV, Zhan K, Wu C, Valletta JS, Takimoto-Kimura R,
1788	Kleschevnikov AM, Sambamurti K, Chung PP, Xia W, Villar A, Campbell WA, Kulnane
1789	LS, Nixon RA, Lamb BT, Epstein CJ, Stokin GB, Goldstein LSB, Mobley WC. 2006.
1790	Increased App Expression in a Mouse Model of Down's Syndrome Disrupts NGF
1791	Transport and Causes Cholinergic Neuron Degeneration. Neuron 51:29–42. DOI:
1792	10.1016/j.neuron.2006.05.022.
1793	Salloway S, Gur T, Berzin T, Zipser B, Correia S, Hovanesian V, Fallon J, Kuo-Leblanc V,
1794	Glass D, Hulette C, Rosenberg C, Vitek M, Stopa E. 2002. Effect of APOE genotype on
	Page 82

1795	microvascular basement membrane in Alzheimer's disease. Journal of the Neurological
1796	Sciences 203–204:183–187. DOI: 10.1016/S0022-510X(02)00288-5.
1797	Samson FE, Dahl N, Dahl DR. 1956. A Study on the Narcotic Action of the Short Chain Fatty
1798	Acids. Journal of Clinical Investigation 35:1291–1298.
1799	Samson Jr FE, Dahl N, Dahl DR. 1956. A study on the narcotic action of the short chain fatty
1800	acids. Journal of Clinical Investigation 35:1291.
1801	Sanday L, Patti CL, Zanin KA, Fernandes-Santos L, Oliveira LC, Kameda SR, Tufik S, Frussa-
1802	Filho R. 2013. Ethanol-induced memory impairment in a discriminative avoidance task is
1803	state-dependent. Alcoholism, Clinical and Experimental Research 37 Suppl 1:E30-39.
1804	DOI: 10.1111/j.1530-0277.2012.01905.x.
1805	Santín LJ, Rubio S, Begega A, Arias JL. 2000. Effects of chronic alcohol consumption on spatial
1806	reference and working memory tasks. Alcohol (Fayetteville, N.Y.) 20:149–159.
1807	Saunders N, Habgood M, Dziegielewska, Saunders N. 1999. Barrier mechanisms in the brain, I.
1808	Adult brain. Clinical & Experimental Pharmacology & Physiology 26:11-19.
1809	Schiff ER, Maddrey WC, Sorrell MF. 2011. Chapter 2: Laboratory Tests. In: Schiff's Diseases of
1810	the Liver. John Wiley & Sons,.
1811	Schnaider Beeri M, Goldbourt U, Silverman JM, Noy S, Schmeidler J, Ravona-Springer R,
1812	Sverdlick A, Davidson M. 2004. Diabetes mellitus in midlife and the risk of dementia
1813	three decades later. <i>Neurology</i> 63:1902–1907. DOI:
1814	10.1212/01.WNL.0000144278.79488.DD.
1815	Schönfeld P, Reiser G. 2013. Why does brain metabolism not favor burning of fatty acids to
1816	provide energy? - Reflections on disadvantages of the use of free fatty acids as fuel for

1817	brain. Journal of Cerebral Blood Flow & Metabolism 33:1493-1499. DOI:
1818	10.1038/jcbfm.2013.128.
1819	Sela L, Sobel N. 2010. Human olfaction: a constant state of change-blindness. Experimental
1820	Brain Research. Experimentelle Hirnforschung. Experimentation Cerebrale 205:13–29.
1821	DOI: 10.1007/s00221-010-2348-6.
1822	Serna A, Pigot H, Rialle V. 2007. Modeling the progression of Alzheimer's disease for cognitive
1823	assistance in smart homes. User Modeling and User-Adapted Interaction 17:415-438.
1824	DOI: 10.1007/s11257-007-9032-y.
1825	Shen H, Sabaliauskas N, Sherpa A, Fenton AA, Stelzer A, Aoki C, Smith SS. 2010. A critical
1826	role for alpha4betadelta GABAA receptors in shaping learning deficits at puberty in
1827	mice. Science (New York, N.Y.) 327:1515–1518. DOI: 10.1126/science.1184245.
1828	Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. 2006. TLR4 links innate immunity
1829	and fatty acid-induced insulin resistance. The Journal of Clinical Investigation
1830	116:3015–3025. DOI: 10.1172/JCI28898.
1831	Sikka PK, Beaman ST, Street JA. 2015. Basic Clinical Anesthesia. Springer.
1832	Simons M, Keller P, De Strooper B, Beyreuther K, Dotti CG, Simons K. 1998. Cholesterol
1833	depletion inhibits the generation of β -amyloid in hippocampal neurons. <i>Proceedings of</i>
1834	the National Academy of Sciences of the United States of America 95:6460–6464.
1835	Simons M, Keller P, Dichgans J, Schulz JB. 2001. Cholesterol and Alzheimer's disease: is there
1836	a link? Neurology 57:1089–1093.
1837	Smell and the Degenerating Brain The Scientist Magazine®. 2013. Available at http://www.the-
1838	scientist.com/?articles.view/articleNo/37603/title/Smell-and-the-Degenerating-Brain/
1839	(accessed October 10, 2013).

1840	Sobo K, Le Blanc I, Luyet P-P, Fivaz M, Ferguson C, Parton RG, Gruenberg J, van der Goot FG.
1841	2007. Late Endosomal Cholesterol Accumulation Leads to Impaired Intra-Endosomal
1842	Trafficking. PLoS ONE 2. DOI: 10.1371/journal.pone.0000851.
1843	Song J, Zhong C, Bonaguidi MA, Sun GJ, Hsu D, Gu Y, Meletis K, Huang ZJ, Ge S,
1844	Enikolopov G, Deisseroth K, Luscher B, Christian K, Ming G, Song H. 2012. Neuronal
1845	circuitry mechanism regulating adult quiescent neural stem cell fate decision. Nature
1846	489:150–154. DOI: 10.1038/nature11306.
1847	Spector R. 1988. Fatty Acid Transport Through the Blood-Brain Barrier. Journal of
1848	Neurochemistry 50:639–643. DOI: 10.1111/j.1471-4159.1988.tb02958.x.
1849	Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft S, Fagan AM, Iwatsubo T, Jack Jr. CR,
1850	Kaye J, Montine TJ, Park DC, Reiman EM, Rowe CC, Siemers E, Stern Y, Yaffe K,
1851	Carrillo MC, Thies B, Morrison-Bogorad M, Wagster MV, Phelps CH. 2011. Toward
1852	defining the preclinical stages of Alzheimer's disease: Recommendations from the
1853	National Institute on Aging-Alzheimer's Association workgroups on diagnostic
1854	guidelines for Alzheimer's disease. Alzheimer's & Dementia 7:280-292. DOI:
1855	10.1016/j.jalz.2011.03.003.
1856	Stein TD, Alvarez VE, McKee AC. 2014. Chronic traumatic encephalopathy: a spectrum of
1857	neuropathological changes following repetitive brain trauma in athletes and military
1858	personnel. Alzheimer's Research & Therapy 6:4. DOI: 10.1186/alzrt234.
1859	Su GC, Arendash GW, Kalaria RN, Bjugstad KB, Mullan M. 1999. Intravascular infusions of
1860	soluble beta-amyloid compromise the blood-brain barrier, activate CNS glial cells and
1861	induce peripheral hemorrhage. Brain Research 818:105–117.

1862	Sullivan EV, Adron Harris R, Pfefferbaum A.Alcohol's Effects on Brain and Behavior - NIAAA
1863	Publications. Available at http://pubs.niaaa.nih.gov/publications/arh40/127-143.htm
1864	(accessed September 21, 2016).
1865	Sullivan EV, Pfefferbaum A. 2014. Alcohol and the Nervous System. Elsevier.
1866	Sun S, Zu X, Tuo Q, Chen L, Lei X, Li K, Tang C, Liao D. 2010. Caveolae and caveolin-1
1867	mediate endocytosis and transcytosis of oxidized low density lipoprotein in endothelial
1868	cells. Acta Pharmacol Sin 31:1336–1342.
1869	Tai LM, Holloway KA, Male DK, Loughlin AJ, Romero IA. 2010. Amyloid-beta-induced
1870	occludin down-regulation and increased permeability in human brain endothelial cells is
1871	mediated by MAPK activation. Journal of Cellular and Molecular Medicine 14:1101-
1872	1112. DOI: 10.1111/j.1582-4934.2009.00717.x.
1873	Takechi R, Galloway S, Pallebage-Gamarallage MMS, Lam V, Mamo JCL. 2010a. Dietary fats,
1874	cerebrovasculature integrity and Alzheimer's disease risk. Progress in Lipid Research
1875	49:159–170. DOI: 10.1016/j.plipres.2009.10.004.
1876	Takechi R, Galloway S, Pallebage-Gamarallage MMS, Lam V, Mamo JCL. 2010b. Dietary fats,
1877	cerebrovasculature integrity and Alzheimer's disease risk. Progress in Lipid Research
1878	49:159–170. DOI: 10.1016/j.plipres.2009.10.004.
1879	Takechi R, Galloway S, Pallebage-Gamarallage MMS, Wellington CL, Johnsen RD, Dhaliwal
1880	SS, Mamo JCL. 2010c. Differential effects of dietary fatty acids on the cerebral
1881	distribution of plasma-derived apo B lipoproteins with amyloid-β. British Journal of
1882	Nutrition 103:652–662. DOI: 10.1017/S0007114509992194.
1883	Takechi R, Galloway S, Pallebage-Gamarallage M, Wellington C, Johnsen R, Mamo JC. 2009.
1884	Three-dimensional colocalization analysis of plasma-derived apolipoprotein B with
	Page 86

1885	amyloid plaques in APP/PS1 transgenic mice. Histochemistry and Cell Biology 131:661-
1886	666. DOI: 10.1007/s00418-009-0567-3.
1887	Tallberg IM, Almkvist O. 2001. Confabulation and memory in patients with Alzheimer's
1888	disease. Journal of Clinical and Experimental Neuropsychology 23:172–184.
1889	Teipel S, Drzezga A, Grothe MJ, Barthel H, Chételat G, Schuff N, Skudlarski P, Cavedo E,
1890	Frisoni GB, Hoffmann W, Thyrian JR, Fox C, Minoshima S, Sabri O, Fellgiebel A. 2015.
1891	Multimodal imaging in Alzheimer's disease: validity and usefulness for early detection.
1892	The Lancet Neurology 14:1037–1053. DOI: 10.1016/S1474-4422(15)00093-9.
1893	Teipel SJ, Flatz WH, Heinsen H, Bokde ALW, Schoenberg SO, Stöckel S, Dietrich O, Reiser
1894	MF, Möller H-J, Hampel H. 2005. Measurement of basal forebrain atrophy in
1895	Alzheimer's disease using MRI. Brain 128:2626–2644. DOI: 10.1093/brain/awh589.
1896	Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R.
1897	1991. Physical basis of cognitive alterations in alzheimer's disease: Synapse loss is the
1898	major correlate of cognitive impairment. Annals of Neurology 30:572-580. DOI:
1899	10.1002/ana.410300410.
1900	The Neurotoxicity of Alcohol (Chapter 2, Alcohol and the Brain: Neuroscience and
1901	Neurobehaviour). In: 10th special report to the U.S. Congress on alcohol and health.
1902	Thomas T, McLendon C, Sutton ET, Thomas G. 1997. Cerebrovascular endothelial dysfunction
1903	mediated by beta-amyloid. Neuroreport 8:1387–1391.
1904	Thompson PM, Hayashi KM, Dutton RA, Chiang M-C, Leow AD, Sowell ER, De Zubicaray G,
1905	Becker JT, Lopez OL, Aizenstein HJ, Toga AW. 2007. Tracking Alzheimer's disease.
1906	Annals of the New York Academy of Sciences 1097:183–214. DOI:
1907	10.1196/annals.1379.017.

1908	Tozuka Y, Fukuda S, Namba T, Seki T, Hisatsune T. 2005. GABAergic Excitation Promotes
1909	Neuronal Differentiation in Adult Hippocampal Progenitor Cells. <i>Neuron</i> 47:803–815.
1910	DOI: 10.1016/j.neuron.2005.08.023.
1911	Traissard N, Herbeaux K, Cosquer B, Jeltsch H, Ferry B, Galani R, Pernon A, Majchrzak M,
1912	Cassel J-C. 2006. Combined Damage to Entorhinal Cortex and Cholinergic Basal
1913	Forebrain Neurons, Two Early Neurodegenerative Features Accompanying Alzheimer's
1914	Disease: Effects on Locomotor Activity and Memory Functions in Rats.
1915	Neuropsychopharmacology 32:851–871.
1916	Ueda I, Suzuki A. 1998. Is There a Specific Receptor for Anesthetics? Contrary Effects of
1917	Alcohols and Fatty Acids on Phase Transition and Bioluminescence of Firefly
1918	Luciferase. Biophysical Journal 75:1052–1057. DOI: 10.1016/S0006-3495(98)77594-0.
1919	Ujiie M, Dickstein DL, Carlow DA, Jefferies WA. 2003. Blood-brain barrier permeability
1920	precedes senile plaque formation in an Alzheimer disease model. Microcirculation (New
1921	York, N.Y.: 1994) 10:463–470. DOI: 10.1038/sj.mn.7800212.
1922	Valeeva G, Tressard T, Mukhtarov M, Baude A, Khazipov R. 2016. An Optogenetic Approach
1923	for Investigation of Excitatory and Inhibitory Network GABA Actions in Mice
1924	Expressing Channelrhodopsin-2 in GABAergic Neurons. Journal of Neuroscience
1925	36:5961–5973. DOI: 10.1523/JNEUROSCI.3482-15.2016.
1926	van der Vusse GJ. 2009. Albumin as fatty acid transporter. Drug Metabolism and
1927	Pharmacokinetics 24:300–307.
1928	Vance DE, Vance JE. 2008. Biochemistry of lipids, lipoproteins, and membranes. Elsevier.

1929	Velayudhan L, Pritchard M, Powell JF, Proitsi P, Lovestone S. 2013a. Smell identification
1930	function as a severity and progression marker in Alzheimer's disease. International
1931	psychogeriatrics / IPA 25:1157–1166. DOI: 10.1017/S1041610213000446.
1932	Velayudhan L, Proitsi P, Westman E, Muehlboeck J-S, Mecocci P, Vellas B, Tsolaki M,
1933	Kłoszewska I, Soininen H, Spenger C, Hodges A, Powell J, Lovestone S, Simmons A,
1934	dNeuroMed Consortium. 2013b. Entorhinal cortex thickness predicts cognitive decline in
1935	Alzheimer's disease. Journal of Alzheimer's disease: JAD 33:755-766. DOI:
1936	10.3233/JAD-2012-121408.
1937	Vetreno RP, Hall JM, Savage LM. 2011. Alcohol-related amnesia and dementia: Animal models
1938	have revealed the contributions of different etiological factors on neuropathology,
1939	neurochemical dysfunction and cognitive impairment. Neurobiology of Learning and
1940	Memory In Press, Corrected Proof. DOI: 16/j.nlm.2011.01.003.
1941	Vetrivel KS, Cheng H, Lin W, Sakurai T, Li T, Nukina N, Wong PC, Xu H, Thinakaran G. 2004.
1942	Association of γ -Secretase with Lipid Rafts in Post-Golgi and Endosome Membranes.
1943	Journal of Biological Chemistry 279:44945–44954. DOI: 10.1074/jbc.M407986200.
1944	Walker CO, McCandless DW, McGarry JD, Schenker S. 1970. Cerebral energy metabolism in
1945	short-chain fatty acid-induced coma. The Journal of Laboratory and Clinical Medicine
1946	76:569–583. DOI: 10.5555/uri:pii:002221437090243X.
1947	Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, Bode B, Manietta N, Walter J,
1948	Schulz-Schuffer W, Fassbender K. 2007. Role of the toll-like receptor 4 in
1949	neuroinflammation in Alzheimer's disease. Cellular Physiology and Biochemistry:
1950	International Journal of Experimental Cellular Physiology, Biochemistry, and
1951	Pharmacology 20:947–956. DOI: 10.1159/000110455.

Page 89

1952	Wang Z, Liu D, Wang F, Liu S, Zhao S, Ling E-A, Hao A. 2012. Saturated fatty acids activate
1953	microglia via Toll-like receptor 4/NF-κB signalling. British Journal of Nutrition
1954	107:229–241. DOI: 10.1017/S0007114511002868.
1955	Wei W, Faria LC, Mody I. 2004. Low Ethanol Concentrations Selectively Augment the Tonic
1956	Inhibition Mediated by Δ Subunit-Containing GABAA Receptors in Hippocampal
1957	Neurons. The Journal of Neuroscience 24:8379–8382. DOI: 10.1523/JNEUROSCI.2040-
1958	04.2004.
1959	Weintraub S, Wicklund AH, Salmon DP. 2012. The Neuropsychological Profile of Alzheimer
1960	Disease. Cold Spring Harbor Perspectives in Medicine 2. DOI:
1961	10.1101/cshperspect.a006171.
1962	Weiss E, Singewald EM, Ruepp B, Marksteiner J. 2014. Alcohol induced cognitive deficits.
1963	Wiener Medizinische Wochenschrift (1946) 164:9–14. DOI: 10.1007/s10354-013-0226-0.
1964	Whissell PD, Eng D, Lecker I, Wang D-S, Martin LJ, Orser BA. 2013. Acutely increasing δ
1965	GABAA receptor activity impairs memory and inhibits synaptic plasticity in the
1966	hippocampus. Frontiers in Neural Circuits 7. DOI: 10.3389/fncir.2013.00146.
1967	White AM, Matthews DB, Best PJ. 2000. Ethanol, memory, and hippocampal function: a review
1968	of recent findings. Hippocampus 10:88-93. DOI: 10.1002/(SICI)1098-
1969	1063(2000)10:1<88::AID-HIPO10>3.0.CO;2-L.
1970	White RP, Samson FE. 1956. Effects of Fatty Acid Anions on the Electroencephalogram of
1971	Unanesthetized Rabbits. American Journal of Physiology Legacy Content 186:271-
1972	274.

1973	White AM, Signer ML, Kraus CL, Swartzwelder HS. 2004. Experiential Aspects of Alcohol-
1974	Induced Blackouts Among College Students. The American Journal of Drug and Alcohol
1975	Abuse 30:205–224. DOI: 10.1081/ADA-120029874.
1976	Wick MJ, Mihic SJ, Ueno S, Mascia MP, Trudell JR, Brozowski SJ, Ye Q, Harrison NL, Harris
1977	RA. 1998. Mutations of γ-aminobutyric acid and glycine receptors change alcohol cutoff:
1978	Evidence for an alcohol receptor? Proceedings of the National Academy of Sciences of
1979	the United States of America 95:6504–6509.
1980	Williams WM, Chang MC, Hayakawa T, Grange E, Rapoport SI. 1997. In vivo incorporation
1981	from plasma of radiolabeled palmitate and arachidonate into rat brain microvessels.
1982	Microvascular Research 53:163–166. DOI: 10.1006/mvre.1996.1984.
1983	Witt M, Nielsen M. 1994. Characterization of the Influence of Unsaturated Free Fatty Acids on
1984	Brain GABA/Benzodiazepine Receptor Binding In Vitro. Journal of Neurochemistry
1985	62:1432–1439. DOI: 10.1046/j.1471-4159.1994.62041432.x.
1986	Wolozin B. 2004. Cholesterol and the biology of Alzheimer's disease. <i>Neuron</i> 41:7–10.
1987	Wong SM, Fong E, Tauck DL, Kendig JJ. 1997. Ethanol as a general anesthetic: actions in
1988	spinal cord. European Journal of Pharmacology 329:121-127.
1989	Wu Z, Guo Z, Gearing M, Chen G. 2014. Tonic inhibition in dentate gyrus impairs long-term
1990	potentiation and memory in an Alzhiemer's disease model. Nature communications
1991	5:4159. DOI: 10.1038/ncomms5159.
1992	Wu L, Rosa-Neto P, Hsiung G-YR, Sadovnick AD, Masellis M, Black SE, Jia J, Gauthier S.
1993	2012. Early-onset familial Alzheimer's disease (EOFAD). The Canadian journal of
1994	neurological sciences. Le journal canadien des sciences neurologiques 39:436–445.

1995	Xiong H, Callaghan D, Jones A, Walker DG, Lue L-F, Beach TG, Sue LI, Woulfe J, Xu H,
1996	Stanimirovic DB, Zhang W. 2008a. Cholesterol retention in Alzheimer's brain is
1997	responsible for high β - and γ -secretase activities and $A\beta$ production. Neurobiology of
1998	disease 29:422–437. DOI: 10.1016/j.nbd.2007.10.005.
1999	Xiong H, Callaghan D, Jones A, Walker DG, Lue L-F, Beach TG, Sue LI, Woulfe J, Xu H,
2000	Stanimirovic DB, Zhang W. 2008b. Cholesterol retention in Alzheimer's brain is
2001	responsible for high β - and γ -secretase activities and $A\beta$ production. Neurobiology of
2002	disease 29:422–437. DOI: 10.1016/j.nbd.2007.10.005.
2003	Yamakura T. 2004. Volatile anesthetic antagonism by long-chain free fatty acids. <i>Journal of</i>
2004	Anesthesia 18:71–72. DOI: 10.1007/s00540-004-0229-5.
2005	Yang I, Han SJ, Kaur G, Crane C, Parsa AT. 2010. The Role of Microglia in Central Nervous
2006	System Immunity and Glioma Immunology. Journal of clinical neuroscience: official
2007	journal of the Neurosurgical Society of Australasia 17:6–10. DOI:
2008	10.1016/j.jocn.2009.05.006.
2009	Yeung JYT, Canning KJ, Zhu G, Pennefather P, MacDonald JF, Orser BA. 2003. Tonically
2010	Activated GABAA Receptors in Hippocampal Neurons Are High-Affinity, Low-
2011	Conductance Sensors for Extracellular GABA. <i>Molecular Pharmacology</i> 63:2–8. DOI:
2012	10.1124/mol.63.1.2.
2013	Young SG. 1990. Recent progress in understanding apolipoprotein B. Circulation 82:1574—
2014	1594.
2015	Zahr NM, Kaufman KL, Harper CG. 2011. Clinical and pathological features of alcohol-related
2016	brain damage. Nature Reviews Neurology 7:284–294. DOI: 10.1038/nrneurol.2011.42.

2017	Zhang L, Xiong W. 2009. Chapter 12 Modulation of the Cys-Loop Ligand-Gated Ion Channels
2018	by Fatty Acid and Cannabinoids. In: Vitamins & Hormones. Vitamins and Hormones.
2019	Academic Press, 315–335. DOI: 10.1016/S0083-6729(09)81012-1.
2020	Zhu G, Chen J, Liu J, Brunzelle JS, Huang B, Wakeham N, Terzyan S, Li X, Rao Z, Li G, Zhang
2021	XC. 2007. Structure of the APPL1 BAR-PH domain and characterization of its
2022	interaction with Rab5. The EMBO Journal 26:3484–3493. DOI:
2023	10.1038/sj.emboj.7601771.
2024	Zilberter M. 2016. Reality of Inhibitory GABA in Neonatal Brain: Time to Rewrite the
2025	Textbooks? Journal of Neuroscience 36:10242–10244. DOI:
2026	10.1523/JNEUROSCI.2270-16.2016.
2027	Zou J, Crews F. 2010. Induction of innate immune gene expression cascades in brain slice
2028	cultures by ethanol: key role of NF-κB and proinflammatory cytokines. <i>Alcoholism</i> ,
2029	Clinical and Experimental Research 34:777–789. DOI: 10.1111/j.1530-
2030	0277.2010.01150.x.
2031	