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Abstract 

This paper describes a potential new explanation for Alzheimer’s disease (AD), referred to here 

as the lipid leakage model. It proposes that AD is caused by the influx of lipids following the 

breakdown of the blood brain barrier (BBB).  

 

The model argues that a principle role of the BBB is to protect the brain from external lipid 

access. When the BBB is damaged, it allows a mass influx of free fatty acids (FFAs) and lipid-

rich lipoproteins to the brain, which in turn causes neurodegeneration, amyloidosis, tau tangles 

and other AD characteristics. 

 

The model also argues that, whilst β-amyloid causes neurodegeneration, as is widely argued, its 

principal role in the disease lies in damaging the BBB.  It is the external lipids, entering as a 

consequence, that are the primary drivers of neurodegeneration in AD, especially FFAs, which 

stimulate microglia-driven neuroinflammation, inhibit neurogenesis and cause endosomal-

lysosomal abnormalities, all characteristic of AD.  In most cases amyloidosis and tau tangle 

formation lie downstream of these lipids and are in many ways as much symptomatic of the 

disease as causative. 

 

In support of this, it is argued that the pattern of damage caused by the influx of FFAs into the 

brain is likely to resemble the neurodegeneration seen in alcohol-related brain damage (ARBD), 

a disease that shows many similarities to AD, including the areas of the brain it affects.  The fact 
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that anterograde amnesia is far more pronounced in AD than ARBD results from the greater 

hydrophobicity of FFAs, in an anaesthesia-related manner. 

 

Keywords:  Lipids, Alzheimer’s, alcohol-related brain damage, blood-brain barrier, β-

amyloid, tau tangles, amyloidosis, neurodegeneration, neurogenesis, ethanol, anaesthesia 
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A lipid-leakage model for Alzheimer’s Disease 1 

1 Introduction 2 

 3 

Alzheimer's disease is a neurodegenerative disorder first described by the German physician Lois 4 

Alzheimer in 1907. It is a form of dementia characterised by the extensive death of brain cells 5 

and associated with widespread plaques and strongly staining fibrils. 6 

 7 

Whilst these same characteristics, including the distinctive deposits now known as amyloid 8 

plaques and tau tangles, are individually seen in other forms of neurodegeneration, their 9 

occurrence together appears to be unique to AD.  AD has emerged as the most common 10 

dementia, accounting for over half of all dementias, with an especially high prevalence amongst 11 

over-85 year-olds in the developed world (OECD, 2013). Yet, despite more than a century 12 

having elapsed since AD’s first discovery, and, in spite of the extensive suffering and financial 13 

costs caused by the disease, only limited progress has been made in understanding its aetiology, 14 

with an effective treatment yet to be developed.  15 

 16 

This has not been for lack of trying. Amongst a number of promising explanations the 17 

cholinergic hypothesis, which emerged in the 1980s, sought to explain the disease in terms of 18 

reduced synthesis of acetylcholine (ACh) (Contestabile, 2011). But, whilst substantial evidence 19 

points to AD-associated deficits in the cholinergic projection system of the brain (Contestabile, 20 

2011), animal studies indicate that cholinergic damage causes only moderate cognitive deficits 21 
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(Parent & Baxter, 2004), and attempts to increase ACh levels with drugs, including 22 

acetylcholinesterase inhibitors, do not significantly slow disease progression (Contestabile, 23 

2011) (Frölich, 2002).  24 

 25 

In the 1990s an alternative model emerged, the amyloid cascade hypothesis, which postulated 26 

that beta-amyloid (Aβ), a proteolytic product of amyloid precursor protein (APP), is the 27 

fundamental cause of the disease (Pimplikar, 2009). This is still the dominant model for 28 

explaining AD, backed by a substantial body of evidence, not least the fact that Aβ is the main 29 

component of amyloid plaques (Pimplikar, 2009). Moreover, in inherited forms of the disease, 30 

collectively referred to as familial AD (FAD), a number of genes related to normal APP 31 

processing have been found to be abnormal (Wu et al., 2012). Similarly, people with Down's 32 

syndrome (DS) who possess an extra copy of chromosome 21, on which APP resides, typically 33 

go on to develop a form of dementia largely indistinguishable from AD (Nieuwenhuis-Mark, 34 

2009). Any model of AD needs to take into account these facts. 35 

 36 

However, the amyloid cascade hypothesis is not without problems of its own, not least the fact 37 

that a number of studies have shown a poor correlation between amyloid plaque distribution and 38 

disease progression (Pimplikar, 2009) (Bowman & Quinn, 2008) (Terry et al., 1991). In some 39 

instances high plaque levels are completely unassociated with dementia (Aizenstein H et al., 40 

2008).  And twenty years since the hypothesis was first raised, treatments aimed at preventing or 41 

eliminating amyloid plaques have yet to show any significant benefits in preventing dementia 42 

(Pimplikar, 2009) (Sperling et al., 2011). 43 

 44 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27811v1 | CC BY 4.0 Open Access | rec: 20 Jun 2019, publ: 20 Jun 2019



A lipid-leakage model for Alzheimer's Disease 

 

Page 3 
 

 

 

Most studies of AD, proposing Aβ as the causative agent, assume that the Aβ found in cerebral 45 

plaques must originate within the brain. However, this has recently come into question, with 46 

doubts being raised as to whether cerebral production of Aβ is significantly elevated in 47 

individuals with non-inherited, late-onset forms of AD (LOAD) (Takechi et al., 2010a) 48 

(Cummings et al., 1998).  49 

 50 

This has led some researchers to propose that the Aβ deposits may originate from outside the 51 

brain (Takechi et al., 2010a) (Deane et al., 2009). However, the size of the Aβ protein prevents it 52 

travelling across the BBB unaided (Deane et al., 2009). Thus, entry of the Aβ protein into the 53 

brain requires either that specific transporter proteins are available to carry it across, or that the 54 

BBB is disrupted in some way. Whilst such transporters do exist there are also others that 55 

transport Aβ in the opposite direction (Deane et al., 2009) ie out of the brain, as well as 56 

alternative efflux mechanisms (Takechi et al., 2010a) (Deane et al., 2009) (Lam et al., 2001). 57 

Additionally, the brain appears to have more than adequate enzymatic mechanisms for 58 

eradicating excess Aβ arising from faulty transport (Takechi et al., 2010a) (Iwata et al., 2000). 59 

Disruption of the BBB would thus seem to be a more plausible explanation for extravasation of 60 

Aβ into the brain.  61 

 62 

In support of such an explanation, AD is associated with BBB disruption (Popescu et al., 2009) 63 

(Dickstein et al., 2006) (Kook et al., 2012) (Ujiie et al., 2003) (Iadecola & Gorelick, 2003). 64 

Evidence for this includes the fact that AD brains contain proteins that would normally be 65 

excluded by the BBB, most significantly apolipoprotein B, which is found in amyloid plaques 66 

along with Aβ (Takechi et al., 2009) (Namba, Tsuchiya & Ikeda, 1992), as well as other large 67 
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molecular-weight proteins such as albumin, fibrinogen and immunoglobulins (Bowman & 68 

Quinn, 2008) (Ryu & McLarnon, 2009) (Cortes-Canteli & Strickland, 2009) (D’Andrea, 2003). 69 

Also, they stain for Evans Blue, which is normally substantially excluded by the BBB (Ujiie et 70 

al., 2003) (Cortes-Canteli & Strickland, 2009) (Paul, Strickland & Melchor, 2007).  71 

 72 

Similarly, proteins such as S100B, normally only found in the CNS and considered a good 73 

marker of BBB disruption (Marchi et al., 2004), are present in systemic plasma in AD cases 74 

(Takechi et al., 2010c) (Takechi et al., 2010b). Further evidence that BBB disruption may lead to 75 

AD also comes in the form of Chronic Traumatic Encephalopathy (CTE).  This is a progressive 76 

degenerative condition, commonly affecting athletes and others with a history of brain trauma, 77 

which typically shows many similarities with AD, including large-scale neuronal loss, severe 78 

memory deficits, extensive tau tangles and, frequently in advanced cases, diffuse amyloid 79 

plaques (Stein, Alvarez & McKee, 2014) and appears to be strongly associated with BBB 80 

disruption (Doherty et al., 2016) (Farrell et al., 2019)[more references?]. Finally, the many risk 81 

factors for LOAD include ApoE4 (Liu et al., 2013), hypertension (Kivipelto et al., 2002), 82 

diabetes (Schnaider Beeri et al., 2004), smoking (Durazzo et al., 2014) and head injury (Gottlieb, 83 

2000), all of which are associated with vascular damage (Salloway et al., 2002) (Girouard, 2016) 84 

(Prasad et al., 2014) (Mazzone et al., 2010) (Alluri et al., 2015). 85 

 86 

There is also substantial experimental evidence of Aβ directly compromising the BBB (Kook et 87 

al., 2012) (Gosselet et al., 2013) (Jancsó et al., 1998) (Farkas et al., 2003) (Tai et al., 2010),  by 88 

altering tight junction protein distribution and expression in brain endothelial cells (Kook et al., 89 

2012) (Gosselet et al., 2013) (Tai et al., 2010) (Hartz et al., 2012) (Ohtsuki et al., 2007), 90 
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increased matrix metalloproteinase expression (Hartz et al., 2012), oxidative stress (Thomas et 91 

al., 1997), increased apoptosis (Fossati, Ghiso & Rostagno, 2012) (Blanc et al., 1997) and  92 

dysregulated calcium homoeostasis (Kook et al., 2012) (Blanc et al., 1997). Finally, there is 93 

indirect evidence that Aβ can damage the BBB, for example, in cases of cerebral amyloid 94 

angiopathy (CAA) (Hartz et al., 2012) (Fossati, Ghiso & Rostagno, 2012) (Carrano et al., 2011) 95 

(Magaki et al., 2018).  96 

 97 

The simplest interpretation of these findings is that Aβ has a dual role in AD progression, first 98 

disrupting the BBB, and then causing neurodegeneration by deposition in the brain. But, whilst 99 

there is abundant evidence that Aβ is toxic to the brain (Pimplikar, 2009), so are many of the 100 

other molecules that a disrupted BBB could be expected to let through [such as?]. If Aβ does 101 

play a major role in disrupting the BBB then any proposed model of AD must take into account 102 

what role the intact BBB plays in the human body, particularly with regard to the brain. 103 

 104 

Unfortunately, nearly a century after the BBB was first discovered, its full role is still a matter of 105 

conjecture. What was considered to be a primary function, ensuring “immune privilege”, is now 106 

known to be far more limited and nuanced than once thought (Carson et al., 2006) (Harris et al., 107 

2014). Nevertheless, it would appear from its unique architecture that the BBB’s main purpose is 108 

to exclude certain cells and molecules from the brain. This architecture is found hardly anywhere 109 

else in the human body and includes tight junctions between endothelial cells, together with 110 

numerous efflux transporters (Carson et al., 2006) (Rubin & Staddon, 1999).  111 

 112 
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One class of molecules that the BBB excludes or, certainly, substantially limits, is lipids. 113 

Evidence (outlined in 2.4-2.5) suggests that excess lipid influx, resulting from BBB compromise, 114 

or otherwise, will damage the brain in at least two ways: (a) neuroinflammation and (b) 115 

disruption of neurogenesis, both characteristics that have been associated with AD [other 116 

references?]. Other characteristics, such as endosomal-lysosomal pathway disruption, 117 

amyloidosis and tau tangle formation can also be explained by lipid influx in the form of external 118 

lipoproteins (2.6). These are rich in cholesterol, which has also been linked with AD (Simons et 119 

al., 2001) (Wolozin, 2004) (Xiong et al., 2008a), particularly in connection with amyloidosis and 120 

tau tangles. 121 

 122 

In support of this, a recent study has reported the presence of lipids, including long-chained 123 

triglycerides, within fibrillar Aβ plaques (Kiskis et al., 2015), consistent with the evidence, 124 

previously alluded to, of the presence of apolipoprotein B within amyloid plaques. 125 

 126 

Based on the above evidence, the lipid-leakage model argues that breakdown of the BBB, by Aβ 127 

or other means, and the subsequent influx of lipids, leads to lipid-driven neurodegeneration and 128 

dysfunction, including the long-term form known as Alzheimer's disease.  According to this 129 

hypothesis, it is peripheral lipids, not Aβ, that primarily drive AD. 130 

 131 

One reason for believing this is the similarity between the overall structural pattern of 132 

neurodegeneration seen in AD and that seen in ARBD, resulting from chronic exposure of the 133 

brain to ethanol. Ethanol passes relatively easily through the BBB and, for the reasons argued 134 

below, can be expected to have similar overall effects on the brain as exposure to one major class 135 
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of lipids, FFAs, but without the amyloid plaques, tau tangles and endosomal-lysosomal 136 

abnormalities seen in AD. (See 2.4-2.5.) 137 

 138 

This suggests that further study of ARBD may yield insights into the aetiology of AD. One area 139 

of potential overlap emerges from extensive evidence that the detrimental effects observed in the 140 

brain from chronic alcohol exposure are the result not only of neurodegeneration but also of 141 

reduced levels of neurogenesis (Fadda & Rossetti, 1998a) (Crews, 2008) (Morris et al., 2010) 142 

(Nixon, 2006). 143 

 144 

Recent studies also demonstrate that the neurodegenerative effects of chronic alcohol abuse may 145 

be reversible (Pfefferbaum et al., 1997) (Crews & Nixon, 2009b), following the cessation of 146 

ethanol treatment. This could mean that if neuroinflammation and neurogenetic inhibition could 147 

be ameliorated then the neurodegenerative effects of AD may also be reversible, giving hope of 148 

finding effective treatments for the disease.  149 

2 Evidence and explanation of the model 150 

 151 

It follows from the above, that a full appreciation of the lipid-leakage model requires an 152 

understanding of the similarities between AD and ARBD. 153 

 154 

2.1 Similarities between AD & ARBD 155 

 156 
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That AD and ARBD may share common elements in their aetiology is apparent from 157 

comparisons of brains of individuals with either disease, including direct visual comparisons (see 158 

Figure 1), and whole brain MRI scans (Figure 2), (Sullivan, Adron Harris & Pfefferbaum) 159 

(Teipel et al., 2015) (Zahr, Kaufman & Harper, 2011) (Fox et al., 2001). 160 

 161 

 

Image awaiting copyright owner’s permission. 

 162 

Figure 1.  Visual comparisons of the brains of (A) normal elderly person; (B) a person with AD 163 

and (C) a chronic alcoholic.  Source [references?]. 164 

 165 

 

Image awaiting copyright owner’s permission. 

 

 166 

Figure 2. Coronal plane MRI comparison between brains of (a) a normal person and (b) a typical AD case (Duara et al., 2008) 167 
and that of (c) a patient with alcohol-related brain damage (“Alcoholic dementia, MRI scan”). Outlined areas in (a) & (b) 168 
correspond to hippocampus (outlined in red); entorhinal cortex (blue) and perirhinal cortex (green). Source: [references?]. 169 

 170 

2.1.1 Brain shrinkage 171 

 172 

Such scans typically reveal pronounced similarities between the two diseases in their pattern of 173 

neurodegeneration, including evidence of brain shrinkage (Pfefferbaum et al., 1997) (Hua et al., 174 

2008) (Rando et al., 2011) (Thompson et al., 2007), loss of cortical folding (involving widening 175 

of sulci and thinning of gyri) (Pfefferbaum et al., 1997) (Hua et al., 2008) (Harper & Kril, 1985) 176 
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(“Brain With Alzheimer’s Disease”) (de la Monte SM, 1988), enlargement of ventricles 177 

(Pfefferbaum et al., 1997) (Hua et al., 2008) (“Brain With Alzheimer’s Disease”) (de la Monte 178 

SM, 1988) (especially the lateral ventricles), together with shrinkage of the hippocampus and 179 

entorhinal cortex (Duara et al., 2008) (Hua et al., 2008)  (“Brain With Alzheimer’s Disease”) 180 

(White, Matthews & Best, 2000) (Beresford et al., 2006) (Fadda & Rossetti, 1998b) and  181 

thinning of the corpus callosum (Estruch et al., 1997) (Frederiksen et al., 2011).  182 

 183 

On their own, such similarities could be dismissed as the effects of general brain shrinkage and 184 

other generalised damage. However, the similarities appear to run much deeper than this, with 185 

many of the same regions of the brain principally affected in both cases, especially early on in 186 

the disease process. In particular, both AD and ARBD appear to be "frontal" diseases, as 187 

suggested by physiological, behavioural and sensory studies (“The Neurotoxicity of Alcohol  188 

(Chapter 2, Alcohol and the Brain: Neuroscience and Neurobehaviour)”) (Hall et al., 2008a) 189 

(Gallagher & Colombo, 1995) [more references?].  190 

 191 

2.1.2 Basal forebrain damage in AD and ARBD 192 

 193 

Measurements of brain volume reveal both diseases to be associated with significant shrinkage 194 

in the frontal region of the brain, particularly the prefrontal cortex and basal forebrain regions 195 

(Pfefferbaum et al., 1997) (Fadda & Rossetti, 1998b) (Hall et al., 2008b) (Teipel et al., 2005) 196 

(Grodin et al., 2013), including the cholinergic basal forebrain projection system  (Fadda & 197 

Rossetti, 1998b) (Teipel et al., 2005)  (Muir, 1997) (Arendt et al., 1989a) (Miki et al., 2014). 198 
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This is backed up by studies in animal models, which suggest that chronic exposure of the brain 199 

to ethanol causes a specific pattern of degeneration, including a marked loss of  cholinergic 200 

neurons, accompanied by a reduction in acetylcholine and choline acetyltransferase activity 201 

(Fadda & Rossetti, 1998b) (Arendt et al., 1989a) (Miki et al., 2014) (Floyd et al., January) 202 

(Mufson et al., 2003). Again, this is very similar to what is seen in AD (Muir, 1997) (Baskin et 203 

al., 1999) [, which is, indeed, why the cholinergic hypothesis was proposed in the 1980s?]. 204 

 205 

Related behavioural evidence pointing towards frontal damage as a factor in both diseases 206 

includes personality changes [references?], disinhibition (Ball et al., 2008a) (Crews & Boettiger, 207 

2009), confabulation (Attali et al., 2009) (Tallberg & Almkvist, 2001) (Maurage et al., 2011) 208 

(Brun & Andersson, 2001)and a noticeable tendency towards perseverative behaviour. This last 209 

attribute is readily apparent in individuals with AD (Serna, Pigot & Rialle, 2007) (Nagahama et 210 

al., 2003), while studies in adult rats chronically exposed to ethanol (but given a nutritionally 211 

adequate diet) point towards a similar pattern of behavioural and neurological deficit (Obernier 212 

et al., 2002a) [references?], confirming findings in humans (Fadda & Rossetti, 1998b) (Oscar-213 

Berman et al., 1997). Possibly such behaviour involves deficits in the dopamine system 214 

[references?], principally centred in the frontal lobe, as well as of the cholinergic system. But 215 

certainly it is known that various forms of motor perseveration and similar behavioural inertias 216 

can be clearly associated with damage to the frontal lobes (Luria, 1965) [more references?]. 217 

 218 

There is also very strong experimental evidence suggesting that, from comparatively early on, 219 

both AD and ARBD are associated with olfactory deficits (Maurage et al., 2011) (Mesholam RI 220 

et al., 1998) (Collins, Corso & Neafsey, 1996) (Doty, 2005) (Velayudhan et al., 2013a) 221 
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(Ditraglia et al., 1991) (Christen-Zaech et al., 2003) (Rupp et al., 2006), although not always 222 

perceptible to demented patients (Doty, Reyes & Gregor, 1987).  [(This may reflect a general 223 

lack of olfactory awareness in humans and its much-diminished role compared to other 224 

mammals (Sela & Sobel, 2010).)]  These are also very likely to involve damage to the basal 225 

forebrain, including the olfactory bulb (Collins, Corso & Neafsey, 1996) (Christen-Zaech et al., 226 

2003) (Rupp et al., 2006) (Ohm & Braak, 1987) (Obernier et al., 2002b) and cholinergic systems 227 

(D’Souza & Vijayaraghavan, 2014) (Arendt et al., 1989b) (Mundiñano et al., 2013) (“Smell and 228 

the Degenerating Brain | The Scientist Magazine®,” 2013), amongst others. 229 

 230 

More generally, both forms of dementia are associated with deficits in executive functions (“The 231 

Neurotoxicity of Alcohol  (Chapter 2, Alcohol and the Brain: Neuroscience and 232 

Neurobehaviour)”) (Rupp et al., 2006) (Ball et al., 2008b) (Weiss et al., 2014) (Marshall et al., 233 

2011) (Houston et al., 2014) (Duarte et al., 2006), such as attentional and inhibitory control, 234 

working memory and reasoning -  i.e. those faculties which allow problem-solving, planning, 235 

self-control and the attainment of goals. Clearly there are difficulties separating the immediate 236 

effects of drinking alcohol from the long-term neurodegenerative effects of alcoholism, as well 237 

as questions as to what degree executive function is under the control of the frontal region. 238 

Nevertheless, taken collectively, the evidence presented here points to a strong involvement of 239 

the frontal lobe degeneration in both ARBD and AD. 240 

 241 

2.1.3 Medial temporal lobe damage in AD and ARBD 242 

 243 
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As well as the basal forebrain, the medial temporal lobe is also found to be significantly 244 

atrophied in both ARBD and AD (Duara et al., 2008) (“Brain With Alzheimer’s Disease”) 245 

(Fadda & Rossetti, 1998b) (Jobst et al., 1992) (Bengochea & Gonzalo, 1990) (Korf et al., 2004) 246 

(Vetreno, Hall & Savage, 2011). This is most obvious in the hippocampus but is also in 247 

immediately adjoining regions, such as the entorhinal cortex and perirhinal cortex (Traissard et 248 

al., 2006) (Velayudhan et al., 2013b) (Sullivan & Pfefferbaum, 2014) (Augustinack et al., 2013) 249 

(Jaatinen & Rintala, 2008) (Hirni et al., 2016).  250 

 251 

Given the well-established link between the hippocampus and memory formation, it is 252 

unsurprising, therefore, that AD is associated with anterograde amnesia (AA), including severe 253 

deficits in spatial memory [references?]. However, such deficits in ARBD are less clear-cut. 254 

Most examples of AA in alcoholics are associated with Korsakoff Syndrome [references?], i.e. 255 

assumed to be the result of long-term vitamin B1 deficiency rather than from chronic alcohol, 256 

even if this assumption may not always be merited, given the tendency to diagnose the 257 

Syndrome primarily by symptoms. Moreover, chronic alcohol-associated AA appears to be 258 

reversible, unlike AA in Alzheimer’s. Nevertheless, there is sufficient evidence in animal models 259 

to suggest that both acute and chronic alcohol exposure lead to pronounced deficits in spatial 260 

memory (Cippitelli et al., 2010) (García-Moreno & Cimadevilla, 2012) (Santín et al., 2000) 261 

(Assunção et al., 2007), evidence that appears to be mirrored in humans (Bowden & McCarter, 262 

1993) [more references?]. 263 

 264 

Overall, anterograde amnesia (AA) predominates in both forms of dementia, with retrograde 265 

amnesia tending to emerge later in disease progression (Weintraub, Wicklund & Salmon, 2012) 266 
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[more references?]. This would seem to reinforce the overall pattern of degeneration, in which 267 

AD and ARBD are both principally characterised by atrophy of the frontal and medial temporal 268 

regions, with generalised neocortical involvement emerging only later [references?].  One 269 

explanation for this is that both the frontal and medial temporal regions have a higher proportion 270 

of pyramidal cells, larger neurons that are thought to be more vulnerable to various stresses  271 

(Morrison & Hof, 2002) (Hof, Morrison & Cox, 1990) [more references?]. Whatever the reason, 272 

the similarities between AD and ARBD listed above would seem to provide the most obvious 273 

reason binge drinking is associated with a higher risk of developing Alzheimer’s and related 274 

dementias (“Binge Drinking in Midlife and Dementia Risk”) [more references?]. 275 

 276 

2.1.4 Summary of similarities between AD and ARBD 277 

 278 

In summary AD and ARBD show a strikingly similar pattern of neurological damage, 279 

particularly evident in the basal forebrain and hippocampal region of the medial temporal region, 280 

accompanied by marked degeneration in the cholinergic projection system. In keeping with this 281 

pattern of damage both AD and ARBD sufferers show deficits in executive function, olfaction 282 

and anterograde memory (especially spatial memory) formation and a tendency towards 283 

perseverative behaviour. 284 

 285 

Taken together, these similarities would seem more than sufficient to warrant further 286 

investigation. Yet it is hard to explain the mechanism by which long-term exposure of the brain 287 

to two such different molecules, ethanol and Aβ, vastly different in size and sharing no obvious 288 
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chemical or physical properties in common, should lead to such a similarly distinctive pattern of 289 

damage. Rather, it suggests that AD could be caused by molecules whose effects are likely to be 290 

more similar to those of ethanol. One such candidate is FFAs which, for reasons discussed later, 291 

share some crucial properties of ethanol and other aliphatic 1-alcohols (including fatty alcohols). 292 

However, in order to appreciate how FFAs can become a major driver of AD, one must first 293 

understand the differences between lipid metabolism either side of the BBB. 294 

 295 

2.2 Differences between lipid metabolism on either side of the BBB 296 

 297 

Whatever the exact biological role of the BBB may be, it is clear that many aspects of lipid 298 

metabolism and transport greatly differ either side of it. This is most apparent in the case of fatty 299 

acids (FAs) and cholesterol. 300 

 301 

2.2.1 Fatty acid metabolism 302 

 303 

For efficient transport within plasma, the vast majority of FAs, being highly hydrophobic, must 304 

travel within lipoproteins or must be bound to the protein serum albumin to improve solubility 305 

(Vance & Vance, 2008) (van der Vusse, 2009) .  306 

 307 

Immediately after eating, dietary FAs, bound to glycerol as triacylglycerol esters (TAGs) and 308 

transported within the class of lipoproteins known as chylomicrons, constitute a major 309 

proportion of the plasma transport pool (Vance & Vance, 2008) (Rang, 2012). At the same time, 310 
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high blood glucose levels associated with satiety lead to hepatic neogenesis of FAs and glycerol, 311 

with the resulting TAGs being transported in the blood within Very Low Density Lipoproteins 312 

(VLDLs) (Vance & Vance, 2008) (Rang, 2012). During subsequent plasma transport most of the 313 

TAGs within chylomicrons and VLDLs are taken up by tissues, principally adipocytes and 314 

muscle cells [references?].   315 

 316 

The chylomicrons and VLDLs are relatively large (typically within a range of 30-80nm and 100-317 

1000nm, respectively (Vance & Vance, 2008) (Rang, 2012)) and lipid-rich by virtue of their 318 

association with ApoB isoforms. ApoB is synthesised only in the liver and in enterocytes and 319 

thus is normally unavailable to the CNS (Vance & Vance, 2008)  (Young, 1990). Such 320 

lipoprotein-mediated FA transport appears to allow only very restricted access to the postnatal 321 

brain across the BBB, largely composed, as it is, of endothelial cells, held together by tight 322 

junctions and lacking in fenestrations and transcytotic vesicles (Carson et al., 2006) (Rubin & 323 

Staddon, 1999) (Orth & Bellosta, 2012) (Elliott, Weickert & Garner, 2010) (Björkhem & 324 

Meaney, 2004) (Nag, 2003).  325 

 326 

During the fasting state, adipocytes release stored FFAs directly back into the bloodstream, with 327 

the majority being subsequently bound to serum albumin (Vance & Vance, 2008) (van der 328 

Vusse, 2009). Because serum albumin is created almost exclusively in the liver (van der Vusse, 329 

2009) (Ballmer, 2001) (Schiff, Maddrey & Sorrell, 2011) and cannot pass readily through the 330 

BBB (Nag, 2003) (Banks, 2008) (Banks, 2006), it has until recently been assumed that albumin-331 

bound FFAs must also be largely excluded. Support for this hypothesis comes from the 332 

widespread expression within BBB endothelial cells of efflux pumps, such as P-glycoprotein, 333 
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which have hydrophobic molecules amongst their principal ligands (Rubin & Staddon, 1999). 334 

Together, such features would appear to provide an obvious reason why, almost uniquely 335 

amongst organs, the CNS does not rely on the external supply of FAs (especially in albumin-336 

bound form) for its energy and other needs. Instead, it appears to rely almost totally on ketone 337 

bodies (breakdown products of FAs, almost solely produced in the liver [references?]),  both 338 

during maturation of neurons and glial cells in young age, and when glucose levels alone are 339 

insufficient, such as during fasting (Laffel & Lori Laffel, 1999) (Schönfeld & Reiser, 2013).  340 

 341 

Not all experimental evidence supports this hypothesis (Mitchell & Hatch, 2011).  For instance, 342 

palmitic acid and arachidonic acid have been observed to pass into brain microvessels from 343 

plasma in rats (Williams et al., 1997), as have octanoic and myristic acids (Spector, 1988). This 344 

has led some observers to question the extent of fatty acid exclusion from the brain by the BBB. 345 

However, such transport proteins as have been identified appear to be limited to specific areas of 346 

the brain and development stages, most obviously in the case of fatty acid transport proteins 347 

(Mitchell & Hatch, 2011) [more references?].  Meanwhile, diffusion, while potentially providing 348 

a generalised means of transport, is likely to be too slow to allow substantial FA provision to the 349 

brain, given the large size of FA molecules (Dalvi et al., 2014) [more references?].   350 

 351 

2.2.2 Cholesterol metabolism 352 

 353 

Numerous studies have shown that, except in very early foetal development, almost all 354 

cholesterol in the CNS is of local origin, relying on endogenous de novo biosynthesis rather than 355 
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external, lipoprotein-mediated provision (Orth & Bellosta, 2012) (Elliott, Weickert & Garner, 356 

2010) (Björkhem & Meaney, 2004) (Dietschy & Turley, 2004). This appears to be true for a 357 

wide range of animals, including birds and mammals, with much of cholesterol production for 358 

neuronal consumption being delegated to local astrocytes (Elliott, Weickert & Garner, 2010) 359 

(Dietschy & Turley, 2004) (Pfrieger, 2003).  360 

 361 

Moreover, cholesterol turnover in the mature CNS is very low, typically only around 5% of the 362 

turnover seen in the rest of the body (Orth & Bellosta, 2012) (Björkhem & Meaney, 2004) 363 

(Dietschy & Turley, 2004). In keeping with this, the principal apolipoproteins expressed in the 364 

CNS (including Apo E, D & J (Elliott, Weickert & Garner, 2010) (Danik et al., 1999)) associate 365 

into lipoprotein particles that are relatively small (typically less than 20nm) and lipid poor, 366 

containing modest amounts of cholesterol and other lipids (Vance & Vance, 2008) [more 367 

references?].  Such CNS lipoprotein particles tend to resemble High-Density Lipoproteins 368 

(HDL) (Rang, 2012)  much more than the larger ApoB-associated lipoproteins that predominate 369 

outside the CNS (Elliott, Weickert & Garner, 2010) [more references?]. 370 

 371 

In the rest of the body (and thus on the other side of the BBB) a large proportion of cholesterol is 372 

either of dietary origin or else the result of neogenesis in the liver (Vance & Vance, 2008) (Rang, 373 

2012). From there much of it is transported in the same large, lipid-rich, ApoB-containing 374 

lipoproteins (i.e. chylomicrons and VLDLs) that also transport dietary and liver-derived FAs 375 

(Vance & Vance, 2008) (Rang, 2012) (Young, 1990). Thus, for reasons of size (along with the 376 

other reasons explained above), much cholesterol of non-CNS origin is unable to cross the BBB 377 
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(Orth & Bellosta, 2012) (Elliott, Weickert & Garner, 2010) (Björkhem & Meaney, 2004) (Kay et 378 

al., 2003). 379 

 380 

2.2.3 Overall differences in lipid transport either side of the BBB 381 

 382 

Certainly, from birth onwards (Saunders et al., 1999), the BBB separates two compartments with 383 

very different lipid systems (Dietschy & Turley, 2004) (Pardridge & Mietus, 1980).  Compared 384 

to the rest of the body the mature CNS compartment is distinguished by a much lower circulation 385 

of lipids, with minimal external lipid supplementation and a set of lipoproteins that are 386 

noticeably smaller and less lipid-rich [references?]. Much of this difference can be accounted for 387 

by the BBB, and by the fact that ApoB is not produced in the brain. 388 

 389 

Given that this distinction appears to have first emerged comparatively early in vertebrate 390 

evolution (Bundgaard & Abbott, 2008) [more references?], it seems plausible that serious 391 

disruption to the BBB will have lipid-related consequences. This can be inferred from the fact 392 

that the mature brain compartment has evolved for so long to function in an environment low in 393 

circulating lipids compared with the rest of the body. And, given the relative volumes of the two 394 

compartments, it seems likely the brain will be the most vulnerable to lipid incursion if they are 395 

no longer separated by the BBB.  396 

 397 

2.3 The causes of BBB disruption in the lipid-leakage model 398 

 399 
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Clearly, an explanation of how the BBB becomes disrupted in AD is central to the lipid-leakage 400 

model. It is generally established that the BBB slowly degrades with age (Popescu et al., 2009) 401 

(Farrall & Wardlaw, 2009), providing a simple reason, according to the model, why LOAD 402 

incidence is also closely correlated with age. But any model with such disruption at its centre 403 

needs to account for the many inherited and non-inherited risk factors that accelerate the onset of 404 

AD. 405 

 406 

In FAD this can accounted for by Aβ, which, as explained earlier, is known to impair BBB 407 

integrity (Takechi et al., 2010a) (Thomas et al., 1997) (Su et al., 1999) (Marco & Skaper, 2006), 408 

especially in association with the ApoE4 genotype (Alonzo et al., 1998) [more references?].  409 

Numerous studies show that ApoE protects the BBB, with its absence leading to progressive 410 

BBB leakage, in excess of what is seen as a result of normal ageing (Hafezi-Moghadam, Thomas 411 

& Wagner, 2007) (Methia et al., 2001) (Mulder et al., 2001).  Compared to the other ApoE 412 

isoforms, however, ApoE4 is associated with impaired BBB function, particularly involving 413 

tight junctions, whose integrity is critical to the BBB’s capacity to exclude a wide range of 414 

molecules (Salloway et al., 2002) (Nishitsuji et al., 2011) (Bell et al., 2012).  415 

 416 

However, recent studies have revealed that Aβ has an important function as a regulatory 417 

apolipoprotein, being highly expressed in both the liver and small intestine, and associated with 418 

triglyceride-rich lipoproteins of similar origin (Takechi et al., 2010a) (Mamo et al., 2008) 419 

(Galloway et al., 2007). In absorptive enterocytes, Aβ is seen to collocate with ApoB48, forming 420 

chylomicrons, with enterocytic levels of Aβ and plasma levels of Aβ-associated chylomicrons 421 
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both increasing in response to a diet high in saturated fats (Galloway et al., 2007) (Pallebage-422 

Gamarallage et al., 2010).  423 

 424 

In a standard transgenic mouse model of AD in which Aβ is overproduced, disease progression 425 

and onset were seen to be strongly correlated with rates of secretion into the blood of TAG-rich, 426 

Aβ-associated lipoproteins, and with their subsequent plasma levels (Takechi et al., 2010a). Such 427 

overproduction, whether resulting from dietary causes or from direct Aβ over-expression, leads 428 

to BBB disruption (Takechi et al., 2010a) (Mamo et al., 2008) (Pallebage-Gamarallage et al., 429 

2010). 430 

 431 

This explains, amongst other things, why amyloid plaques in human brains show 432 

immunoreactivity for ApoB, similar to that seen in the brains of AD mouse models (Takechi et 433 

al., 2010a) (Namba, Tsuchiya & Ikeda, 1992). For the reasons stated earlier, such ApoB 434 

deposition is only possible if the BBB has been disrupted in some way, as well as being 435 

consistent with the premise that invading, lipid-rich, lipoproteins are primary actors in 436 

endosomal pathology (as described in 2.6.2) and amyloid plaque formation. 437 

 438 

This suggests that the aetiology of both familial and late-onset forms of AD could be linked 439 

through excess levels of TAG-rich chylomicrons.  In the former case this would primarily result 440 

from over-production of Aβ, whilst in the latter case it would primarily result from dietary 441 

causes. This in turn would lead, in both cases, to BBB disruption (which can be exacerbated by 442 

other factors, as explained above) and to the characteristic neurodegenerative effects outlined 443 
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below.  However, evidence for such chylomicron excess as a general characteristic of AD is 444 

limited at present and is not a requirement of the model. 445 

 446 

2.4 Likely neuroinflammatory consequences of lipid influx to the brain 447 

 448 

2.4.1 Neuroinflammation 449 

 450 

Extensive research has established that neuroinflammation is an important cause of ethanol-451 

induced neurodegeneration (Crews, 2008) (Crews) [more references?]  and that microglia are 452 

central agents of such inflammation (Crews, 2008) [more references?]. This central role is 453 

perhaps unsurprising, given that the “immune-privileged” status conferred on the brain by the 454 

BBB leaves microglia as the primary immune cell (Kaur et al., 2010) (Yang et al., 2010), a role 455 

not seen as a rule in macrophages in the rest of the body. Their ability to perform this role seems 456 

to depend in large part on being abnormally sensitive to a wide range of ligands (Yang et al., 457 

2010) (Dissing-Olesen et al., 2007) (Gehrmann, Matsumoto & Kreutzberg, 1995), and this, in 458 

turn, helps to explain why chronic ethanol, largely unobstructed by the BBB, causes such 459 

extensive inflammatory damage to the brain over time (Fadda & Rossetti, 1998b) [more 460 

references?]. Additionally, the mechanism through which this occurs suggests that FAs, 461 

provided they could pass through the BBB in quantity, would have similar inflammatory effects, 462 

since both are known to powerfully activate the same critical receptor. 463 

 464 
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Ethanol activation of microglia (Crews, 2008), is accompanied by upregulation of the 465 

transcription factor NF-κB (Zou & Crews, 2010) (Alfonso-Loeches et al., 2010),  and other 466 

macromolecules known to be involved in inflammation and in the immune response. The 467 

evidence suggests that toll-like receptors, particularly TLR4, a receptor that binds bacterial 468 

lipopolysaccharide (LPS), appear to be central to such activation and the subsequent 469 

neuroinflammation (Alfonso-Loeches et al., 2010) (Fernandez-Lizarbe, Montesinos & Guerri, 470 

2013). 471 

 472 

If TLR4 is central to ethanol-induced neuroinflammation then there seems every reason to think 473 

that FFAs entering the brain would have similar neuroinflammatory effects. Saturated (but not, 474 

apparently, unsaturated) FAs are known to activate TLR4 in macrophages, leading in turn to 475 

activation of NF-κB and the other pro-inflammatory molecules referred to earlier (Wang et al., 476 

2012) (Chait & Kim, 2010). And TLR4 activation in adipocytes by saturated FAs (and perhaps 477 

by some unsaturated FAs) is an essential step in lipid-induced diabetes mellitus (Chait & Kim, 478 

2010) (Shi et al., 2006), which is now thought to be substantially inflammatory in nature 479 

[references?]. In support of this, knockdown or ablation of TLR4 has been shown to inhibit both 480 

FFA-induced and ethanol-induced inflammation (Alfonso-Loeches et al., 2010) (Wang et al., 481 

2012) (Shi et al., 2006) [more references?] . 482 

 483 

Given the much greater overall sensitivity of microglia to pathological stimuli  (compared to 484 

other macrophages) (Rock et al., 2004) [more references?], one would expect activation by both 485 

ethanol and FFAs to result in far more vigorous inflammatory activity than seen in other parts of 486 

the body. And, whilst the relative affinities of ethanol and FFAs for TLR4 have yet to be 487 
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determined, the fact that saturated fatty acyl groups are known to be crucial to TLR4 recognition 488 

of LPS (TLR4’s principal pathogenic ligand) (Hwang, 2001) suggests that FFAs should have a 489 

substantially higher affinity than ethanol for TLR4. Thus the relatively low levels of FFAs seen 490 

in plasma (generally agreed to fall within an average range of 0.3-0.6 mM [references?]) should 491 

be sufficient to generate a steady level of neuroinflammation, following major BBB insult, 492 

especially if they are accompanied by pathogen-associated LPS, as seen in ethanol-induced liver 493 

injury (Nagy, 2003). Thus it may be this, rather than TLR4 stimulation by amyloid (Walter et al., 494 

2007), that is the primary driver of microglial-based neuroinflammation in LOAD. 495 

 496 

2.4.2 Inhibition of neurogenesis 497 

 498 

Ethanol-induced neuroinflammation has also been linked to inhibition of neurogenesis (Crews & 499 

Nixon, 2009a) [more references?], with many studies suggesting that such neurogenetic deficits 500 

are almost as important a factor as neuroinflammation in ethanol-mediated brain degeneration 501 

(Crews, 2008) [more references?] . Here too, TLR4 is likely to have a prime inhibitory role 502 

(Barak, Feldman & Okun, 2014) [more references?], diminishing proliferation of adult neuronal 503 

progenitor cells (NPCs) and restricting neuronal differentiation from NPCs. Such inhibition 504 

would obviously be most apparent in the main neurogenic niches, i.e. the subgranular and 505 

subventricular zones, which provide new interneurons to (respectively) the hippocampus and the 506 

olfactory bulb [references?]. This could explain the deficiencies in learning and olfaction 507 

common to both AD and ARBD. 508 

 509 
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Furthermore, current evidence indicates that the overall level of neurodegeneration is determined 510 

almost as much by the relentlessness of the ethanol assault as by the concentrations involved 511 

(Crews, 2008) (Crews & Nixon, 2009a) (Nixon & Crews, 2002). Thus, one can reasonably infer 512 

that constant exposure of the brain to plasma levels of FFAs is likely to overwhelm the brain’s 513 

capacity to recover, especially in the elderly. Such a conclusion is further supported by evidence 514 

that inhibition of neurogenesis, by both ethanol and FFAs, does not need to rely on the TLR4 515 

receptor alone, and may, in fact, depend more on GABAergic effects, as explained in the next 516 

section. 517 

 518 

2.5 GABAergic effects 519 

 520 

Recent research has indicated a possible role for the inhibitory neurotransmitter gamma-521 

aminobutyric acid (GABA) in the development of AD (Wu et al., 2014) (Rissman & Mobley, 522 

2011) (Jo et al., 2014), with a number of possible mechanisms being suggested. One such 523 

mechanism, GABA-induced tonic inhibition within the hippocampus, provides an obvious 524 

explanation of why AD is characteristically associated with AA. However, the proposed source 525 

of this excess GABA within hippocampal-resident reactive astrocytes, does not have much 526 

support in the literature, either for AD or ARBD. 527 

 528 

The lipid-leakage model provides an alternative mechanism, extending beyond tonic inhibition, 529 

and accounting for the coexistence of AA in AD and ARBD, as well as other similarities, 530 

including similar patterns of neurodegeneration within two major neurogenic niches, the SGZ 531 
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and SVZ. Underlying this common mechanism is the proven affinity of ethanol, and likely 532 

affinity of FFAs, for GABAA receptors (GABAARs), as well as the recently-discovered role of 533 

high-affinity extrasynaptic GABAARs in both tonic inhibition and anaesthesia-associated 534 

amnesia. 535 

 536 

In the 1950s onward, Samson and Dahl and other groups showed that injection of FFAs induced 537 

light anaesthesia in a range of mammals  (Samson Jr, Dahl & Dahl, 1956) (White & Samson, 538 

1956) (Matsuzaki & Takagi, 1967) (McCandless, 1985). Anaesthetic potency increases (up to an 539 

undetermined cut-off) with FFA chain length (and thus hydrophobicity), in line with Meyer-540 

Overton (Samson Jr, Dahl & Dahl, 1956) (White & Samson, 1956) (Dahl, 1968) (Perlman & 541 

Goldstein, 1984), falling within the low millimolar range (expressed both as moles per litre and 542 

moles per kilogram of body weight) and showing similar potencies to structurally comparable 1-543 

alcohols (including ethanol) (Alifimoff, Firestone & Miller, 1989) , as well as to alkanes (Hau, 544 

Connell & Richardson, 2002) and aldehydes (Deneer, Seinen & Hermens, 1988).  545 

 546 

Given the general correlation between hydrophobicity and anaesthetic potency first described by 547 

Meyer-Overton (Evers & Crowder, 2009), it would perhaps be surprising if fatty acids did not 548 

show similar anaesthetic potencies to structurally very similar fatty alcohols (Evers & Crowder, 549 

2009) (Ueda & Suzuki, 1998) (Matsuki et al., 1999) (Frangopol, 2001), nor, given the 550 

established anaesthetic properties of various steroids (Kappas & Palmer, 1963) (Belelli & 551 

Lambert, 2005), should it be a surprise that other lipids might display similar properties.  552 

 553 
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The immediate significance of lipids’ anaesthetic properties to dementia lies in the fact that, at 554 

concentrations well below those needed for clinical anaesthesia, the vast majority of anaesthetic 555 

agents are known to cause AA (Evers & Crowder, 2009) (Orser, 2007) (Bonin & Orser, 2008a). 556 

Such low-level anesthesia-induced AA is now known to involve extrasynaptic GABAARs 557 

(Orser, 2007) (Bonin & Orser, 2008b) whose subunit composition (including either α5 or δ 558 

subunits) gives them sufficient sensitivity to respond to low levels of ambient GABA (Brickley 559 

& Mody, 2012). It is the resulting low-level inhibitory currents, termed “tonic inhibition”, which 560 

is associated with AA (Nutt et al., 2007) (Cheng et al., 2006) (Sikka, Beaman & Street, 2015). 561 

(By contrast lower-affinity synaptic GABAARs, with different subunit compositions, respond 562 

only to the higher concentrations of GABA released within their associated synapses, with the 563 

resulting phasic inhibition causing the other anaesthetic effects (Evers & Crowder, 2009) [more 564 

references?], including analgesia, immobility and unconsciousness.) In support of this, 565 

pharmacological and genetic knockdown of extrasynaptic α5- and δ-containing GABAARs in 566 

mice has been shown to improve performance on learning and memory tasks (Collinson et al., 567 

2002) (Clarkson et al., 2010) (Shen et al., 2010), possibly by lowering the threshold for long-568 

term potentiation (Martin et al., 2010) (Whissell et al., 2013) (Liu et al., 2010). 569 

 570 

The reason for all this is that GABAARs have associated ion channels, which become permeable 571 

to chloride (and, to a lesser extent, HCO3) ions, in response to GABA ligation (Li & Xu, 2008) 572 

[more references?]. Upon such activation, chloride ions flow through these GABAAR channels 573 

in a direction determined by their electrochemical gradient.  Since mature neurons maintain an 574 

excess of chloride ions externally, the normal response to GABA binding is therefore for these 575 

negative ions to flow in through the GABAAR channels, increasing the negative membrane 576 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27811v1 | CC BY 4.0 Open Access | rec: 20 Jun 2019, publ: 20 Jun 2019



A lipid-leakage model for Alzheimer's Disease 

 

Page 27 
 

 

 

potential and thereby hyperpolarising (i.e. inhibiting) the affected neuron (Li & Xu, 2008) 577 

(Kaila, 1994).  Tonic inhibition is just the extrasynaptic form of this (Petrini et al., 2004) (Jia et 578 

al., 2005).  The majority of anaesthetic agents (including those that are only weakly anaesthetic, 579 

such as ethanol) are known to enhance this GABA binding, acting as positive allosteric 580 

modulators (Krasowski, 2003) (Orser et al., 1998).  Accordingly, they tend to inhibit normal 581 

activity in mature neurons of the CNS (Orser et al., 1998) (Krasowski & Harrison, 1999) 582 

(MacIver, 2014).   583 

 584 

However, recent research has shown that the same high-affinity extrasynaptic GABAARs that 585 

mediate tonic inhibition in mature neurons (Brickley & Mody, 2012) (Yeung et al., 2003) also 586 

play a significant role in neurogenesis and neuronal plasticity (Bordey, 2007a) (Liu et al., 2005).  587 

In support of this, pharmacological and genetic suppression of tonic GABA inhibition, including 588 

by down-regulation of extrasynaptic GABAAR activity, is associated with marked 589 

improvements in functional recovery after stroke (Clarkson et al., 2010) (Paik & Yang, 2014).  590 

This is in agreement with findings that suggest that increased GABA tonic inhibitory currents, in 591 

the days after stroke, hinder recovery (Clarkson et al., 2010) (Clarkson, 2012).   592 

 593 

Since the extrasynaptic GABAARs containing the δ-subunit are known to be especially sensitive 594 

to positive modulation by ethanol (Meera et al., 2010) (Wei, Faria & Mody, 2004) this may 595 

explain alcohol-mediated neurodegeneration seen in ARBD.    As explained earlier, disruption of 596 

neurogenesis appears to be critical to the neurodegenerative effects of ethanol upon the brain.  597 

Specifically, chronic exposure of the brain to ethanol is characterised from comparatively early 598 

on by erosion of the hippocampal region (Crews, 2008) (Nixon & Crews, 2002), loss of 599 
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interneurons (the primary product of neurogenesis (Mandyam, 2013)), AA (White et al., 2004) 600 

(Sanday et al., 2013) and olfactory deficits (Collins, Corso & Neafsey, 1996) (Ditraglia et al., 601 

1991).   602 

 603 

An obvious explanation for these findings is inhibition of neurogenesis in the SGZ and SVZ, 604 

given that the former supplies interneurons to other hippocampal regions (Eriksson et al., 1998) 605 

[more references?], whilst the latter is known to replenish the olfactory bulb interneurons via the 606 

rostral migratory stream (Lim & Alvarez-Buylla, 2016) [more references?]. Since much 607 

evidence suggests that FFAs have similar, if not higher, anaesthetic potency levels to ethanol 608 

(Ueda & Suzuki, 1998) (Frangopol & Mihailescu, 2001) (Samson, Dahl & Dahl, 1956) (Pringle, 609 

Brown & Miller, 1981) (Walker et al., 1970) (Wong et al., 1997) implying a similar affinity for 610 

GABAARs, it may well be that chronic exposure of the brain to excess FFAs over many years 611 

will have similar results, explaining why AD and ARBD share these hallmark effects on the 612 

brain.  613 

  614 

A complicating factor here is that, in immature neurons, the chloride gradient is reported to be in 615 

the reverse direction to that of their mature counterparts (Li & Xu, 2008) (Ben-Ari & Holmes, 616 

2005).  That is to say, chloride ions are held internally in excess of their external levels.  If so, 617 

GABA binding to GABAARs could reasonably be expected to activate such precursor neurons 618 

and, by extension, one would expect anaesthetic agents (and other positive modulators) to 619 

overactivate them.  A further consideration is that such precursor cells initially exhibit few 620 

synapses, with most GABAARs having a subunit composition typical of extrasynaptic 621 

GABAARs in mature neurons (Henschel, Gipson & Bordey, 2008) (Pallotto & Deprez, 2014) 622 
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(Song et al., 2012), with synapses only tending to emerge later as the neuronal precursors mature 623 

and become integrated (synaptically and otherwise) with the existing network (Ming & Song, 624 

2011) (Ge et al., 2007) (Ben-Ari et al., 2007).  So GABAARs in these cells tend to have a high 625 

affinity for ambient GABA, and one would expect the dominant response to GABA stimulation 626 

to be tonic activation (Song et al., 2012) (Ming & Song, 2011). So, if ethanol (and, as we are 627 

arguing here, by extension, FFAs) abnormally enhance this effect, one should expect to see 628 

overgrowth rather than erosion in adult neurogenic regions.  Why is this not so? 629 

 630 

One mechanism that might explain such neurogenetic deficits in the SGZ and SVZ, is GABA-631 

mediated feedback inhibition.  Recent discoveries suggest that non-synaptic paracrine GABA 632 

signalling provides information on population size to control proliferation and migration of 633 

neural progenitor cells in the SVZ (Liu et al., 2005) (Pallotto & Deprez, 2014) (Ge et al., 2007) 634 

(Bordey, 2007b). Specifically, adult SVZ neuroblasts synthesise and release GABA, which acts 635 

on GABAARs in neural stem cells, inhibiting NSC division and thus effectively applying a 636 

brake on neurogenesis.  In confirmation of this, removal of neuroblasts is seen to release this 637 

brake. 638 

 639 

The specific details of this appear to have been provided by a study of neurogenesis in postnatal 640 

rat striatum (Nguyen et al., 2003).  Here, the growth factor EGF was seen to decrease GABA 641 

production and release in PSA-NCAM+ neural precursor cells, leading to their proliferation.  A 642 

number of experiments suggested that GABA was indeed acting on GABAARs in an 643 

autocrine/paracrine mechanism to prevent cell proliferation by inhibiting cell cycle progression.  644 

Application of GABAAR antagonists inhibited proliferation, whereas positive allosteric 645 
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modulators decreased it. As with other immature neuronal cell lineages, GABA-mediated 646 

GABAAR activation elicited inward currents (indicating outward flows of negatively-charged 647 

chloride ions), leading to tonic inhibition of the mitogen-activated protein kinase cascade and an 648 

increase of intracellular calcium levels (Nguyen et al., 2003).   649 

 650 

This agrees with the findings of the Liu study, which showed that, at least in GFAP-expressing 651 

neural progenitor cells in the SVZ, GABAAR activation limits progression through the cell cycle 652 

(Liu et al., 2005).  It also suggests that, at least in the SVZ, adult neurogenesis is regulated by the 653 

same mechanisms that govern embryonic neurogenesis, where, for instance, GABA is seen to 654 

direct neuroblast migration, stimulating random mobility by promoting elevation of cytosolic 655 

Ca2+ levels (Ge et al., 2007) (Barker et al., 1998), similar to what is seen in adult neurogenesis 656 

(LoTurco et al., 1995).  While some related studies have shown that such effects appear to 657 

promote neuronal fate selection (Tozuka et al., 2005), the overall impression is that GABA 658 

stimulation also seems to limit proliferation (Nguyen et al., 2003) (Barker et al., 1998). 659 

However, more recently, doubts have been raised about whether such tonic GABA-mediated 660 

depolarisation is sufficient to open voltage-gated calcium channels enough to permit substantial 661 

increases in intracellular calcium in the way proposed, requiring other explanations (Bordey, 662 

2007b). 663 

 664 

An alternative explanation is that an epigenetic mechanism, involving histone H2AX 665 

phosphorylation following sustained GABAAR activation by GABA, inhibits DNA synthesis 666 

and cell cycle progression, and therefore proliferation of adult neural stem cells (Fernando et al., 667 

2011). It is not clear that this mechanism also applies to SGZ neurogenesis but, if so, it could 668 
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explain why GABAergic stimulation is similarly associated with quiescence of adult precursor 669 

cells in this niche (Pallotto & Deprez, 2014)  (Song et al., 2012) (Duveau et al., 2011). 670 

 671 

But it may be that such involved explanations are not necessary, as recent research has brought 672 

into question the prevailing orthodoxy concerning GABA activation of immature neurons 673 

(Valeeva et al., 2016) (Zilberter, 2016), concluding that, overall, GABA action on the neonatal 674 

brain is inhibitory.  If this proves correct, and is found to be true also for adult neurogenic 675 

regions, then ethanol-induced deficits in neurogenesis can be simply explained as a result of 676 

excess inhibition. 677 

 678 

Either way, assuming ethanol inhibition of neurogenesis in the SVZ and SGZ is mediated by 679 

GABAARs, then FFAs are likely to have a similar effect.  This is because a number of studies 680 

point towards GABAARs as the most likely target and mediator of FFA’s limited anaesthetic 681 

properties, not least the well-established anaesthetic effects (alluded to earlier) of structurally 682 

similar n-alkanes, n-alcohols and n-aldehydes.  Furthermore, as with FFAs, anaesthetic potency 683 

increases with chain length but only up to a certain “cut off” length (Alifimoff, Firestone & 684 

Miller, 1989) (Hau, Connell & Richardson, 2002) (Frangopol & Mihailescu, 2001) (Chiou et al., 685 

1990) (Wick et al., 1998) (Lugli, Yost & Kindler, 2009)).  This, together with direct evidence 686 

that the n-alcohols act on GABAARs (Wick et al., 1998) (Davies, 2003), as does the 687 

endogenous, FA, anaesthetic oleamide (Lees et al., 1998) (Coyne et al., 2002) (Laws et al., 688 

2001), suggests a common binding site.  More direct evidence for this comes from the observed 689 

antagonising effects of long-chain FFAs on GABAAR-mediated anaesthesia by volatile 690 

anaesthetics (Yamakura, 2004) (Hanada, Tatara & Iwao, 2004), along with other evidence of 691 
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direct interactions between FFAs and GABAARs (Zhang & Xiong, 2009) (Koenig & Martin, 692 

1992) (Witt & Nielsen, 1994). 693 

 694 

Taken together, a strong body of evidence points to the likelihood that FFAs, entering the brain 695 

through a damaged BBB (and therefore much in excess of their normal levels), will, if 696 

maintained over the long-term, tend to seriously disrupt neurogenesis by acting on GABAARs.  697 

Given the presence of major sites of neurogenesis in the SGZ and SGZ, this will principally 698 

manifest itself in anterograde amnesia and olfactory deficits.  The first of these is of course the 699 

primary behavioural abnormality seen in AD, whilst the second has been argued to be another 700 

common (if less obvious) outcome.  But, as described above, these are also seen in ARBD, 701 

driven by excess exposure to ethanol, which is known to act on GABAARs, accounting for the 702 

similarities between AD and ARBD detailed above. 703 

 704 

2.6 AD-specific consequences of brain exposure to external lipids 705 

 706 

If the above account explains many of the similarities seen between AD and ARBD, it does not 707 

explain why, unlike ARBD, AD is characterised by profuse plaques and tangles. The lipid-708 

leakage model of AD explains this by the fact that the BBB has to be disrupted for fatty acids to 709 

substantially enter the brain, unlike in ARBD, where ethanol can pass through the BBB 710 

relatively unhindered [references?]. Consequently, in AD the brain is also exposed to other 711 

molecules from which it is normally protected, including lipoproteins, which are much larger 712 

and more lipid-laden than those normally found within the CNS compartment.  713 
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 714 

There is good reason to think that such lipoproteins may account for the amyloid plaques that 715 

characterize AD. It has been known for some time that excess cholesterol is associated with 716 

increased amyloidogenesis.  717 

 718 

2.6.1 The role of excess cholesterol in amyloidogenesis 719 

 720 

Cholesterol may have a role in increasing proteolytic production of amyloidogenic Aβ from 721 

APP, as opposed to production of alternative non-amyloidogenic fragments (Xiong et al., 2008b) 722 

(Nicholson & Ferreira, 2010) (Bodovitz & Klein, 1996). This appears to result from the 723 

influence of cholesterol stimulation on an amyloidogenic pathway involving β- and γ-secretases 724 

(two proteases involved in APP proteolysis) (Xiong et al., 2008b), as well as on a non-725 

amyloidogenic pathway involving α-secretase (Kojro et al., 2001) (Figure 3.).  Increasing the 726 

levels of cholesterol stimulates the amyloidogenic pathway, at the same time inhibiting the non-727 

amyloidogenic pathway (Wolozin, 2004) (Xiong et al., 2008b). In contrast, cholesterol depletion, 728 

by various processes, inhibits the amyloidogenic pathway and enhances non-amyloidogenic 729 

processing, resulting in lower levels of Aβ (Kojro et al., 2001) (Simons et al., 1998)  [more 730 

references?].   731 

 732 

Amyloidogenic processing appears to be initiated within cholesterol-rich lipid rafts (Ehehalt et 733 

al., 2003) (Rushworth & Hooper, 2011)  (Nixon, 2017) (especially in early endosomes (Nixon, 734 

2017) (Arriagada et al., 2007)), whilst non-amyloidogenic processing occurs in the main 735 
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phospholipid-rich region of the neuronal plasma membrane (Xiong et al., 2008b) (Grimm et al., 736 

2013). This suggests that an important part of cholesterol’s influence on amyloidogenic 737 

processing may be a consequence of its essential role as a major constituent of these lipid rafts, a 738 

conclusion that is well-supported in the literature (Ehehalt et al., 2003) (Nixon, 2017) (Vetrivel 739 

et al., 2004) [more references?].  740 

 741 

Certainly, some studies indicate that brain cholesterol levels may be raised in AD, compared to 742 

non-demented, brains (Xiong et al., 2008b) [more references?], although not all studies concur 743 

[references?]. That cholesterol may be directly associated with amyloid plaque formation is 744 

supported by brain imaging studies, which show Aβ collocated with cholesterol  within amyloid 745 

deposits in AD human brain samples (Xiong et al., 2008b) [more references?]. 746 

 747 

 748 
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(a) (b) 

 749 

Figure 3.  (a) Amyloidogenic and (b) non-amyloidogenic processing of APP. 750 

 751 

 752 

2.6.2 The role of excess cholesterol in endosomal-lysosomal pathway abnormality 753 

 754 

Indirect evidence of raised brain cholesterol levels as a causal factor in AD comes from studies  755 

of human AD brains (Cataldo et al., 2000) [more references?]. Such brains show abnormalities 756 

in the endosomal-lysosomal system compared to normal brains, together with neurofibrillary 757 
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(tau) tangles [references?].  Such endosomal pathway overactivity and compartmental 758 

enlargement appears to be an early marker in AD, especially in pyramidal neurons (which are 759 

known to be vulnerable in AD [references?]), and in endothelial cells [references?].  760 

 761 

Interestingly, a very similar pathology is also seen in mouse and other models of DS (Arriagada 762 

et al., 2007) (Cataldo et al., 2000) (Cataldo et al., 2008) [more references?]. However, at least in 763 

the case of one mouse model, such pathology was seen to emerge only following lipoprotein-764 

mediated cholesterol treatment (Arriagada et al., 2007), suggesting that cholesterol is a crucial 765 

causal factor.  766 

 767 

Further support for this comes from a number of studies in in Niemann-Pick disease type C 768 

(NPC), a neurological disorder characterised by faulty cholesterol transport  and by tau tangles 769 

(Saito et al., 2002), and in which endosomal-lysosomal pathology is also observed (Frolov et al., 770 

2001). Such studies, whilst often contradictory in their results, collectively point to various 771 

failings in cholesterol uptake, transport and recycling, and in abnormal endosomal-lysosomal 772 

pathway behaviour.  Such reported failings include excessive uptake of exogenous LDL-derived 773 

cholesterol (Liscum & Faust, 1987), excessive synthesis of endogenous cholesterol (Liscum & 774 

Faust, 1987), enlarged early endosomes (Nixon, 2004) (Jin et al., 2004), accumulation of 775 

unesterified cholesterol in late endosomes and lysosomes (Nixon, 2004) (Sobo et al., 2007), 776 

defective post-lysosomal cholesterol transport (Roff et al., 1991) and redistribution of lysosomal 777 

hydrolases to early endosomes (Jin et al., 2004). 778 

 779 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27811v1 | CC BY 4.0 Open Access | rec: 20 Jun 2019, publ: 20 Jun 2019



A lipid-leakage model for Alzheimer's Disease 

 

Page 37 
 

 

 

Yet such reports commonly claim that other aspects of cholesterol internalisation (and 780 

endosomal-lysosomal pathway behaviour) appear to be normal, particularly in the case of initial 781 

cholesterol uptake and early endosome behaviour (Nixon, 2004). However, a very similar 782 

phenotype is observed in a Chinese hamster ovary (CHO) cell mutant, which has a normal copy 783 

of NPC1 (the late endosome/lysosome-residing protein most commonly associated with NPC 784 

disease (Nixon, 2004)) , and of the HE/NPC2 protein (also associated with NPC, although less 785 

commonly) yet still exhibits NPC-like pathology (Frolov et al., 2001). In this mutant late sterol 786 

trafficking is reported to be normal despite obvious cholesterol accumulation in late endosomes/ 787 

lysosomes (Frolov et al., 2001). Instead, cholesterol build-up occurs as a result of much-788 

increased LDL-R binding, probably leading to cholesterol uptake being in excess of the normal 789 

capacity of the cell to dispose of it (Frolov et al., 2001).  Evidence in support of this conclusion 790 

includes the finding that LDL starvation of this mutant resulted in the disappearance of the 791 

cholesterol-laden aberrant late endosome compartment (characteristic also of NPC) that had 792 

previously been observed, only for this compartment to reappear with the restoration of LDL 793 

feeding (Frolov et al., 2001). 794 

 795 

More generally, another study, using a human fibroblast model, appears to provide further 796 

evidence for this conclusion. It found endosomal-lysosomal pathology in a number of inherited 797 

sphingolipid-storage disorders (Puri et al., 1999).  In almost all cases such pathology showed 798 

strong similarities with that seen in NPC, with a marked reduction in the accumulation of both 799 

cholesterol and a representative sphingolipid within the Golgi complex, accompanied by their 800 

increased accumulation within many punctate cytoplasmic structures that also appeared to be 801 

associated with the NPC1 protein (Puri et al., 1999). 802 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27811v1 | CC BY 4.0 Open Access | rec: 20 Jun 2019, publ: 20 Jun 2019



A lipid-leakage model for Alzheimer's Disease 

 

Page 38 
 

 

 

 803 

The authors conclude that the observed pathology most likely results from a build-up of 804 

cholesterol (which is known to associate with high affinity to sphingolipids (Brown, 1998) 805 

(Lönnfors et al., 2011)) within endosomes and lysosomes, since the reported pathology was seen 806 

to disappear following cholesterol depletion, being replaced with normal endosomal-lysosomal 807 

behaviour (Puri et al., 1999).  However the same pathology could also be induced in normal cells 808 

by application of excess external cholesterol in the form of low-density lipoprotein (LDL) (Puri 809 

et al., 1999), similar to what is described for the CHO mutant mentioned above (Frolov et al., 810 

2001), and  in line with another study linking raised levels of plasma membrane cholesterol with 811 

correspondingly enlarged early endosomes in hippocampal neurons (Cossec et al., 2010). 812 

 813 

As stated earlier, LDL is not normally seen in the brain (since it requires apolipoprotein B) and 814 

tends to be both larger in size and more cholesterol-rich than the HDL-like lipoproteins typically 815 

seen there (Vance & Vance, 2008) (Danik et al., 1999). This suggests that externally-sourced 816 

cholesterol, supplied in excess of normal brain levels, may be a causal factor of AD-related 817 

endosomal abnormalities and of amyloidosis, at least in the late-onset form.  818 

 819 

In further support of this hypothesis, inhibition of CYP46A1 (a protein indirectly responsible for 820 

cholesterol clearance from the brain through the BBB (Lund, Guileyardo & Russell, 1999) 821 

(Lütjohann et al., 1996)) in mouse hippocampal neurons has been shown to lead to accumulation 822 

of neuronal cholesterol.  This, in turn, is associated with a distinctive AD-like pathology, 823 

including marked changes in endosomes (increasing both in size and number), Aβ peptide 824 
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production, tau phosphorylation, endoplasmic reticulum stress and apoptosis, and eventually 825 

hippocampal atrophy and cognitive impairment (Djelti et al., 2015) (Ayciriex et al., 2017). 826 

 827 

It has been argued earlier that the presence of a BBB has resulted in the brain (and the rest of the 828 

CNS) evolving to have a different lipid system to the rest of the body, one characterised by a 829 

much lower lipid turnover, and smaller, less lipid-dense lipoproteins.  If so, it should therefore 830 

not be unexpected that substantial damage to the BBB, leading to long-term exposure to a 831 

systemic lipid system characterised by high lipid turnover and larger, more lipid-dense 832 

lipoproteins, will result in neurons and other brain cells becoming overloaded and displaying the 833 

kind of abnormalities described above. 834 

 835 

2.6.3 The role of the β-secretase-induced C-terminal fragment (βCTF) 836 

 837 

Certainly, this interpretation fits in well with the evidence presented above, given that cellular 838 

LDL-cholesterol uptake is known to be dependent on the endosomal-lysosomal pathway, by way 839 

of receptors possibly bound within lipid rafts (Vance & Vance, 2008) (Nixon, 2017) (Pompey et 840 

al., 2013) (Sun et al., 2010). Furthermore, APP seems to be central to endosomal-lysosomal 841 

pathology, as the latter can be induced by APP over-expression, or by the C-terminal fragment 842 

that remains after β–secretase cleavage of APP (Nixon, 2017) (Jiang et al., 2010) [more 843 

references?], but prior to γ–secretase cleavage (Fig. 3).  844 

 845 
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Such cleavage is known to take place in early endosomes (Arriagada et al., 2007) (Cataldo et al., 846 

2000) and appears crucial to pathology, since inhibition of β–secretase (or the substitution of 847 

APP by constructs lacking β–secretase cleavage sites) restores normal endosomal-lysosomal 848 

behaviour (Jiang et al., 2010) [more references?]. Furthermore, treatments that increase levels of 849 

Aβ without increasing levels of βCTF do not result in endosomal-lysosomal pathology (Jiang et 850 

al., 2010), in line with other evidence that the endosomal abnormalities seen in a mouse model of 851 

DS do not appear to be associated with abnormally high levels of  Aβ (Salehi et al., 2006) (Choi 852 

et al., 2009). Meanwhile, inhibition of γ-secretase, which increases levels of βCTF at the expense 853 

of Aβ,  induces endosome-lysosomal pathology in previously normal fibroblasts (Jiang et al., 854 

2010). 855 

 856 

The underlying reason for this appears to be that βCTF recruits the adaptor protein APPL1 857 

(adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain, and 858 

leucine zipper motif) to Rab5 complexes on endosomes (Nixon, 2017) (Miaczynska et al., 2004) 859 

(Zhu et al., 2007).  This stabilises the monomeric GTPase protein Rab5 in its GTP-bound, 860 

activated form, and therefore amplifies the Rab5 signalling associated with early endosomes 861 

(Grbovic et al., 2003) (Gorvel et al., 1991) (Mishra et al., 2010), leading in turn to the enlarged 862 

endosomes seen in both AD and DS (Nixon, 2017) (Kim et al., 2016). 863 

 864 

(More on cholesterol? ApoE4?) 865 

Thus, taken collectively, the evidence appears to explain the endosomal-lysosomal pathology 866 

seen in DS dementia, and in many forms of AD, by two related mechanisms.  867 

 868 
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In the case of DS dementia, and early-onset forms of AD resulting from APP mutations, the 869 

pathology is likely to be the product of βCTF over-expression. In the case of LOAD, over-supply 870 

of cholesterol, originating from outside the brain, results in preferential up-regulation of β-871 

secretase (Xiong et al., 2008b), leading to the same result. Amyloidosis inevitably follows in 872 

both cases, no doubt enhanced by the substantial presence of Aβ in enterocytic- and hepatic-873 

derived lipoproteins (see 2.3). Tau tangles presumably result from amyloidosis or from a failure 874 

of cholesterol transport, by a similar mechanism to that seen in NPC. 875 

 876 

3 Discussion 877 

In the preceding text, evidence has been presented to support a lipid-leakage model of AD 878 

progression.  This states that, in the majority of cases, if not all, AD is primarily driven by the 879 

influx of lipids of systemic non-CNS origin, following the breakdown of the BBB.  From a 880 

general perspective, this emphasis on a mechanical, rather than a purely biochemical failure, 881 

would seem to provide a much better explanation of why AD is as prevalent as it is, in contrast 882 

to current models.  In particular, such mechanical failure also provides a more straightforward 883 

explanation of why ageing is the primary risk factor for AD. 884 

 885 

However, as has been shown above, many specific aspects of AD can also be said to support 886 

such a model. These include indirect evidence of BBB damage from the presence, in AD cases, 887 

of non-CNS proteins inside the brain, and of CNS proteins outside it.  In particular, evidence of 888 

the presence of the systemic apolipoprotein ApoB, together with long-chain triglycerides, within 889 
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Aβ plaques strongly suggests that, in AD, the BBB is failing to separate the highly distinctive 890 

lipid systems of the CNS and systemic non-CNS compartments in the normal way.  Moreover, 891 

included amongst the non-CNS proteins mentioned earlier, are plasma proteins such as albumin, 892 

fibrinogen and immunoglobulins that are, like Apoβ100, exclusively synthesised in the liver (or, 893 

like, Apoβ48, in other non-CNS organs).  Again, like Apoβ, they are of high molecular weight, 894 

meaning that they cannot readily pass through the BBB in normal circumstances. 895 

 896 

Further support for the lipid-leakage model arises from the likelihood that the BBB will be 897 

compromised by many of the risk factors associated with AD.  As well as ageing, these include 898 

brain trauma, diabetes, ApoE4 and Aβ. Similarly, CTE, a condition showing many similarities to 899 

AD, has been associated with clear evidence of BBB disruption.  Finally, there is clear evidence 900 

that Aβ directly disrupts the BBB, something most obviously apparent in the case of CAA. 901 

 902 

Why should lipid influx from outside the CNS matter so much?  As explained in some detail 903 

above, there are major differences in the two lipid systems either side of the BBB. In particular, 904 

and most relevantly to AD, lipoproteins on the non-CNS side are larger and more lipid-rich than 905 

on the CNS side, thanks in large part to the presence of ApoB.  Similarly, unlike on the CNS 906 

side, there is extensive transport of FFAs.  Reasons for this include the absence of large FA-907 

storing adipocytes and of albumin synthesis in the CNS, as well as the presence of the BBB 908 

itself. 909 

 910 

But why should these differences matter?  It is argued here that, whatever the original 911 

physiological function of the BBB might have been, it has allowed the CNS (and the brain in 912 
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particular) to evolve in ways that make it highly vulnerable to lipid incursion from the non-CNS 913 

compartment. In particular, it is predicted that exposure to the higher cholesterol content of the 914 

more lipid-rich lipoproteins from outside the CNS will lead to cholesterol overload in neurons 915 

and other CNS-specific cell types.  This in turn will result in endosomal-lysosomal pathology, 916 

tau tangles and excessive formation of Aβ, similar to what is seen in AD.   917 

 918 

In support of this hypothesis, similar endosomal-lysosomal pathology is seen in NPC, a disease 919 

characterised by faulty cholesterol transport, resulting in the accumulation of unesterified 920 

cholesterol in late endosomes and the formation of tau tangles.  Likewise, excess cholesterol has 921 

been shown to increase amyloidogenesis by stimulating amyloidogenic processing of APP at the 922 

expense of the non-amyloidogenic pathway, resulting in increased levels of Aβ.  During this 923 

amyloidogenic processing, high levels of the intermediate βCTF fragment are produced, which 924 

have been shown to trigger endosomal-lysosomal abnormalities similar to those observed in 925 

early AD progression.  (Presumably, the reason Aβ levels are much lower in NPC than in AD is 926 

because cholesterol buildup tends to affect late endosomes in the former disease, rather than 927 

early endosomes where Aβ is produced.) 928 

 929 

But cholesterol is not the whole story here. Breakdown of the BBB also exposes the brain to 930 

higher levels of FFAs.  It is argued here that such exposure will lead to neuroinflammation, as a 931 

result of these FFAs stimulating microglia by binding to TLR4 and other microglial receptors, 932 

similar to how FFAs activate macrophages outside the CNS and to how ethanol triggers 933 

microglial-mediated neuroinflammation.  934 

 935 
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This may help explain why the overall structural pattern of damage to the brain inflicted by long-936 

term alcohol abuse so strongly resembles that seen in AD, and why there are similar behavioural 937 

deficits.  In particular, frontal regions of the brain (especially the prefrontal cortex and basal 938 

forebrain) suffer significant shrinkage in both ARBD and AD, helping to explain why both 939 

diseases are associated with deficits both in olfaction and in executive functions requiring 940 

attentional and inhibitory control, reasoning, problem-solving, the setting of goals and of 941 

planning.  Similarly both ARBD and AD are associated with shrinkage of the medial temporal 942 

lobes, including pronounced atrophy of the hippocampus and entorhinal cortex, resulting in the 943 

anterograde amnesia so characteristic of AD, along with more specific deficits in spatial 944 

memory. 945 

 946 

However, it is hard to explain how such similarities might occur as a result of neuroinflammation 947 

alone.  Studies have shown that inhibition of neurogenesis plays almost as important a role in 948 

ARBD, which would better explain why the principal areas of brain atrophy in ARBD and AD, 949 

the frontal and medial temporal regions, also host two of the principal neurogenic niches of the 950 

brain, the subventricular and subgranular zones.  These provide new cells for the prefrontal 951 

cortex and the hippocampus, respectively.  It is argued here that the principal mechanism by 952 

which ethanol inhibits such neurogenesis, involving extrasynaptic GABAARs, means that such 953 

regions are also likely to be similarly affected by long-term exposure to other molecules with 954 

weakly anaesthetic properties, including FFAs. Whilst the mechanism by which such inhibition 955 

occurs appears to be complex, and may well involve other receptors and pathways, these shared 956 

properties, and the shared mechanism seen in most forms of anaesthesia [references?], suggest 957 

that long-term neurodegeneration will result in both cases.   958 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27811v1 | CC BY 4.0 Open Access | rec: 20 Jun 2019, publ: 20 Jun 2019



A lipid-leakage model for Alzheimer's Disease 

 

Page 45 
 

 

 

 959 

Whilst this aspect of the lipid-leakage model might be considered to be its most speculative, it 960 

may help to explain why general anaesthesia is also considered a potential risk factor for AD 961 

(and dementia in general) amongst elderly patients [Bohnen 1994; Chen 2014; Vanderweyde 962 

2010; Xie 2006; Fodale 2010; Papon 2011; Eckenhoff 2004], as well as being associated with 963 

marked deterioration in those already affected with AD [Bone 2001; Planel 2007; Xie 2007; 964 

Papon 2011]. However, such an association is still a matter of dispute [Needham 2017],  and a 965 

number of studies suggest that, where it does occur, anaesthesia-related deterioration is 966 

accompanied by increases in Aβ synthesis and oligomerisation, and by tau hyperphosphorylation 967 

[Papon 2011; Eckenhoff 2004; Xie 2006 & 2007; Fodale 2010; Planel 2007].  If so, this tends to 968 

rule out any GABA-related mechanism. 969 

 970 

But these are not the only reasons for suspecting a link with GABAARs. Ever since the first 971 

practical anaesthetic agents were discovered in the middle of 19th century [reference?],  and later 972 

shown (independently) by Hans Horst Meyer and Charles Ernest Overton to display a 973 

remarkable correlation between potency and hydrophobicity [reference?], there has been 974 

considerable interest in their mechanism of action. Following the findings of Franks and Lieb in 975 

the 1980s this interest has focused on hydrophobic sites on membrane proteins, particularly those 976 

of the Cys-loop ligand-gated ion channel superfamily, which includes inhibitory GABAARs and 977 

glycine receptors, as well as the excitatory acetylcholine and 5-HT3 serotonin receptors 978 

[references?].   979 

 980 
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In terms of the obvious therapeutic endpoints of anaesthesia, including coma and analgesia, the 981 

findings of such research are not likely to have any relevance either to AD or ARBD. But the 982 

role of extrasynaptic GABAARs in anaesthesia-mediated anterograde amnesia clearly does, 983 

given the importance of such amnesia in ARBD and, especially, in AD.  This is especially the 984 

case now that research has shown that the same high-affinity extrasynaptic GABAARs that have 985 

been shown to play a critical role in such amnesia, also play a critical role in neurogenesis.  986 

Given that the hippocampal region is a principal region of such neurogenesis [references?],  and 987 

is also known to be central to the formation of new memories (as well as being heavily degraded 988 

in both ARBD and AD), it is readily apparent how chronic exposure to ethanol, with its weakly 989 

anaesthetic properties, is able to cause progressive deterioration of this region.  990 

 991 

But this same mechanism also appears to explain why FFAs, with similar anaesthetic potencies, 992 

Discussion are largely excluded from the brain by the BBB.  This despite FFAs being highly 993 

energy-rich molecules and despite the brain being one of the most highly energy-consuming 994 

organs of the body. However one explains the requirement for the BBB to in some way protect 995 

the brain from damage from external sources, it is not clear that FFAs could not be transported 996 

across it in the way many other macromolecules, including ketone bodies, are.  They could thus 997 

provide the brain with a much-needed additional energy source.  Indeed, the transporter ABCB1 998 

(also known as P-glycoprotein 1 or multidrug resistance protein 1) is already known to transport 999 

lipids, including FFAs, across the BBB in the reverse direction [Gonçalves 2011; ], and its 1000 

decreased expression has been associated with increased AD risk [van Assema & van Berckel 1001 

2016].  Therefore there seems little reason why the BBB could not have evolved a similar 1002 

transporter in the reverse direction.  That the BBB has not evolved to do so, it is argued here, is 1003 
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because FFAs, at levels commonly seen in the rest of the body, would be inimical to the normal 1004 

working of the brain.  As would be the case if more cholesterol-rich lipoproteins could gain 1005 

access to the brain, for the reasons discussed above. 1006 

 1007 

It is been shown how breakdown of the BBB, by allowing such lipid invasion, is predicted to 1008 

result in the anterograde amnesia, amyloid plaques and tau tangles, so characteristic of AD, as 1009 

well as endosomal-lysosomal pathology and neural inflammation.  However, in pointing to 1010 

GABAARs as major agents of AD progression, the lipid-leakage model may also help to explain 1011 

the severe disruptions of the normal "body clock" commonly seen in patients with AD.  1012 

Although the neurological mechanism behind this biological clock is yet to be fully elucidated, it 1013 

is generally agreed that, in vertebrates, the neurons of the suprachiasmatic nucleus (SCN) 1014 

provide a central role [Ehlen, 2009; other references?]. Furthermore, within the SCN it is clear 1015 

that GABAARs play a critical role, including in their extrasynaptic form [McNeill 2018; Ehlen 1016 

2009; McElroy 2009; Hu 2016; other references?], with some estimates suggesting that over 1017 

90% of SCN neurons express and respond to GABA [McNeill 2018].  A number of studies have 1018 

shown that ethanol modulates circadian clock regulation [Ruby 2009; Prosser 2008 & 2015; 1019 

Brager 2011], including by its action at low concentrations on extrasynaptic GABAARs 1020 

[McElroy 2009].  Given that the lipid-leakage model already proposes that FFAs inhibit 1021 

neurogenesis by acting at low concentrations on extrasynaptic GABAARs to disrupt their normal 1022 

behaviour, there is therefore a good reason to believe that FFAs might also be disrupting normal 1023 

circadian rhythms by a very similar mechanism. 1024 

 1025 
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Of course, given that disruption of the body clock in AD is primarily inferred from behavioural 1026 

abnormalities, particularly in regard to sleep patterns, it may be that what is being observed is 1027 

merely a secondary consequence of amnesia and the general loss of self-control associated with 1028 

AD. However, given that such sleep disturbances seem to be apparent very early in AD 1029 

progression [Macedo, 2017], when amnesia and other AD-associated deficits are only beginning 1030 

to be noticeable, it seems likely that what is being seen has a physiological as well as a purely 1031 

psychological basis. 1032 

4 Conclusion 1033 

This all points to a much more complex explanation of AD progression, in which Aβ and tau 1034 

tangles are only two of the more visible factors, in many ways as much symptomatic as 1035 

causative.… 1036 

 1037 

  1038 
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