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Abstract 

This paper describes a potential new explanation for Alzheimer’s disease (AD), referred to here 

as the lipid-invasion model. It proposes that AD is primarily caused by the influx of lipids 

following the breakdown of the blood brain barrier (BBB).  

 

The model argues that a principal role of the BBB is to protect the brain from external lipid 

access. When the BBB is damaged, it allows a mass influx of (mainly albumin-bound) free fatty 

acids (FFAs) and lipid-rich lipoproteins to the brain, which in turn causes neurodegeneration, 

amyloidosis, tau tangles and other AD characteristics. 

 

The model also argues that, whilst β-amyloid causes neurodegeneration, as is widely argued, its 

principal role in the disease lies in damaging the BBB.  It is the external lipids, entering as a 

consequence, that are the primary drivers of neurodegeneration in AD., especially FFAs, which 

induce oxidative stress, stimulate microglia-driven neuroinflammation, and inhibit neurogenesis.  

Simultaneously, the larger, more lipid-laden lipoproteins, characteristic of the external plasma 

but not the CNS, cause endosomal-lysosomal abnormalities, amyloidosis and the formation of 

tau tangles, all characteristic of AD.  In most cases (certainly in late-onset, noninherited forms of 

the disease) amyloidosis and tau tangle formation are consequences of this external lipid 

invasion, and in many ways more symptomatic of the disease than causative. 

 

In support of this, it is argued that the pattern of damage caused by the influx of FFAs into the 

brain is likely to resemble the neurodegeneration seen in alcohol-related brain damage (ARBD), 
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a disease that shows many similarities to AD, including the areas of the brain it affects.  The fact 

that neurodegeneration is far more pronounced in AD than in ARBD, and characterised by other 

features, such as amyloidosis and tau tangles, most likely results from the greater heterogeneity 

of the lipid assault in AD compared with ethanol alone. 

 

The lipid-invasion model, described here, arguably provides the first cohesive, multi-factorial 

explanation of AD that accounts for all currently known major risk factors, and explains all AD-

associated pathologies, including those, such as endosomal-lysosomal dysfunction and excessive 

lipid droplet formation, that are not well-accounted for in other explanation of this disease. 

 

Keywords:  Lipids, Alzheimer’s, alcohol-related brain damage, blood-brain barrier, β-

amyloid, tau tangles, amyloidosis, neurodegeneration, neurogenesis, ethanol, anaesthesia 
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A lipid-invasion model for Alzheimer’s Disease 1 

1 Introduction 2 

 3 

Alzheimer's disease is a neurodegenerative disorder first described by the German physician Lois 4 

Alzheimer in 1907 (Stelzmann, Norman Schnitzlein & Reed Murtagh, 1995). It is a form of 5 

dementia characterised by the extensive death of brain cells and associated with widespread 6 

plaques and strongly staining fibrils. 7 

 8 

Whilst these same characteristics, including the distinctive deposits now known as amyloid 9 

plaques and tau tangles, are individually seen in other forms of neurodegeneration, their 10 

occurrence together appears to be unique to AD.  AD has emerged as the most common 11 

dementia, accounting for over half of all dementias, with an especially high prevalence amongst 12 

over-85 year-olds in the developed world (OECD, 2013). Yet, in the century or so since AD’s 13 

first discovery, it is fair to say that only relatively limited progress has been made in 14 

understanding its aetiology, with effective treatments yet to be developed (Hardy, 2006; 15 

Castellani & Perry, 2012).   16 

 17 

What drives AD progression?  The first explanation to gain widespread acceptance was the 18 

cholinergic hypothesis, which emerged in the 1980s.  This sought to explain the disease in terms 19 

of reduced synthesis of acetylcholine (ACh) (Contestabile, 2011). But, whilst substantial 20 

evidence points to AD-associated deficits in the cholinergic projection system of the brain 21 

(Contestabile, 2011), animal studies indicate that cholinergic damage causes only moderate 22 
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cognitive deficits (Parent & Baxter, 2004), and attempts to increase ACh levels with drugs, 23 

including acetylcholinesterase inhibitors, do not significantly slow disease progression (Frölich, 24 

2002; Contestabile, 2011).   25 

 26 

In the 1990s an alternative model emerged, the amyloid cascade hypothesis, which postulated 27 

that beta-amyloid (Aβ), a proteolytic product of amyloid precursor protein (APP), is the 28 

fundamental cause of the disease (Pimplikar, 2009). This is still the dominant model for 29 

explaining AD, backed by a substantial body of evidence, not least the fact that Aβ is the main 30 

component of amyloid plaques (Pimplikar, 2009). Moreover, in inherited forms of the disease, 31 

collectively referred to as familial AD (FAD), a number of genes related to normal APP 32 

processing have been found to be abnormal (Wu et al., 2012). Similarly, people with Down's 33 

syndrome (DS) who possess an extra copy of chromosome 21, on which APP resides, typically 34 

go on to develop a form of dementia largely indistinguishable from AD (Nieuwenhuis-Mark, 35 

2009). Any model of AD needs to take into account these facts. 36 

 37 

However, it can fairly be said that the amyloid cascade hypothesis is problematic, not least the 38 

fact that a number of studies have shown a poor correlation between amyloid plaque distribution 39 

and disease progression (Terry et al., 1991; Bowman & Quinn, 2008; Pimplikar, 2009). In some 40 

instances high plaque levels are completely unassociated with dementia (Aizenstein H et al., 41 

2008).  And twenty years since the hypothesis was first raised, no treatments aimed at preventing 42 

or eliminating amyloid plaques have so far been devised that show any significant benefits in 43 

preventing dementia (Pimplikar, 2009; Sperling et al., 2011; Castellani & Perry, 2012). 44 

 45 
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Most studies of AD, proposing Aβ as the causative agent, assume that the Aβ found in cerebral 46 

plaques must originate within the brain. However, this has recently come into question, with 47 

doubts being raised as to whether cerebral production of Aβ is significantly elevated in 48 

individuals with non-inherited, late-onset forms of AD (LOAD) (Cummings et al., 1998; 49 

Takechi et al., 2010a).  50 

 51 

This has led some researchers to propose that the Aβ deposits may originate from outside the 52 

brain (Deane et al., 2009; Takechi et al., 2010a). However, the size of the Aβ protein prevents it 53 

travelling across the BBB unaided (Deane et al., 2009). Thus, entry of the Aβ protein into the 54 

brain requires either that specific transporter proteins are available to carry it across, or that the 55 

BBB is disrupted in some way. Whilst such transporters do exist there are also others that 56 

transport Aβ in the opposite direction (Deane et al., 2009) i.e. out of the brain, as well as 57 

alternative efflux mechanisms (Lam et al., 2001; Deane et al., 2009; Takechi et al., 2010a).  58 

Additionally, the brain appears to have more than adequate enzymatic mechanisms for 59 

eradicating excess Aβ arising from faulty transport (Iwata et al., 2000; Takechi et al., 2010a). 60 

Disruption of the BBB would thus seem to be a more plausible explanation for extravasation of 61 

Aβ into the brain.  62 

 63 

In support of such an explanation, AD is associated with BBB disruption (Iadecola & Gorelick, 64 

2003; Ujiie et al., 2003; Dickstein et al., 2006; Popescu et al., 2009; Kook et al., 2012). Evidence 65 

for this includes the fact that AD brains contain proteins that would normally be excluded by the 66 

BBB, most significantly apolipoprotein B, which is found in amyloid plaques along with Aβ 67 

(Namba, Tsuchiya & Ikeda, 1992; Takechi et al., 2009), as well as other large molecular-weight 68 

proteins such as albumin, fibrinogen and immunoglobulins (D’Andrea, 2003; Bowman & Quinn, 69 
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2008; Cortes-Canteli & Strickland, 2009; Ryu & McLarnon, 2009; Johnson et al., 2018). Also, 70 

AD brains stain for Evans Blue, which is normally substantially excluded by the BBB (Ujiie et 71 

al., 2003; Paul, Strickland & Melchor, 2007; Cortes-Canteli & Strickland, 2009).  72 

 73 

Similarly, proteins such as S100B, normally only found in the CNS and considered a good 74 

marker of BBB disruption (Marchi et al., 2004), are present in systemic plasma in AD cases   75 

(Takechi et al., 2010b). Further evidence that BBB disruption may lead to AD also comes in the 76 

form of Chronic Traumatic Encephalopathy (CTE).  This is a progressive degenerative 77 

condition, commonly affecting athletes and others with a history of brain trauma, which typically 78 

shows many similarities with AD (Stein, Alvarez & McKee, 2014). These include large-scale 79 

neuronal loss, severe memory deficits, extensive tau tangles and, frequently in advanced cases, 80 

diffuse amyloid plaques (Stein, Alvarez & McKee, 2014).  Crucially, CTE appears to be strongly 81 

associated with BBB disruption (Chodobski, Zink & Szmydynger-Chodobska, 2011; Stein, 82 

Alvarez & McKee, 2014; Doherty et al., 2016; Johnson et al., 2018; Farrell et al., 2019).  Finally, 83 

the many risk factors for LOAD include ApoE4 (Liu et al., 2013), hypertension (Kivipelto et al., 84 

2002), diabetes (Goldbourt et al., 2004), smoking (Durazzo et al., 2014) and head injury 85 

(Gottlieb, 2000), all of which are associated with vascular damage (Salloway et al., 2002; 86 

Mazzone et al., 2010; Prasad et al., 2014; Alluri et al., 2015; Girouard, 2016). 87 

 88 

There is also substantial experimental evidence of Aβ directly compromising the BBB (Jancsó et 89 

al., 1998; Farkas et al., 2003; Tai et al., 2010; Kook et al., 2012; Gosselet et al., 2013), in a 90 

number of ways.  These include altering tight junction protein distribution and expression in 91 

brain endothelial cells (Ohtsuki et al., 2007; Tai et al., 2010; Hartz et al., 2012; Kook et al., 92 

2012; Gosselet et al., 2013), increasing matrix metalloproteinase expression (Hartz et al., 2012), 93 
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oxidative stress (Thomas et al., 1997), increasing apoptosis (Blanc et al., 1997; Fossati, Ghiso & 94 

Rostagno, 2012) and dysregulating calcium homoeostasis (Blanc et al., 1997; Kook et al., 2012). 95 

Finally, there is further indirect evidence that Aβ can damage the BBB, for example, in cases of 96 

cerebral amyloid angiopathy (CAA) (Carrano et al., 2011; Fossati, Ghiso & Rostagno, 2012; 97 

Hartz et al., 2012; Magaki et al., 2018).  98 

 99 

The simplest interpretation of these findings is that Aβ has a dual role in AD progression, first 100 

disrupting the BBB, and then causing neurodegeneration by deposition in the brain. But, whilst 101 

there is abundant evidence that Aβ is toxic to the brain (Pimplikar, 2009), so are many of the 102 

other molecules that a disrupted BBB could be expected to let through [such as?]. If Aβ does 103 

play a major role in disrupting the BBB then any proposed model of AD must take into account 104 

what role the intact BBB plays in the human body, particularly with regard to the brain. 105 

 106 

Unfortunately, nearly a century after the BBB was first discovered, its full role is still a matter of 107 

conjecture. What was considered to be a primary function, ensuring “immune privilege”, is now 108 

known to be far more limited and nuanced than once thought (Carson et al., 2006; Harris et al., 109 

2014).  Nevertheless, it would appear from its unique architecture that the BBB’s main purpose 110 

is to exclude certain cells and molecules from the brain. This architecture is found hardly 111 

anywhere else in the human body and includes unusually strong tight junctions between 112 

endothelial cells, as well as a lack of endothelial fenestrations and endocytotic/transcytotic 113 

activity, a surrounding belt of basal lamina and large numbers of specialist cells such as pericytes 114 

and astrocytes (the latter attaching to the brain capillaries by so-called foot processes), and the 115 

presence of numerous efflux transporters (Rubin & Staddon, 1999; Dietschy & Turley, 2004; 116 

Abbott, Rönnbäck & Hansson, 2006; Carson et al., 2006).  117 
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 118 

Because of this architecture the BBB is known to substantially exclude lipids that remain bound 119 

to, or within, their normal transport partners (Jeske & Dietschy, 1980; Dietschy & Turley, 2004; 120 

Hamilton & Brunaldi, 2007; Zhang & Liu, 2015). Evidence (outlined in 2.4-2.5) suggests that 121 

unregulated external lipid influx, resulting from BBB compromise, or otherwise, will damage the 122 

brain.  In the case of FFAs this will occur in at least three ways: (1) oxidative stress, lipid 123 

peroxidation and mitochondrial damage resulting from excess FFAs accumulation within 124 

neurons; (2) neuroinflammation; (3) disruption of neurogenesis, all characteristics that have been 125 

associated with AD (Markesbery, 1997; Hensley, 2010; Moreno-Jiménez et al., 2019).  Other 126 

characteristics, such as endosomal-lysosomal pathway disruption, amyloidosis and tau tangle 127 

formation can also be explained by lipid influx in the form of external lipoproteins (2.6). These 128 

are rich in cholesterol, which has also been linked with AD (Simons et al., 2001; Wolozin, 2004; 129 

Xiong et al., 2008), particularly in connection with amyloidosis and tau tangles. 130 

 131 

In support of this, a recent study has reported the presence of lipids, including long-chained 132 

triglycerides, within fibrillar Aβ plaques (Kiskis et al., 2015), consistent with the evidence, 133 

previously alluded to, of the presence of apolipoprotein B within amyloid plaques. 134 

 135 

Based on the above evidence, the lipid-invasion model argues that breakdown of the BBB, by 136 

Aβ or other means, and the subsequent influx of lipids, leads to lipid-driven neurodegeneration 137 

and dysfunction, including the long-term form known as Alzheimer's disease.  According to this 138 

hypothesis, it is peripheral lipids, not Aβ, that primarily drive AD. 139 

 140 
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One reason for believing this is the similarity between the overall structural pattern of 141 

neurodegeneration seen in AD and that seen in ARBD, resulting from chronic exposure of the 142 

brain to ethanol. Ethanol passes relatively easily through the BBB and, for the reasons argued 143 

below, can be expected to have some of the same overall effects on the brain as exposure to one 144 

major class of lipids, FFAs, but without the amyloid plaques, tau tangles and endosomal-145 

lysosomal abnormalities seen in AD. (See 2.4-2.5.) 146 

 147 

This suggests that further study of ARBD may yield insights into the aetiology of AD. One area 148 

of potential overlap emerges from extensive evidence that the detrimental effects observed in the 149 

brain from chronic alcohol exposure are the result not only of neurodegeneration but also of 150 

reduced levels of neurogenesis (Fadda & Rossetti, 1998; Nixon, 2006; Crews, 2008; Morris et 151 

al., 2009). 152 

 153 

Many studies suggest that the neurodegenerative effects of chronic alcohol abuse may be 154 

reversible (Pfefferbaum et al., 1997a; Crews & Nixon, 2009), following the cessation of ethanol 155 

treatment. This could mean that if neuroinflammation and neurogenetic inhibition could be 156 

ameliorated then the neurodegenerative effects of AD might also be reversible, giving hope of 157 

finding effective treatments for the disease.  158 

2 Evidence and explanation of the model 159 

 160 

From this introductory discussion it can be appreciated that, in order to better understand the 161 

lipid-invasion model of AD, it is helpful to first appreciate the similarities between AD and 162 

ARBD. 163 
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2.1 Similarities between AD & ARBD 164 

 165 

That AD and ARBD may share common elements in their aetiology is apparent from 166 

comparisons of brains of individuals with either disease, including direct visual comparisons (see 167 

Figure 1), and whole brain MRI scans (Figure 2), (Sullivan, Adron Harris & Pfefferbaum; Fox et 168 

al., 2001; Zahr, Kaufman & Harper, 2011; Teipel et al., 2015). 169 

 170 

 171 

Figure 1.  Visual comparisons of the brains of (A) normal elderly person; (B) a person with AD and (C) a 172 
chronic alcoholic.  Source: (a & b) (Tyas, 2002); (c) (Rosenbloom, Pfefferbaum & Sullivan, 1995). 173 

 174 
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Figure 2. Coronal plane MRI comparison between brains of (a) a normal person and (b) a typical AD case 175 
(Duara et al., 2008) and that of (c) a patient with alcohol-related brain damage (“Alcoholic dementia, MRI 176 
scan”). Outlined areas in (a) & (b) correspond to hippocampus (outlined in red); entorhinal cortex (blue) and 177 
perirhinal cortex (green). Sources: (a & b) (Duara et al., 2008); (c) (Science Photo Library, 2019). 178 

 179 

2.1.1 Brain shrinkage 180 

 181 

Such scans typically reveal pronounced similarities between the two diseases in their pattern of 182 

neurodegeneration, including evidence of brain shrinkage (Pfefferbaum et al., 1992, 1997a; Kril 183 

& Halliday, 1999; Thompson et al., 2007; Hua et al., 2008; Paul et al., 2008; Spreng & Turner, 184 

2013), loss of cortical folding (involving widening of sulci and thinning of gyri) (Harper & Kril, 185 

1985; de la Monte SM, 1988; Pfefferbaum et al., 1997a; Hua et al., 2008), enlargement of 186 

ventricles (de la Monte SM, 1988; Pfefferbaum et al., 1997a; Silbert et al., 2003; Hua et al., 187 

2008; Nestor et al., 2008; Wobrock et al., 2009), (especially the lateral ventricles), together with 188 

shrinkage of the hippocampus and entorhinal cortex (Fadda & Rossetti, 1998; White, Matthews 189 

& Best, 2000; Beresford et al., 2006; Hua et al., 2008; Duara et al., 2008) and  thinning of the 190 

corpus callosum (Harper & Kril, 1988; Pfefferbaum et al., 1996; Estruch et al., 1997; Teipel et 191 

al., 2002; Frederiksen et al., 2011; Preti et al., 2012). 192 

 193 
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On their own, such similarities could be dismissed as the effects of general brain shrinkage and 194 

other generalised damage. However, the similarities appear to run much deeper than this, with 195 

many of the same regions of the brain principally affected in both cases, especially early on in 196 

the disease process. In particular, both AD and ARBD appear to be substantially "frontal" 197 

diseases, as suggested by physiological, behavioural and sensory studies, in line with imaging 198 

studies of both diseases (Pfefferbaum et al., 1997b; Kril & Halliday, 1999; Harper, 2007; Hall et 199 

al., 2008; Grothe, Heinsen & Teipel, 2012; Schmitz et al., 2016). 200 

 201 

2.1.2 Basal forebrain damage in AD and ARBD 202 

 203 

Measurements of brain volume reveal both diseases to be associated with significant shrinkage 204 

in the frontal region of the brain, particularly the prefrontal cortex and basal forebrain regions 205 

(Pfefferbaum et al., 1997a; Fadda & Rossetti, 1998; Moselhy, Georgiou & Kahn, 2001; Teipel et 206 

al., 2005; Hall et al., 2008; Grodin et al., 2013), including the cholinergic basal forebrain 207 

projection system  (Arendt et al., 1989; Muir, 1997; Fadda & Rossetti, 1998; Teipel et al., 2005; 208 

Miki et al., 2014).  This is backed up by studies in animal models, which suggest that chronic 209 

exposure of the brain to ethanol causes a specific pattern of degeneration, including a marked 210 

loss of  cholinergic neurons, accompanied by a reduction in acetylcholine and choline 211 

acetyltransferase activity (Arendt et al., 1989; Floyd et al., 1997; Fadda & Rossetti, 1998; 212 

Mufson et al., 2003; Miki et al., 2014). Again, this is very similar to what is seen in AD (Muir, 213 

1997; Baskin et al., 1999; Auld et al., 2002; Mufson et al., 2008), which is, indeed, why the 214 

cholinergic hypothesis was proposed in the 1980s (Contestabile, 2011). 215 

 216 
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Related behavioural evidence pointing towards frontal damage as a factor in both diseases 217 

includes personality changes (Bózzola, Gorelick & Freels, 1992; Chatterjee et al., 1992; Oscar-218 

Berman et al., 1997; Moselhy, Georgiou & Kahn, 2001; Talassi et al., 2007; Echeburúa, De 219 

Medina & Aizpiri, 2007; Ball et al., 2010), disinhibition and impulsivity (Chen et al., 2007; Ball 220 

et al., 2008; Crews & Boettiger, 2009; Dick et al., 2010; Bidzan, Bidzan & Pąchalska, 2012; 221 

Finger et al., 2017), confabulation (Kern et al., 1992; Brun & Andersson, 2001; Tallberg & 222 

Almkvist, 2001; Attali et al., 2009; Maurage et al., 2011; Rensen et al., 2015) and a noticeable 223 

tendency towards perseverative behaviour. This last attribute is readily apparent in individuals 224 

with AD (Bayles et al., 2004; Serna, Pigot & Rialle, 2007; Pekkala et al., 2008; Kaufman, 2015; 225 

De Lucia, Grossi & Trojano, 2015), while studies in adult and adolescent rodents chronically 226 

exposed to ethanol (but given a nutritionally adequate diet) point towards a similar pattern of 227 

behavioural and neurological deficit (Vetreno et al.; Obernier et al., 2002; Crews & Nixon, 2009; 228 

Kroener et al., 2012; Acheson et al., 2013; Sullivan & Pfefferbaum, 2014; Badanich et al., 2016), 229 

confirming findings in humans (Giancola, Peterson & Pihl, 1993; Oscar-Berman et al., 1997; 230 

Fadda & Rossetti, 1998; Ratti et al., 2002; Dirksen et al., 2006; Oscar Berman, 2009). Possibly 231 

such behaviour involves deficits in the dopamine system (McNamara & Albert, 2004; Campos-232 

García Rojas et al., 2015), principally centred in the frontal lobe, as well as of the cholinergic 233 

system (McNamara & Albert, 2004). But certainly it is known that various forms of motor 234 

perseveration and similar behavioural inertias are frequently associated with damage to the 235 

frontal lobes (Luria, 1965; Stuss & Benson, 1984; Ridley, 1994; Munakata, Morton & Stedron, 236 

2003). 237 

 238 

There is also very strong experimental evidence suggesting that, from comparatively early on, 239 

both AD and ARBD are associated with olfactory deficits (Ditraglia et al., 1991; Collins, Corso 240 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27811v5 | CC BY 4.0 Open Access | rec: 18 Nov 2019, publ: 18 Nov 2019



A lipid-invasion model for Alzheimer's Disease 

 

Page 12 

 

& Neafsey, 1996; Mesholam RI et al., 1998; Christen-Zaech et al., 2003; Doty, 2005; Rupp et 241 

al., 2006; Maurage et al., 2011; Velayudhan et al., 2013), although not always perceptible to 242 

demented patients (Doty, Reyes & Gregor, 1987).  These are also very likely to involve damage 243 

to the basal forebrain, including the olfactory bulb (Ohm & Braak, 1987; Collins, Corso & 244 

Neafsey, 1996; Obernier et al., 2002; Christen-Zaech et al., 2003; Rupp et al., 2006) and 245 

cholinergic systems (Arendt et al., 1989; Mundiñano et al., 2013; Doty, 2013; D’Souza & 246 

Vijayaraghavan, 2014), amongst others. 247 

 248 

More generally, both forms of dementia are associated with deficits in executive functions (Rupp 249 

et al., 2006; Duarte et al., 2006; Harper, 2007; Ball et al., 2008; Marshall et al., 2011; Houston et 250 

al., 2014; Weiss et al., 2014), such as attentional and inhibitory control, working memory and 251 

reasoning -  i.e. those faculties which allow problem-solving, planning, self-control and the 252 

attainment of goals. Clearly there are difficulties separating the immediate effects of drinking 253 

alcohol from the long-term neurodegenerative effects of alcoholism, as well as questions as to 254 

what degree executive function is under the control of the frontal region. Nevertheless, taken 255 

collectively, the evidence presented here points to a strong involvement of the frontal lobe 256 

degeneration in both ARBD and AD. 257 

 258 

2.1.3 Medial temporal lobe damage in AD and ARBD 259 

 260 

As well as the basal forebrain, the medial temporal lobe is also found to be significantly 261 

atrophied in both ARBD and AD (Bengochea & Gonzalo, 1990; Smith et al., 1992; Fadda & 262 

Rossetti, 1998; Korf et al., 2004; Duara et al., 2008; Vetreno, Hall & Savage, 2011). This is most 263 
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obvious in the hippocampus but is also in immediately adjoining regions, such as the entorhinal 264 

cortex and perirhinal cortex (Squire, Amaral & Press, 1990; Jernigan et al., 1991; Ibáñez et al., 265 

1995; Sullivan et al., 1995; Fadda & Rossetti, 1998; Juottonen et al., 1998; Traissard et al., 2006; 266 

Augustinack et al., 2013; Velayudhan et al., 2013; Hirni et al., 2016; Topiwala et al., 2017).  267 

 268 

Given the well-established link between the hippocampus and memory formation (Riedel & 269 

Micheau, 2001), it is unsurprising, therefore, that AD is associated with anterograde amnesia 270 

(AA), including severe deficits in spatial memory (Sun et al., 2005; Cherrier et al., 2005; Hort et 271 

al., 2007; Vlček, 2011; Moodley et al., 2014; Zhu et al., 2017). However, such deficits in ARBD 272 

appear to be minor (Vetreno, Hall & Savage, 2011; Ridley, Draper & Withall, 2013), once one 273 

has discounted the temporary effects of acute ethanol intoxication (Boulouard et al., 2002) and 274 

(Wernicke-)Korsakoff Syndrome, resulting from vitamin B1 deficiency (Ridley, Draper & 275 

Withall, 2013).  Certainly, permanent AA in alcoholics appears to be mainly associated with 276 

Korsakoff Syndrome (Parkin, 1991; Joyce, 1994; Vetreno, Hall & Savage, 2011; Fama, Pitel & 277 

Sullivan, 2012; Ridley, Draper & Withall, 2013), rather than from chronic exposure to alcohol 278 

itself. Moreover, chronic alcohol-associated AA appears to be reversible, unlike AA in 279 

Alzheimer’s (Fein et al., 1990, 2006; Pfefferbaum et al., 1995, 1998; Parsons & Nixon, 1998; 280 

Ridley, Draper & Withall, 2013), and much of the damage appears to result immediately after 281 

cessation of drinking (Fadda & Rossetti, 1998; Vetreno, Hall & Savage, 2011). 282 

 283 

Nevertheless, there is sufficient evidence in animal models to suggest that both acute and chronic 284 

alcohol exposure may lead to pronounced deficits in spatial memory (Santín et al., 2000; Silvers 285 

et al., 2003; Pires et al., 2005; Assunção et al., 2007; Cippitelli et al., 2010; García-Moreno & 286 

Cimadevilla, 2012), evidence that appears to be mirrored in humans, as well as other primates 287 
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(Bowden & McCarter, 1993; Beatty et al., 1997; Tapert et al., 2001; Weissenborn & Duka, 2003; 288 

Silvers et al., 2003; Taffe et al., 2010).  Certainly, caution is required here, as other areas of the 289 

brain are known to be involved in spatial memory processing, including the prefrontal cortex 290 

(Seamans, Floresco & Phillips, 1998; Jones & Wilson, 2005).  However, the association of acute 291 

and chronic alcohol exposure with various hippocampal deficits and with impaired spatial 292 

learning (Bowden & McCarter, 1993; Givens, 1995; Santín et al., 2000; Beresford et al., 2006; 293 

Wilson et al., 2017; Ji et al., 2018) would seem to suggest a possible linkage mechanism between 294 

the two phenomena. 295 

 296 

Similarly, so-called “blackout” episodes, commonly associated with drinking large amounts of 297 

alcohol over short periods of time (Goodwin, Crane & Guze, 1969; White, 2003), are clearly 298 

largely defined by and associated with AA (White, 2003; Nelson et al., 2004; Perry et al., 2006), 299 

appearing to involve both the frontal lobe and hippocampal regions (White, 2003; Oscar-Berman 300 

et al., 2004; Alderazi & Brett, 2007; Vetreno, Hall & Savage, 2011; Wetherill, Schnyer & 301 

Fromme, 2012; Hermens & Lagopoulos, 2018). In particular, chronic alcoholism appears to act 302 

synergistically with the normal ageing process to exacerbate the memory and other cognitive 303 

deficits commonly resulting from the latter (Pfefferbaum et al., 1992; Kim et al., 2012; Sabia et 304 

al., 2014; Guggenmos et al., 2017; Rehm et al., 2019). 305 

 306 

Whatever the reason, the similarities between AD and ARBD just described would seem to 307 

provide the most obvious reason why heavy drinking appears to be associated with a higher risk 308 

of developing Alzheimer’s and other dementias (Anttila et al., 2004; Järvenpää et al., 2005; Kim 309 

et al., 2012; Schwarzinger et al., 2018; Sabia et al., 2018).  The fact that people with the ApoE4 310 

allele appear to have a much greater risk of developing dementia as a result of drinking ethanol 311 
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(including even light-to-moderate drinking), compared with non-carriers of the allele (Dufouil et 312 

al., 2000; Mukamal et al., 2003; Anttila et al., 2004; Kim et al., 2012; Downer, Zanjani & Fardo, 313 

2014),  would seem only to add further weight to this association. 314 

 315 

2.1.4 Summary of similarities between AD and ARBD 316 

 317 

In summary AD and ARBD show a strikingly similar pattern of neurological damage, 318 

particularly evident in the basal forebrain and hippocampal region of the medial temporal region, 319 

accompanied by marked degeneration in the cholinergic projection system. In keeping with this 320 

pattern of damage both AD and ARBD sufferers show deficits in executive function, olfaction 321 

and anterograde memory (especially spatial memory) formation and a tendency towards 322 

perseverative behaviour. 323 

 324 

Taken together, these similarities would seem more than sufficient to warrant further 325 

investigation. Yet it is hard to explain the mechanism by which long-term exposure of the brain 326 

to two such different molecules, ethanol and Aβ, vastly different in size and sharing no obvious 327 

chemical or physical properties in common, should lead to such a similarly distinctive pattern of 328 

damage. Rather, it suggests that AD could be caused by molecules whose effects are likely to be 329 

more similar to those of ethanol. One such candidate is FFAs which, for reasons discussed later, 330 

share some crucial properties of ethanol and other aliphatic 1-alcohols (including fatty alcohols). 331 

However, in order to appreciate how FFAs can become a major driver of AD, one must first 332 

understand the differences between lipid metabolism either side of the BBB. 333 

 334 
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2.2 Differences between lipid metabolism on either side of the BBB 335 

 336 

Whatever the exact biological role of the BBB may be, it is clear that many aspects of lipid 337 

metabolism and transport greatly differ either side of it. This is most apparent in the case of fatty 338 

acids (FAs) and cholesterol. 339 

 340 

2.2.1 Fatty acid metabolism 341 

 342 

For efficient transport within plasma, the vast majority of FAs, being highly hydrophobic, must 343 

travel within lipoproteins or must be bound to the protein serum albumin to improve solubility 344 

(Vance & Vance, 2008; van der Vusse, 2009).   345 

 346 

Immediately after eating, dietary FAs, bound to glycerol as triacylglycerol esters (TAGs) and 347 

transported within the class of lipoproteins known as chylomicrons, constitute a major 348 

proportion of the plasma transport pool (Vance & Vance, 2008; Rang, 2012). At the same time, 349 

high blood glucose levels associated with satiety lead to hepatic neogenesis of FAs and glycerol, 350 

with the resulting TAGs being transported in the blood within Very Low Density Lipoproteins 351 

(VLDLs) (Vance & Vance, 2008; Rang, 2012). During subsequent plasma transport most of the 352 

TAGs within chylomicrons and VLDLs are taken up by tissues, principally adipocytes and 353 

muscle cells (Brindley, 1991; Ahmadian et al., 2007).   354 

 355 

The chylomicrons and VLDLs are relatively large (typically within a range of 30-80nm and 100-356 

1000nm, respectively (Vance & Vance, 2008; Rang, 2012)) and lipid-rich by virtue of their 357 
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association with ApoB isoforms. ApoB is synthesised only in the liver and in enterocytes, and 358 

thus is normally unavailable to the CNS (Young, 1990; Vance & Vance, 2008). Such 359 

lipoprotein-mediated FA transport appears to allow only very restricted access to the postnatal 360 

brain across the BBB, given its architecture, mentioned earlier (Beffert et al., 1998; Björkhem & 361 

Meaney, 2004; Elliott, Weickert & Garner, 2010; Orth & Bellosta, 2012), with only much 362 

smaller,  less lipid-rich high-density lipoproteins (HDL) appearing to cross the BBB in any 363 

quantity (Wang & Eckel, 2014). 364 

 365 

During the fasting state, adipocytes release stored FFAs directly back into the bloodstream, with 366 

the majority being subsequently bound to serum albumin (Vance & Vance, 2008; van der Vusse, 367 

2009). Because serum albumin is created almost exclusively in the liver (Ballmer, 2001; van der 368 

Vusse, 2009; Schiff, Maddrey & Sorrell, 2011) and cannot pass readily through the BBB (Nag, 369 

2003; Banks, 2006, 2008), it has until recently been assumed that albumin-bound FFAs must 370 

also be largely excluded, in the same way as lipoprotein-associated FFAs.  The reason for this 371 

conclusion comes not just from the structural properties of the BBB mentioned above, but also 372 

from the widespread expression within BBB endothelial cells of efflux pumps, such as P-373 

glycoprotein, which have hydrophobic molecules amongst their principal ligands (Rubin & 374 

Staddon, 1999).  This would seem to suggest that even unbound FFAs (either those unloaded 375 

from albumin or never loaded in the first place) would tend to be pumped back out of the brain 376 

in the same way that all large lipophilic molecules tend to be (Roninson, 1992).   377 

 378 

Together, such features would appear to provide an obvious reason why, almost uniquely 379 

amongst organs, the brain does not rely on the external supply of FAs (certainly in albumin-380 

bound form) as a primary energy source (Schönfeld & Reiser, 2013; Jha & Morrison, 2018).  381 
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This is despite the fact that the brain has a high energy requirement, and other organs with high 382 

energy needs, such as the heart and kidney, preferentially oxidise FAs (Johnson et al., 1990; 383 

Schönfeld & Reiser, 2013).  Instead, during the fasting state when glucose availability is low, the 384 

liver will typically transform plasma FFAs into much smaller ketone bodies, which, having been 385 

transported through the BBB, are used as an energy source by the brain (Sokoloff, 1973; Owen, 386 

2005; Yang et al., 2019). 387 

 388 

However, it has become increasingly clear in recent years that the BBB does not exclude FFAs 389 

from the brain (Karmi et al., 2010; Schönfeld & Reiser, 2013; Panov et al., 2014; Murphy, 2017) 390 

and the most likely reason for why the brain does not use them extensively for its energy needs is 391 

that they would prove toxic to neurons (Schönfeld & Reiser, 2013; Speijer, Manjeri & 392 

Szklarczyk, 2014; Ioannou et al., 2019).  (Another possible reason is that the rate of ATP 393 

generation from FAs is slower than from glucose and ketone bodies, meaning that FAs may not 394 

be able to yield ATP fast enough for rapidly firing neurons, especially under conditions of 395 

sustained activity (Schönfeld & Reiser, 2013).) 396 

 397 

Recent evidence suggests a key role for astrocytes in protecting neurons from FA-mediated 398 

lipotoxicity.  It appears that they do this in at least two ways. Firstly, they internalise medium-399 

chain-length FAs, breaking them down by β-oxidation and secreting a proportion as ketone 400 

bodies, or the much shorter chain-length FA butyrate, both of them much less toxic to neurons 401 

(Edmond et al., 1987; Ebert, Haller & Walton, 2003; Schönfeld & Reiser, 2013; Plötz et al., 402 

2017; Sonnay et al., 2019).  Secondly, they directly take up excess FFAs from hyperactive 403 

neurons, preventing oxidative stress and other forms of lipotoxic damage, as well as preventing 404 
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accumulation of lipid droplets in the neuronal cytoplasm (Unger et al., 2010; Nguyen et al., 405 

2017; Ioannou et al., 2019).  406 

 407 

This second mechanism appears to involve neuronal exocytosis of ApoE-containing lipoprotein-408 

like lipid particles, and subsequent endocytosis by astrocytes into lipid droplets (Ioannou et al., 409 

2019). Furthermore, neurons that express the ApoE4 allele appear not to secrete FAs as 410 

efficiently as wild-type ApoE, resulting in the greater lipid peroxidation and other forms of 411 

lipotoxic damage mentioned above (Ioannou et al., 2019). 412 

 413 

Collectively, then, astrocytes appear to protect neurons by importing FAs from neurons and from 414 

the immediate external interstitial fluid, and then either utilising them for generating ATP or 415 

ketone bodies/butyrate (both as a result of β-oxidation), or else storing them within lipid droplets 416 

(as TAGs) for future use.  Except perhaps in times when other energy sources are not available, 417 

astrocytes appear to export most of the ketone bodies and butyrate for neuronal usage, relying on 418 

FFAs for much of their own energy needs. 419 

 420 

As a consequence, neuronal energy metabolism primarily relies on lactate, glucose, ketone 421 

bodies or butyrate in preference to FAs (Schönfeld & Reiser, 2013; Jha & Morrison, 2018), thus 422 

protecting neurons from oxidative stress, mitotoxicity and lipotoxicity (Reynolds & Hastings, 423 

1995; Schönfeld & Reiser, 2013, 2017; Ioannou et al., 2019).  This may explain why neurons are 424 

reported to have relatively poor antioxidative defences, certainly compared to astrocytes 425 

(Bolaños et al., 1995; Schönfeld & Reiser, 2013), despite, at first sight, being more obviously at 426 

risk from oxidative damage as a result of their high activity levels and correspondingly much 427 

higher energy consumption (Attwell & Laughlin, 2001; Schönfeld & Reiser, 2013). 428 
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 429 

Certainly, such an explanation appears to account for why FFAs are not used for neuronal energy 430 

metabolism, despite seemingly being available in substantial quantity for this purpose, and FFAs 431 

providing about twice the energy content of glucose and similar sugars (Speijer, Manjeri & 432 

Szklarczyk, 2014). 433 

 434 

But this still leaves a number of important questions unresolved.  Most importantly, what 435 

happens to the FFAs, once they cross the BBB, given that albumin transport is no longer 436 

available to them (Olsson et al., 1968; Roheim et al., 1979; Cipolla, 2009; Schönfeld & Reiser, 437 

2013)?  And how are they transported?   In the absence of any obvious alternatives to albumin in 438 

the CNS, some form of lipoprotein-mediated transport seems the most obvious alternative, 439 

mirroring the situation in the plasma compartment outside the CNS. However, there are 440 

important differences between lipoprotein transport in the CNS and lipoprotein transport in the 441 

plasma compartment. 442 

 443 

In contrast to what is seen in plasma, the principal apolipoproteins expressed in the CNS 444 

(including Apo E, D and J (Danik et al., 1999; Elliott, Weickert & Garner, 2010)) associate into 445 

lipoprotein particles that are relatively small (typically less than 20nm) and lipid poor, containing 446 

modest amounts of lipids (Roheim et al., 1979; Ladu et al., 2000; Vance & Vance, 2008).  Such 447 

CNS lipoprotein particles tend to resemble High-Density Lipoproteins (HDL) (Roheim et al., 448 

1979; Ladu et al., 2000; Elliott, Weickert & Garner, 2010; Rang, 2012)  much more than the 449 

larger ApoB-associated lipoproteins that predominate outside the CNS. 450 

 451 
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Furthermore, astrocytes are known to be a principal source of many of these CNS-originating 452 

apolipoproteins, particularly Apo E and J (Ladu et al., 2000; Mahley, Weisgraber & Huang, 453 

2006; Elliott, Weickert & Garner, 2010), and lipoproteins have been isolated from the 454 

conditioned medium of astrocytic cultures (Danik et al., 1999).  The fact that astrocytic foot 455 

processes are estimated to cover as much as 99% of the brain surface of capillaries (Johanson, 456 

1980; Pardridge, 2005; Wilhelm et al., 2016), would seem to provide an obvious route of entry 457 

for FFAs that have managed to detach from their albumin transport partners and pass through the 458 

BBB.  They can then be assembled into HDL-like lipoproteins within the astrocyte body and 459 

secreted into the interstitial fluid of the brain compartment, for onward transport and uptake by 460 

neurons and glial cells (Farmer, Kluemper & Johnson, 2019). 461 

 462 

From this description, it would appear that FA transport and metabolism in the CNS is very 463 

different from that seen in the rest of the body.  In particular, there appears to be little, if any, 464 

non-lipoprotein FA transport in the CNS and, on average, CNS lipoproteins are much smaller 465 

than their plasma equivalents.  In many respects, FA transport seems more tightly controlled in 466 

the brain compartment than outside it.  Certainly, it is hard to see how such differences would be 467 

possible without a substantially intact BBB, especially given the much smaller size of the CNS 468 

compartment. 469 

 470 

2.2.2 Cholesterol metabolism 471 

 472 

Numerous studies have shown that, except in very early foetal development, almost all 473 

cholesterol in the CNS is of local origin, relying on endogenous de novo biosynthesis rather than 474 
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external, lipoprotein-mediated provision (Dietschy & Turley, 2004; Björkhem & Meaney, 2004; 475 

Elliott, Weickert & Garner, 2010; Orth & Bellosta, 2012).  This appears to be true for a wide 476 

range of animals, including birds and mammals, with much of cholesterol production for 477 

neuronal consumption being delegated to local astrocytes (Pfrieger, 2003; Dietschy & Turley, 478 

2004; Elliott, Weickert & Garner, 2010).  479 

 480 

Moreover, cholesterol turnover in the mature CNS is very low, typically only around 5% of the 481 

turnover seen in the rest of the body (Dietschy & Turley, 2004; Björkhem & Meaney, 2004; Orth 482 

& Bellosta, 2012).  A major reason for this is that a large proportion of such cholesterol remains 483 

locked up within the insulating myelin sheath that permanently encases the axons of many 484 

neurons, particularly within the white matter of the brain (Zhang & Liu, 2015).  Much of this 485 

myelination takes place early in organismal development (Deoni et al., 2012). 486 

 487 

In the rest of the body (and thus on the other side of the BBB) a large proportion of cholesterol is 488 

either of dietary origin or else the result of neogenesis in the liver (Vance & Vance, 2008; Rang, 489 

2012). From there much of it is transported in the same large, lipid-rich, ApoB-containing 490 

lipoproteins (i.e. chylomicrons and VLDLs) that also transport dietary and liver-derived FAs 491 

(Young, 1990; Vance & Vance, 2008; Rang, 2012). Thus, for reasons of size (along with the 492 

other reasons previously mentioned), much cholesterol of non-CNS origin is unable to cross the 493 

BBB (Kay et al., 2003; Björkhem & Meaney, 2004; Elliott, Weickert & Garner, 2010; Orth & 494 

Bellosta, 2012). 495 

 496 

By contrast, within the brain and wider CNS, cholesterol is transported within the same HDL-497 

like lipoproteins described in 2.2.1.  Such lipoproteins tend to be small, compared to many of 498 
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their plasma counterparts, typically containing only modest amounts of cholesterol and other 499 

lipids (Vance & Vance, 2008). 500 

 501 

2.2.3 Overall differences in lipid transport either side of the BBB 502 

 503 

Certainly, from birth onwards (Saunders et al., 1999), the BBB separates two compartments with 504 

very different lipid systems (Pardridge & Mietus, 1980; Dietschy & Turley, 2004).  Compared to 505 

the rest of the body the mature CNS compartment is distinguished by a much lower circulation 506 

of lipids, with apparently restricted external lipid supplementation and a set of lipoproteins that 507 

are noticeably smaller and less lipid-rich. Much of this difference can be accounted for by the 508 

BBB, and by the fact that ApoB is not produced in the brain. 509 

 510 

Given that this distinction appears to have first emerged comparatively early in vertebrate 511 

evolution (Abbott, 2005; Bundgaard & Abbott, 2008), it seems plausible that serious disruption 512 

to the BBB will have lipid-related consequences. This can be inferred from the fact that the 513 

mature brain compartment has evolved for so long to function in an environment low in 514 

circulating lipids compared with the rest of the body. And, given the relative volumes of the two 515 

compartments, it seems likely the brain will be the most vulnerable to lipid incursion if no longer 516 

substantially isolated from the rest of the body by the BBB.  517 

 518 

 519 

 520 
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2.3 The causes of BBB disruption in the lipid-invasion model 521 

 522 

Clearly, an explanation of how the BBB becomes disrupted in AD is central to the lipid-invasion 523 

model. It is generally established that the BBB slowly degrades with age (Farrall & Wardlaw, 524 

2009; Popescu et al., 2009), providing a simple reason, according to the model, why LOAD 525 

incidence is also closely correlated with age. But any model with such disruption at its centre 526 

needs to account for the many inherited and non-inherited risk factors that accelerate the onset of 527 

AD. 528 

 529 

In FAD this can accounted for by Aβ, which, as explained earlier, is known to impair BBB 530 

integrity (Thomas et al., 1997; Su et al., 1999; Marco & Skaper, 2006; Takechi et al., 2010a), 531 

especially in association with the ApoE4 genotype (Premkumar et al., 1996; Olichney et al., 532 

1996; Alonzo et al., 1998; Fryer et al., 2003).  This may be partly explained by the fact that, 533 

more generally, ApoE protects the BBB, with its absence leading to progressive BBB leakage, in 534 

excess of what is seen as a result of normal ageing (Mulder et al., 2001; Methia et al., 2001; 535 

Hafezi-Moghadam, Thomas & Wagner, 2007).  Compared to the other ApoE isoforms, however, 536 

ApoE4 is associated with impaired BBB function, particularly involving tight junctions, whose 537 

integrity is critical to the BBB’s capacity to exclude a wide range of molecules (Salloway et al., 538 

2002; Nishitsuji et al., 2011; Bell et al., 2012). 539 

 540 

Moreover, it is now clear that Aβ has an important function as a regulatory apolipoprotein, being 541 

highly expressed in both the liver and small intestine, and associated with triglyceride-rich 542 

lipoproteins of similar origin (Galloway et al., 2007; Mamo et al., 2008; Takechi et al., 2010a). 543 
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In absorptive enterocytes, Aβ is seen to collocate with ApoB48, forming chylomicrons, with 544 

enterocytic levels of Aβ and plasma levels of Aβ-associated chylomicrons both increasing in 545 

response to a diet high in saturated fats (Galloway et al., 2007; Pallebage-Gamarallage et al., 546 

2010).  547 

 548 

In a standard transgenic mouse model of AD in which Aβ is overproduced, disease progression 549 

and onset were seen to be strongly correlated with rates of secretion into the blood of TAG-rich, 550 

Aβ-associated lipoproteins, and with their subsequent plasma levels (Takechi et al., 2010a). Such 551 

overproduction, whether resulting from dietary causes or from direct Aβ over-expression, leads 552 

to BBB disruption (Mamo et al., 2008; Takechi et al., 2010a; Pallebage-Gamarallage et al., 553 

2010). 554 

 555 

This helps explain, amongst other things, why amyloid plaques in human brains show 556 

immunoreactivity for ApoB, similar to that seen in the brains of AD mouse models (Namba, 557 

Tsuchiya & Ikeda, 1992; Takechi et al., 2010a). For the reasons stated earlier, such ApoB 558 

deposition is only possible if the BBB has been disrupted in some way, as well as being 559 

consistent with the premise that invading, lipid-rich, lipoproteins are primary actors in 560 

endosomal pathology (as described in 2.6.2) and amyloid plaque formation. 561 

 562 

This suggests that the aetiology of both familial and late-onset forms of AD could be linked 563 

through excess levels of TAG-rich chylomicrons.  In the former case this would primarily result 564 

from over-production of Aβ, whilst in the latter case it would primarily result from dietary 565 

causes. This in turn would lead, in both cases, to BBB disruption (which can be exacerbated by 566 

other factors, as explained above) and to the characteristic neurodegenerative effects outlined 567 
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below.  However, evidence for such chylomicron excess as a general characteristic of AD is 568 

limited at present and is not a requirement of the model. 569 

 570 

2.4 AD-relevant consequences of lipid influx to the brain 571 

2.4.1 Oxidative stress 572 

In recent years a considerable body of evidence has accumulated that suggests that AD-affected 573 

brains are subject to high levels of oxidative stress (Markesbery, 1997; Huang, Zhang & Chen, 574 

2016). This evidence includes increased protein and DNA oxidation (Smith et al., 1991; 575 

Mecocci, MacGarvey & Beal, 1994; Markesbery, 1997; Korolainen et al., 2002; Santos et al., 576 

2012), as well as an increase in lipid peroxidation (Subbarao, Richardson & Ang, 1990; Bradley-577 

Whitman & Lovell, 2015), together with various associated peroxidation biomarkers (Lovell et 578 

al., 1997; Bradley-Whitman & Lovell, 2015).  Such lipid peroxidation may account for an 579 

observed decrease in the levels of polyunsaturated FAs, which appear to be more vulnerable to 580 

such peroxidation (Markesbery, 1997; Conquer et al., 2000; Tsaluchidu et al., 2008; Fotuhi, 581 

Mohassel & Yaffe, 2009; Dyall, 2010; Huang, Zhang & Chen, 2016).  Other indications of 582 

oxidative stress in AD-affected brains include raised levels of advanced glycation end-products, 583 

that is to say proteins or lipids that have become glycated (Smith et al., 1994; Markesbery, 1997; 584 

Sasaki et al., 1998; Drenth et al., 2017). 585 

 586 

Not surprisingly, there has been much focus on the role of Aβ and amyloid plaques as principal 587 

drivers of this oxidative stress in AD (Markesbery, 1997; Huang, Zhang & Chen, 2016).  588 

Certainly, there is substantial evidence to suggest that both Aβ and its precursor APP contain 589 

high affinity binding sites for metal such as copper, zinc and iron, with amyloid plaques seen to 590 
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be highly enriched with these metals, some of which are redox-active (Barnham et al., 2003; 591 

Huang et al., 2004; Smith, Cappai & Barnham, 2007; Strozyk et al., 2009; Liu et al., 2019).  And 592 

subsequent findings have led many researchers to propose a positive feedback mechanism 593 

whereby Aβ amyloidosis and metal-induced oxidative stress reinforce each other, thus 594 

contributing strongly to AD-associated neuropathology (Huang et al., 2004; Smith, Cappai & 595 

Barnham, 2007; Strozyk et al., 2009; Faller, 2009). 596 

 597 

However, despite more than 20 years of research into this relationship, there are still many 598 

questions that remain unresolved, not least concerning the respective roles of copper and zinc 599 

(Cuajungco & Fagét, 2003; Atrián-Blasco, Conte-Daban & Hureau, 2017; Drew, 2017).  600 

Furthermore, there is, as yet, no convincing evidence that therapeutic metal chelation has any 601 

substantial impact, if at all, in slowing down AD progression, leading some to question the 602 

relevance of such metal-induced oxidative stress to AD (Drew, 2017; Liu et al., 2019). 603 

 604 

But there are many other ways in which AD might lead to oxidative stress, without requiring the 605 

involvement of metals.  In particular, neuroinflammation triggered by the presence of Aβ, 606 

provides a straightforward reason why oxidative stress should increase with AD progression, 607 

given the well-established link between neuroinflammation and increased levels of reactive 608 

oxygen and nitrogen species (Agostinho, Cunha & Oliveira, 2010; Dyall, 2010; González-Reyes 609 

et al., 2017).  This is addressed in more detail in the next section. 610 

 611 

A key prediction of the lipid-invasion model (outlined in 2.6.1) is that an increase in Aβ 612 

production will occur as a direct consequence of lipid invasion from outside the brain.  613 

Therefore, oxidative stress, as a consequence of Aβ-driven neuroinflammation, can be easily 614 
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accounted for by the model. And (as explained in more detail in 2.4.2), FA invasion may drive 615 

neuroinflammation more directly, acting on same pathways that drive ethanol-induced 616 

neuroinflammation.  Thus, there are good reasons for believing that FA-driven 617 

neuroinflammation alone is sufficient to account for the increase in oxidative stress seen in AD. 618 

 619 

However, the description of FA metabolism in section 2.2.1 suggests another, more direct, way 620 

in which the lipid-invasion model can account for oxidative stress in AD.  Substantial damage to 621 

the BBB will mean that the brain is exposed to albumin-bound FFAs and, larger, more lipid-rich 622 

lipoproteins, originating from the external plasma compartment. 623 

 624 

As a consequence, it may be that astrocytes are no longer able to protect neurons from excessive 625 

FA accumulation, leading to lipid peroxidation and other forms of oxidative stress. Certainly, 626 

there is much evidence to suggest that lipid homoeostasis becomes badly disrupted in AD 627 

(Foley, 2010; Di Paolo & Kim, 2011; Farmer, Kluemper & Johnson, 2019).  Indeed, in the 628 

earliest reports of the disease, by Alois Alzheimer and colleagues, there are numerous references 629 

to various intracellular lipid inclusions and other lipid-related abnormalities within the brain of 630 

affected subjects (Stelzmann, Norman Schnitzlein & Reed Murtagh, 1995; Di Paolo & Kim, 631 

2011). 632 

 633 

Given that normal lipid homoeostasis appears to be critical to preventing excessive oxidative 634 

stress within the brain, as described in 2.2.1, it can easily be appreciated how breakdown of the 635 

BBB, as predicted by the lipid-invasion model, might lead to appreciable increases in such 636 

stress. 637 

 638 
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2.4.2 Neuroinflammation 639 

 640 

Extensive research has established that neuroinflammation is an important cause of ethanol-641 

induced neurodegeneration (Syapin & Hickey, 2006; Blanco & Guerri, 2007; Crews, 2008; 642 

Crews & Nixon, 2009)  and that microglia are central agents of such inflammation (Syapin & 643 

Hickey, 2006; Crews, 2008; Zhao et al., 2013; Walter & Crews, 2017). This central role is 644 

perhaps unsurprising, given that the “immune-privileged” status conferred on the brain by the 645 

BBB leaves microglia as the primary immune cell (Kaur et al., 2010; Yang et al., 2010), a role 646 

not seen as a rule in macrophages in the rest of the body. Their ability to perform this role seems 647 

to depend in large part on being abnormally sensitive to a wide range of ligands (Gehrmann, 648 

Matsumoto & Kreutzberg, 1995; Dissing-Olesen et al., 2007; Yang et al., 2010), and this, in 649 

turn, helps to explain why chronic ethanol, largely unobstructed by the BBB, causes such 650 

extensive inflammatory damage to the brain over time (Crews & Vetreno, 2014). Additionally, 651 

the mechanism through which this occurs suggests that FAs, provided they could pass through 652 

the BBB in quantity, would have similar inflammatory effects, since both are known to 653 

powerfully activate the same critical receptor. 654 

 655 

Ethanol activation of microglia (Crews & Vetreno, 2014), is accompanied by upregulation of the 656 

transcription factor NF-κB (Zou & Crews, 2010; Alfonso-Loeches et al., 2010) and other 657 

macromolecules known to be involved in inflammation and in the immune response. The 658 

evidence suggests that toll-like receptors, particularly TLR4, a receptor that binds bacterial 659 

lipopolysaccharide (LPS), appear to be central to such activation and the subsequent 660 

neuroinflammation (Alfonso-Loeches et al., 2010; Fernandez-Lizarbe, Montesinos & Guerri, 661 

2013). 662 
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 663 

If TLR4 is central to ethanol-induced neuroinflammation then there seems every reason to think 664 

that FFAs entering the brain would have similar neuroinflammatory effects. Saturated (but not, 665 

apparently, unsaturated) FAs are known to activate TLR4 in macrophages, leading in turn to 666 

activation of NF-κB and the other pro-inflammatory molecules just mentioned (Chait & Kim, 667 

2010; Wang et al., 2012). And TLR4 activation in adipocytes by saturated FAs (and perhaps by 668 

some unsaturated FAs) is an essential step in lipid-induced type 2 diabetes mellitus (Shi et al., 669 

2006; Chait & Kim, 2010), which is now thought to be substantially inflammatory in nature 670 

(Wellen & Hotamisligil, 2005; Shi et al., 2006; Donath & Shoelson, 2011). In support of this, 671 

knockdown or ablation of TLR4 has been shown to inhibit both FFA-induced and ethanol-672 

induced inflammation (Shi et al., 2006; Chait & Kim, 2010; Alfonso-Loeches et al., 2010; Wang 673 

et al., 2012), as well as protecting against FA-induced diabetes. 674 

 675 

Given how responsive microglia are to pathological stimuli   (Kreutzberg, 1996; Rock et al., 676 

2004; Rangaraju et al., 2015; Lenz & Nelson, 2018), one could reasonably expect activation by 677 

both ethanol and FFAs to result in far more vigorous inflammatory activity than seen in other 678 

parts of the body. And, whilst the relative affinities of ethanol and FFAs for TLR4 have yet to be 679 

determined, the fact that saturated fatty acyl groups are known to be crucial to TLR4 recognition 680 

of LPS (TLR4’s principal pathogenic ligand) (Hwang, 2001) suggests that FFAs should have a 681 

substantially higher affinity than ethanol for TLR4. Thus, the relatively low levels of FFAs seen 682 

in plasma (generally agreed to fall within an average range of 0.3-0.6 mM (Belfort et al., 2005; 683 

Huber & Kleinfeld, 2017)) should be sufficient to generate a steady level of neuroinflammation, 684 

following major BBB insult, especially if they are accompanied by pathogen-associated LPS, as 685 

seen in ethanol-induced liver injury (Nagy, 2003).  So it may be this, rather than TLR4 686 
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stimulation by amyloid (Walter et al., 2007), that is the primary driver of microglial-based 687 

neuroinflammation in LOAD. 688 

 689 

2.4.3 Inhibition of neurogenesis 690 

 691 

Ethanol-induced neuroinflammation has also been linked to inhibition of neurogenesis (Nixon & 692 

Crews, 2002; Crews & Nixon, 2009), with many studies suggesting that such neurogenetic 693 

deficits are almost as important a factor as neuroinflammation in ethanol-mediated brain 694 

degeneration (Crews & Nixon, 2009). Here too, TLR4, and other ethanol-sensitive toll-like 695 

receptors, are likely to have a prime inhibitory role (Barak, Feldman & Okun, 2014; Crews et al., 696 

2017), diminishing proliferation of adult neuronal progenitor cells (NPCs) and restricting 697 

neuronal differentiation from NPCs. Such inhibition would obviously be most apparent in the 698 

main adult neurogenic niches, i.e. the subgranular and subventricular zones, which provide new 699 

neurons and glial cells to (respectively) the hippocampus and the olfactory bulb (Ming & Song, 700 

2011). This could explain the deficiencies in learning and olfaction common to both AD and 701 

ARBD. 702 

 703 

Furthermore, current evidence indicates that the overall level of neurodegeneration is determined 704 

almost as much by the relentlessness of the ethanol assault as by the concentrations involved  705 

(Nixon & Crews, 2002; Nixon, 2006; Crews & Nixon, 2009).  Thus, one can reasonably infer 706 

that constant exposure of the brain to plasma levels of FFAs is likely to overwhelm the brain’s 707 

capacity to recover, especially in the elderly. Such a conclusion is further supported by evidence 708 

that inhibition of neurogenesis, by both ethanol and FFAs, does not need to rely on the TLR4 709 
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receptor alone, and may, in fact, depend more on GABAergic effects, as explained in the next 710 

section. 711 

 712 

2.5 GABAergic effects 713 

 714 

Recent research has indicated a possible role for the inhibitory neurotransmitter gamma-715 

aminobutyric acid (GABA) in the development of AD (Rissman & Mobley, 2011; Wu et al., 716 

2014; Jo et al., 2014), with a number of possible mechanisms being suggested. One such 717 

mechanism, GABA-induced tonic inhibition within the hippocampus, provides an obvious 718 

explanation of why AD is characteristically associated with AA. However, the proposed source 719 

of this excess GABA within hippocampal-resident reactive astrocytes, does not have much 720 

support in the literature, either for AD or ARBD. 721 

 722 

The lipid-invasion model provides an alternative mechanism, extending beyond tonic inhibition, 723 

and accounting for the coexistence of AA in AD and ARBD, as well as other similarities, 724 

including similar patterns of neurodegeneration within two major neurogenic niches, the SGZ 725 

and SVZ. Underlying this common mechanism is the proven affinity of ethanol, and likely 726 

affinity of FFAs, for GABAA receptors (GABAARs), as well as the recently-discovered role of 727 

high-affinity extrasynaptic GABAARs in both tonic inhibition and anaesthesia-associated 728 

amnesia. 729 

 730 

From the 1950s onward, Samson and Dahl, and other groups, showed that injection of FFAs 731 

induced light anaesthesia in a range of mammals  (Samson Jr, Dahl & Dahl, 1956; White & 732 
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Samson, 1956; Matsuzaki & Takagi, 1967; McCandless, 1985).  Anaesthetic potency increases 733 

(up to an undetermined cut-off) with FFA chain length (and thus hydrophobicity), in line with 734 

Meyer-Overton (Samson Jr, Dahl & Dahl, 1956; White & Samson, 1956; Dahl, 1968; Perlman & 735 

Goldstein, 1984), falling within the low millimolar range (expressed both as moles per litre and 736 

moles per kilogram of body weight) and showing similar potencies to structurally comparable 1-737 

alcohols (including ethanol) (Alifimoff, Firestone & Miller, 1989), as well as to alkanes (Hau, 738 

Connell & Richardson, 2002) and aldehydes (Deneer, Seinen & Hermens, 1988).  739 

 740 

Given the general correlation between hydrophobicity and anaesthetic potency first described by 741 

Meyer-Overton (Evers & Crowder, 2009), it would perhaps be surprising if fatty acids did not 742 

show similar anaesthetic potencies to structurally very similar fatty alcohols (Ueda & Suzuki, 743 

1998; Matsuki et al., 1999; Frangopol & Mihailescu, 2001; Evers & Crowder, 2009), nor, given 744 

the established anaesthetic properties of various steroids (Kappas & Palmer, 1963; Belelli & 745 

Lambert, 2005), should it be a surprise that other lipids might display similar properties.  746 

 747 

The immediate significance of lipids’ anaesthetic properties to dementia lies in the fact that, at 748 

concentrations well below those needed for clinical anaesthesia, the vast majority of anaesthetic 749 

agents are known to cause AA (Orser, 2007; Bonin & Orser, 2008; Evers & Crowder, 2009). 750 

Such low-level anesthesia-induced AA is now known to involve extrasynaptic GABAARs 751 

(Orser, 2007; Bonin & Orser, 2008) whose subunit composition (including either α5 or δ 752 

subunits) gives them sufficient sensitivity to respond to low levels of ambient GABA (Brickley 753 

& Mody, 2012). It is the resulting low-level inhibitory currents, collectively termed “tonic 754 

inhibition”, which are associated with AA (Cheng et al., 2006; Nutt et al., 2007; Sikka, Beaman 755 

& Street, 2015). (By contrast lower-affinity synaptic GABAARs, with different subunit 756 
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compositions, respond only to the higher concentrations of GABA released within their 757 

associated synapses, with the resulting phasic inhibition causing the other anaesthetic effects 758 

(Farrant & Nusser, 2005; Bonin & Orser, 2008; Evers & Crowder, 2009), including analgesia, 759 

immobility and unconsciousness.) In support of this, pharmacological and genetic knockdown of 760 

extrasynaptic α5- and δ-containing GABAARs in mice has been shown to improve performance 761 

on learning and memory tasks (Collinson et al., 2002; Shen et al., 2010; Clarkson et al., 2010), 762 

possibly by lowering the threshold for long-term potentiation (Liu et al., 2010; Martin et al., 763 

2010; Whissell et al., 2013). 764 

 765 

The reason for all this is that GABAARs have associated ion channels, which become permeable 766 

to chloride (and, to a lesser extent, HCO3) ions, in response to GABA ligation (Grover et al., 767 

1993; Li & Xu, 2008; Sigel & Steinmann, 2012). Upon such activation, chloride ions flow 768 

through these GABAAR channels in a direction determined by their electrochemical gradient.  769 

Since mature neurons maintain an excess of chloride ions externally, the normal response to 770 

GABA binding is therefore for these negative ions to flow in through the GABAAR channels, 771 

increasing the negative membrane potential and thereby hyperpolarising (i.e. inhibiting) the 772 

affected neuron (Kaila, 1994; Li & Xu, 2008).  Tonic inhibition is just the extrasynaptic form of 773 

this (Petrini et al., 2004; Jia et al., 2005). The majority of anaesthetic agents (including those that 774 

are only weakly anaesthetic, such as ethanol) are known to enhance this GABA binding, acting 775 

as positive allosteric modulators (Orser et al., 1998; Krasowski, 2003).  Accordingly, they tend 776 

to inhibit normal activity in mature neurons of the CNS (Orser et al., 1998; Krasowski & 777 

Harrison, 1999; MacIver, 2014).   778 

 779 
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However, recent research has shown that the same high-affinity extrasynaptic GABAARs that 780 

mediate tonic inhibition in mature neurons (Yeung et al., 2003; Brickley & Mody, 2012) also 781 

play a significant role in neurogenesis and neuronal plasticity (Liu et al., 2005; Bordey, 2007).  782 

In support of this, pharmacological and genetic suppression of tonic GABA inhibition, including 783 

by down-regulation of extrasynaptic GABAAR activity, is associated with marked 784 

improvements in functional recovery after stroke (Clarkson et al., 2010; Paik & Yang, 2014).  785 

This is in agreement with findings that suggest that increased GABA tonic inhibitory currents, in 786 

the days after stroke, hinder recovery (Clarkson et al., 2010; Clarkson, 2012).   787 

 788 

Since the extrasynaptic GABAARs containing the δ-subunit are known to be especially sensitive 789 

to positive modulation by ethanol (Wei, Faria & Mody, 2004; Meera et al., 2010) this may 790 

explain alcohol-mediated neurodegeneration seen in ARBD.    As explained earlier, disruption of 791 

neurogenesis appears to be critical to the neurodegenerative effects of ethanol upon the brain.  792 

Specifically, chronic exposure of the brain to ethanol is characterised from comparatively early 793 

on by erosion of the hippocampal region (Morris et al., 2009; Crews & Nixon, 2009), loss of 794 

interneurons (the primary product of neurogenesis (Mandyam, 2013)), AA (White et al., 2004; 795 

Sanday et al., 2013) and olfactory deficits (Ditraglia et al., 1991; Collins, Corso & Neafsey, 796 

1996). 797 

 798 

An obvious explanation for these findings is inhibition of neurogenesis in the SGZ and SVZ, 799 

given that the former supplies neurons to other hippocampal regions (Eriksson et al., 1998; Ming 800 

& Song, 2011), whilst the latter is known to replenish the olfactory bulb interneurons via the 801 

rostral migratory stream (Ming & Song, 2011; Lim & Alvarez-Buylla, 2016).  Since much 802 

evidence suggests that FFAs have, on average, similar, if not higher, anaesthetic potency levels 803 
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to ethanol (Samson Jr, Dahl & Dahl, 1956; Walker et al., 1970; Pringle, Brown & Miller, 1981; 804 

Wong et al., 1997; Ueda & Suzuki, 1998; Frangopol & Mihailescu, 2001), implying a similar 805 

affinity for GABAARs, it may well be that chronic exposure of the brain to excess FFAs over 806 

many years will have similar results. This would provide an explanation of, why AD and ARBD 807 

share these hallmark effects on the brain.  808 

  809 

A complicating factor here is that, in immature neurons, the chloride gradient is reported to be in 810 

the reverse direction to that of their mature counterparts (Ben-Ari & Holmes, 2005; Li & Xu, 811 

2008).  That is to say, chloride ions are held internally in excess of their external levels.  If so, 812 

GABA binding to GABAARs could reasonably be expected to activate such precursor neurons 813 

and, by extension, one would expect anaesthetic agents (and other positive modulators) to 814 

overactivate them.  A further consideration is that such precursor cells initially exhibit few 815 

synapses, with most GABAARs having a subunit composition typical of extrasynaptic 816 

GABAARs in mature neurons (Henschel, Gipson & Bordey, 2008; Song et al., 2012; Pallotto & 817 

Deprez, 2014), with synapses only tending to emerge later as the neuronal precursors mature and 818 

become integrated (synaptically and otherwise) with the existing network (Ge et al., 2007; Ben-819 

Ari et al., 2007; Ming & Song, 2011).  So GABAARs in these cells tend to have a high affinity 820 

for ambient GABA, and one would expect the dominant response to GABA stimulation to be 821 

tonic activation (Ming & Song, 2011; Song et al., 2012). So, if ethanol (and, as we are arguing 822 

here, by extension, FFAs) abnormally enhance this effect, one should expect to see overgrowth 823 

rather than erosion in adult neurogenic regions.  Why is this not so? 824 

 825 

One mechanism that might explain such neurogenetic deficits in the SGZ and SVZ, is GABA-826 

mediated feedback inhibition.  It has become clear that non-synaptic paracrine GABA signalling 827 
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provides information on population size to control proliferation and migration of neural 828 

progenitor cells in the SVZ (Liu et al., 2005; Bordey, 2007; Ge et al., 2007; Pallotto & Deprez, 829 

2014). Specifically, adult SVZ neuroblasts synthesise and release GABA, which acts on 830 

GABAARs in neural stem cells, inhibiting NSC division and thus effectively applying a brake 831 

on neurogenesis.  In confirmation of this, removal of neuroblasts is seen to release this brake. 832 

 833 

The specific details of this appear to have been provided by a study of neurogenesis in postnatal 834 

rat striatum (Nguyen et al., 2003).  Here, the growth factor EGF was seen to decrease GABA 835 

production and release in PSA-NCAM+ neural precursor cells, leading to their proliferation.  A 836 

number of experiments suggested that GABA was indeed acting on GABAARs in an 837 

autocrine/paracrine mechanism to prevent cell proliferation by inhibiting cell cycle progression.  838 

Application of GABAAR antagonists inhibited proliferation, whereas positive allosteric 839 

modulators decreased it. As with other immature neuronal cell lineages, GABA-mediated 840 

GABAAR activation elicited inward currents (indicating outward flows of negatively-charged 841 

chloride ions), leading to tonic inhibition of the mitogen-activated protein kinase cascade and an 842 

increase of intracellular calcium levels (Nguyen et al., 2003).   843 

 844 

This agrees with the findings of the Liu study, which showed that, at least in GFAP-expressing 845 

neural progenitor cells in the SVZ, GABAAR activation limits progression through the cell cycle 846 

(Liu et al., 2005).  It also suggests that, at least in the SVZ, adult neurogenesis is regulated by the 847 

same mechanisms that govern embryonic neurogenesis, where, for instance, GABA is seen to 848 

direct neuroblast migration, stimulating random mobility by promoting elevation of cytosolic 849 

Ca2+ levels (Barker et al., 1998; Ge et al., 2007), similar to what is seen in adult neurogenesis 850 

(LoTurco et al., 1995).  While some related studies have shown that such effects appear to 851 
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promote neuronal fate selection (Tozuka et al., 2005), the overall impression is that GABA 852 

stimulation also seems to limit proliferation (Barker et al., 1998; Nguyen et al., 2003).  However, 853 

subsequently, doubts have arisen as to whether such tonic GABA-mediated depolarisation is 854 

sufficient to open voltage-gated calcium channels enough to permit substantial increases in 855 

intracellular calcium in the way proposed, requiring other explanations (Bordey, 2007). 856 

 857 

An alternative explanation is that an epigenetic mechanism, involving histone H2AX 858 

phosphorylation following sustained GABAAR activation by GABA, inhibits DNA synthesis 859 

and cell cycle progression, and therefore proliferation of adult neural stem cells (Fernando et al., 860 

2011). It is not clear that this mechanism also applies to SGZ neurogenesis but, if so, it could 861 

explain why GABAergic stimulation is similarly associated with quiescence of adult precursor 862 

cells in this niche (Duveau et al., 2011; Song et al., 2012; Pallotto & Deprez, 2014). 863 

 864 

But it may be that such involved explanations are not necessary, as recent research has brought 865 

into question the prevailing orthodoxy concerning GABA activation of immature neurons 866 

(Valeeva et al., 2016; Zilberter, 2016), concluding that, overall, GABA action on the neonatal 867 

brain is inhibitory.  If this proves correct, and is found to be true also for adult neurogenic 868 

regions, then ethanol-induced deficits in neurogenesis can be simply explained as a result of 869 

excess inhibition. 870 

 871 

Either way, assuming ethanol inhibition of neurogenesis in the SVZ and SGZ is mediated by 872 

GABAARs, then FFAs are likely to have a similar effect.  This is because a number of studies 873 

point towards GABAARs as the most likely target and mediator of FFA’s limited anaesthetic 874 

properties, not least the well-established anaesthetic effects (alluded to earlier) of structurally 875 
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similar n-alkanes, n-alcohols and n-aldehydes.  Furthermore, as with FFAs, anaesthetic potency 876 

increases with chain length but only up to a certain “cut off” length (Alifimoff, Firestone & 877 

Miller, 1989; Chiou et al., 1990; Wick et al., 1998; Frangopol & Mihailescu, 2001; Hau, Connell 878 

& Richardson, 2002; Lugli, Yost & Kindler, 2009)).  This, together with direct evidence that the 879 

n-alcohols act on GABAARs (Wick et al., 1998; Davies, 2003), as does the endogenous, FA, 880 

anaesthetic oleamide (Lees et al., 1998; Laws et al., 2001; Coyne et al., 2002), suggests a 881 

common binding site.  More direct evidence for this comes from the observed antagonising 882 

effects of long-chain FFAs on GABAAR-mediated anaesthesia by volatile anaesthetics (Hanada, 883 

Tatara & Iwao, 2004; Yamakura, 2004), along with other evidence of direct interactions between 884 

FFAs and GABAARs (Koenig & Martin, 1992; Witt & Nielsen, 1994; Zhang & Xiong, 2009). 885 

 886 

Taken together, a strong body of evidence points to the likelihood that FFAs, entering the brain 887 

through a damaged BBB (and therefore much in excess of their normal levels), will, if 888 

maintained over the long-term, tend to seriously disrupt neurogenesis by acting on GABAARs.  889 

Given the presence of major sites of neurogenesis in the SGZ and SGZ, this will principally 890 

manifest itself in anterograde amnesia and olfactory deficits.  The first of these is of course the 891 

primary behavioural abnormality seen in AD, whilst the second has been argued to be another 892 

common (if less obvious) outcome.  But, as described above, these are also seen in ARBD, 893 

driven by excess exposure to ethanol, which is known to act on GABAARs, accounting for the 894 

similarities between AD and ARBD detailed above. 895 

 896 

 897 
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2.6 AD-specific consequences of brain exposure to external lipids 898 

 899 

If the above account explains many of the similarities seen between AD and ARBD, it does not 900 

explain why, unlike ARBD, AD is characterised by profuse plaques and tangles. The lipid-901 

invasion model of AD explains this by the fact that the BBB has to be disrupted for fatty acids to 902 

substantially enter the brain, unlike in ARBD, where ethanol can pass through the BBB 903 

relatively unhindered (Laterra et al., 1999). Consequently, in AD the brain is also exposed to 904 

other molecules from which it is normally protected, including lipoproteins, which are much 905 

larger and more lipid-laden than those normally found within the CNS compartment.  906 

 907 

There is good reason to think that such lipoproteins may account for the amyloid plaques that 908 

characterize AD, resulting from excess exposure of the brain to cholesterol, as explained in the 909 

next section. 910 

2.6.1 The role of excess cholesterol in amyloidogenesis 911 

 912 

Substantial evidence suggests that cholesterol may have a role in increasing proteolytic 913 

production of amyloidogenic Aβ from APP, as opposed to production of alternative non-914 

amyloidogenic fragments (Bodovitz & Klein, 1996; Xiong et al., 2008; Nicholson & Ferreira, 915 

2010).  This appears to result from the influence of cholesterol stimulation on an amyloidogenic 916 

pathway involving β- and γ-secretases (two proteases involved in APP proteolysis) (Xiong et al., 917 

2008), as well as on a non-amyloidogenic pathway involving α-secretase (Kojro et al., 2001) 918 

(Figure 3.).  Increasing the levels of cholesterol stimulates the amyloidogenic pathway, at the 919 

same time inhibiting the non-amyloidogenic pathway (Wolozin, 2004; Xiong et al., 2008). In 920 
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contrast, cholesterol depletion, by various processes, inhibits the amyloidogenic pathway and 921 

enhances non-amyloidogenic processing, resulting in lower levels of Aβ (Simons et al., 1998; 922 

Kojro et al., 2001).   923 

 924 

Amyloidogenic processing appears to be initiated within cholesterol-rich lipid rafts (Ehehalt et 925 

al., 2003; Rushworth & Hooper, 2011; Nixon, 2017; Habchi et al., 2018) (especially in early 926 

endosomes (Arriagada et al., 2007; Nixon, 2017)), whilst non-amyloidogenic processing occurs 927 

in the main phospholipid-rich region of the neuronal plasma membrane (Xiong et al., 2008; 928 

Grimm et al., 2013). This suggests that an important part of cholesterol’s influence on 929 

amyloidogenic processing may be a consequence of its essential role as a major constituent of 930 

these lipid rafts, a conclusion that is well-supported in the literature (Ehehalt et al., 2003; 931 

Vetrivel & Thinakaran, 2010; Nixon, 2017).   932 

 933 

Certainly, some studies indicate that brain cholesterol levels may be raised in AD, compared to 934 

non-demented, brains (Kivipelto et al., 2001; Xiong et al., 2008; Jin et al., 2018; Wingo et al., 935 

2019), although not all studies concur (Ledesma & Dotti, 2005). That cholesterol may be directly 936 

associated with amyloid plaque formation is supported by brain imaging studies, which show Aβ 937 

collocated with cholesterol  within amyloid deposits in brain samples from AD-affected humans 938 

and other species (Mori et al., 2001; Burns et al., 2003; Xiong et al., 2008). 939 

 940 

 941 
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(a) (b) 

 942 

Figure 3.  (a) Amyloidogenic and (b) non-amyloidogenic processing of APP. 943 

 944 

 945 

2.6.2 The role of excess cholesterol in endosomal-lysosomal pathway abnormality 946 

 947 

Indirect evidence of raised brain cholesterol levels as a causal factor in AD comes from studies  948 

of human AD brains. Such brains show abnormalities in the endosomal-lysosomal system 949 

compared to normal brains, together with neurofibrillary (tau) tangles (Cataldo et al., 2000; Xu 950 

et al., 2018).  Such endosomal pathway overactivity and compartmental enlargement appears to 951 
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be an early marker in AD, especially in pyramidal neurons, populations of which are known to 952 

be vulnerable in AD (Cataldo et al., 1996; Morrison & Hof, 2002; Nixon, 2017; Fu, Hardy & 953 

Duff, 2018).   954 

 955 

Interestingly, a very similar pathology is also seen in mouse and other models of DS (Cataldo et 956 

al., 2000, 2008; Arriagada et al., 2007; Jiang et al., 2010). However, at least in the case of one 957 

mouse model, such pathology was seen to emerge only following lipoprotein-mediated 958 

cholesterol treatment (Arriagada et al., 2007), suggesting that cholesterol is a crucial causal 959 

factor.  960 

 961 

Further support for this comes from a number of studies in in Niemann-Pick disease type C 962 

(NPC).  This is a neurological disorder characterised by faulty cholesterol transport  and the 963 

presence of tau tangles (Saito et al., 2002), in which endosomal-lysosomal pathology is also 964 

observed (Frolov et al., 2001). Such studies, whilst often contradictory in their results, 965 

collectively point to various failings in cholesterol uptake, transport and recycling, and in 966 

abnormal endosomal-lysosomal pathway behaviour.  Such reported failings include excessive 967 

uptake of exogenous LDL-derived cholesterol (Liscum & Faust, 1987), excessive synthesis of 968 

endogenous cholesterol (Liscum & Faust, 1987), enlarged early endosomes (Jin et al., 2004; 969 

Nixon, 2004), accumulation of unesterified cholesterol in late endosomes and lysosomes (Nixon, 970 

2004; Sobo et al., 2007), defective post-lysosomal cholesterol transport (Roff et al., 1991) and 971 

redistribution of lysosomal hydrolases to early endosomes (Jin et al., 2004). 972 

 973 

Yet such reports commonly claim that other aspects of cholesterol internalisation (and 974 

endosomal-lysosomal pathway behaviour) appear to be normal, particularly in the case of initial 975 
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cholesterol uptake and early endosome behaviour (Nixon, 2004). However, a very similar 976 

phenotype is observed in a Chinese hamster ovary (CHO) cell mutant, which has a normal copy 977 

of NPC1 (the late endosome/lysosome-residing protein most commonly associated with NPC 978 

disease (Nixon, 2004)) , and of the HE/NPC2 protein (also associated with NPC, although less 979 

commonly) yet still exhibits NPC-like pathology (Frolov et al., 2001). In this mutant late sterol 980 

trafficking is reported to be normal despite obvious cholesterol accumulation in late endosomes/ 981 

lysosomes (Frolov et al., 2001). Instead, cholesterol build-up occurs as a result of much-982 

increased LDL-R binding, probably leading to cholesterol uptake being in excess of the normal 983 

capacity of the cell to dispose of it (Frolov et al., 2001).  Evidence in support of this conclusion 984 

includes the finding that LDL starvation of this mutant resulted in the disappearance of the 985 

cholesterol-laden aberrant late endosome compartment (characteristic also of NPC) that had 986 

previously been observed, only for this compartment to reappear with the restoration of LDL 987 

feeding (Frolov et al., 2001). 988 

 989 

More generally, another study, using a human fibroblast model, appears to provide further 990 

evidence for this conclusion. It found endosomal-lysosomal pathology in a number of inherited 991 

sphingolipid-storage disorders (Puri et al., 1999).  In almost all cases such pathology showed 992 

strong similarities with that seen in NPC, with a marked reduction in the accumulation of both 993 

cholesterol and a representative sphingolipid within the Golgi complex, accompanied by their 994 

increased accumulation within many punctate cytoplasmic structures that also appeared to be 995 

associated with the NPC1 protein (Puri et al., 1999). 996 

 997 

The authors conclude that the observed pathology most likely results from a build-up of 998 

cholesterol (which is known to associate with high affinity to sphingolipids (Brown, 1998; 999 
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Lönnfors et al., 2011)) within endosomes and lysosomes, since the reported pathology was seen 1000 

to disappear following cholesterol depletion, being replaced with normal endosomal-lysosomal 1001 

behaviour (Puri et al., 1999).  However the same pathology could also be induced in normal cells 1002 

by application of excess external cholesterol in the form of low-density lipoprotein (LDL) (Puri 1003 

et al., 1999), similar to what is described for the CHO mutant mentioned above (Frolov et al., 1004 

2001), and  in line with another study linking raised levels of plasma membrane cholesterol with 1005 

correspondingly enlarged early endosomes in hippocampal neurons (Cossec et al., 2010). 1006 

 1007 

As stated earlier, LDL is not normally seen in the brain (since it requires apolipoprotein B) and 1008 

tends to be both larger in size and more cholesterol-rich than the HDL-like lipoproteins typically 1009 

seen there (Danik et al., 1999; Vance & Vance, 2008). This suggests that externally-sourced 1010 

cholesterol, supplied in excess of normal brain levels, may be a causal factor of AD-related 1011 

endosomal abnormalities and of amyloidosis, at least in the late-onset form.  1012 

 1013 

In further support of this hypothesis, inhibition of CYP46A1 (a protein indirectly responsible for 1014 

cholesterol clearance from the brain through the BBB (Lütjohann et al., 1996; Lund, Guileyardo 1015 

& Russell, 1999)) in mouse hippocampal neurons has been shown to lead to accumulation of 1016 

neuronal cholesterol.  This, in turn, is associated with a distinctive AD-like pathology, including 1017 

marked changes in endosomes (increasing both in size and number), Aβ peptide production, tau 1018 

phosphorylation, endoplasmic reticulum stress and apoptosis, and eventually hippocampal 1019 

atrophy and cognitive impairment (Djelti et al., 2015; Ayciriex et al., 2017). 1020 

 1021 

It has been argued in 2.2 that the presence of a BBB has resulted in the brain (and the rest of the 1022 

CNS) evolving to have a different lipid system to the rest of the body, one characterised by a 1023 
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much lower lipid turnover, and smaller, less lipid-dense lipoproteins.  As a result, it is argued 1024 

that substantial damage to the BBB, leading to long-term exposure to a systemic lipid system 1025 

characterised by high lipid turnover and larger, more lipid-dense lipoproteins, will result in 1026 

neurons and other brain cells becoming overloaded and displaying the abnormalities described 1027 

from 2.4.1 onwards. 1028 

 1029 

2.6.3 The role of the β-secretase-induced C-terminal fragment (βCTF) 1030 

 1031 

Certainly, this interpretation fits in well with the evidence presented in 2.6.2, given that cellular 1032 

LDL-cholesterol uptake is known to be dependent on the endosomal-lysosomal pathway, by way 1033 

of receptors possibly bound within lipid rafts (Vance & Vance, 2008; Sun et al., 2010; Pompey 1034 

et al., 2013; Nixon, 2017). Furthermore, APP seems to be central to endosomal-lysosomal 1035 

pathology, as the latter can be induced by APP over-expression, or by the C-terminal fragment 1036 

that remains after β–secretase cleavage of APP (Jiang et al., 2010; Nixon, 2017), but prior to γ–1037 

secretase cleavage (Fig. 3).  1038 

 1039 

Such cleavage is known to take place in early endosomes (Cataldo et al., 2000; Arriagada et al., 1040 

2007) and appears crucial to pathology, since inhibition of β–secretase (or the substitution of 1041 

APP by constructs lacking β–secretase cleavage sites) restores normal endosomal-lysosomal 1042 

behaviour (Jiang et al., 2010). Furthermore, treatments, or presenilin mutations, that increase 1043 

levels of Aβ without increasing levels of βCTF do not result in endosomal-lysosomal pathology 1044 

(Cataldo et al., 2000; Jiang et al., 2010), in line with other evidence that the endosomal 1045 

abnormalities seen in a mouse model of DS do not appear to be associated with abnormally high 1046 
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levels of  Aβ (Cataldo et al., 2003; Salehi et al., 2006; Choi et al., 2009). Meanwhile, inhibition 1047 

of γ-secretase, which increases levels of βCTF at the expense of Aβ,  induces endosome-1048 

lysosomal pathology in previously normal fibroblasts (Jiang et al., 2010). 1049 

 1050 

The underlying reason for this appears to be that βCTF recruits the adaptor protein APPL1 1051 

(adaptor protein containing pleckstrin homology domain, phosphotyrosine binding domain, and 1052 

leucine zipper motif) to Rab5 complexes on endosomes (Miaczynska et al., 2004; Zhu et al., 1053 

2007; Nixon, 2017).  This stabilises the monomeric GTPase protein Rab5 in its GTP-bound, 1054 

activated form, and therefore amplifies the Rab5 signalling associated with early endosomes 1055 

(Gorvel et al., 1991; Grbovic et al., 2003; Mishra et al., 2010), leading in turn to the enlarged 1056 

endosomes seen in both AD and DS (Kim et al., 2016; Nixon, 2017). Thus, taken collectively, 1057 

the evidence appears to explain the endosomal-lysosomal pathology seen in DS dementia, and in 1058 

many forms of AD, by two related mechanisms.  1059 

 1060 

In the case of DS dementia, and early-onset forms of AD resulting from APP mutations, the 1061 

pathology is likely to be the product of βCTF over-expression. In the case of LOAD, over-supply 1062 

of cholesterol, originating from outside the brain, results in preferential up-regulation of β-1063 

secretase (Xiong et al., 2008), leading to the same result. Amyloidosis inevitably follows in both 1064 

cases, no doubt enhanced by the substantial presence of Aβ in enterocytic- and hepatic-derived 1065 

lipoproteins (see 2.3). Tau tangles presumably result from amyloidosis or from a failure of 1066 

cholesterol transport, by a similar mechanism to that seen in NPC. 1067 

 1068 
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3 Discussion 1069 

 1070 

In the preceding text, evidence has been presented to support a lipid-invasion model of AD 1071 

progression.  This states that, in the majority of cases, if not all, AD is primarily driven by the 1072 

influx of lipids of systemic non-CNS origin, following the breakdown of the BBB.  From a 1073 

general perspective, this emphasis on a mechanical, rather than a purely biochemical failure, 1074 

would seem to provide a simple explanation of why AD is as prevalent as it is, in contrast to 1075 

current models.  In particular, such mechanical failure also provides a more straightforward 1076 

explanation of why ageing is the primary risk factor for AD. 1077 

 1078 

However, as has been shown above, many specific aspects of AD can also be said to support 1079 

such a model. These include indirect evidence of BBB damage from the presence, in AD cases, 1080 

of non-CNS proteins inside the brain, and of CNS proteins outside it.  In particular, evidence of 1081 

the presence of the systemic apolipoprotein ApoB, together with long-chain triglycerides, within 1082 

Aβ plaques strongly suggests that, in AD, the BBB is failing to separate the highly distinctive 1083 

lipid systems of the CNS and systemic non-CNS compartments in the normal way.  Moreover, 1084 

included amongst the non-CNS proteins mentioned in section 1, are plasma proteins such as 1085 

albumin, fibrinogen and immunoglobulins that are, like Apoβ100, exclusively synthesised in the 1086 

liver (or, like, Apoβ48, in other non-CNS organs).  Again, like Apoβ, they are of high molecular 1087 

weight, meaning that they cannot readily pass through the BBB in normal circumstances. 1088 

 1089 

Further support for the lipid-invasion model arises from the likelihood that the BBB will be 1090 

compromised by many of the risk factors associated with AD.  As well as ageing, these include 1091 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27811v5 | CC BY 4.0 Open Access | rec: 18 Nov 2019, publ: 18 Nov 2019



A lipid-invasion model for Alzheimer's Disease 

 

Page 49 

 

brain trauma, diabetes, ApoE4 and Aβ. Similarly, CTE, a condition showing many similarities to 1092 

AD, has been associated with clear evidence of BBB disruption.  Finally, there is clear evidence 1093 

that Aβ directly disrupts the BBB, something most obviously apparent in the case of CAA. 1094 

 1095 

Why should lipid influx from outside the CNS matter so much?  As explained in some detail 1096 

above, there are major differences in the two lipid systems either side of the BBB. In particular, 1097 

and most relevantly to AD, lipoproteins on the non-CNS side are larger and more lipid-rich than 1098 

on the CNS side, thanks in large part to the presence of ApoB.  Similarly, unlike on the CNS 1099 

side, there is extensive transport of FFAs.  Reasons for this include the absence of large FA-1100 

storing adipocytes and of albumin synthesis in the CNS, as well as the presence of the BBB 1101 

itself. 1102 

 1103 

But why should these differences matter?  It is argued here that, whatever the original 1104 

physiological function of the BBB might have been, it has allowed the CNS (and the brain in 1105 

particular) to evolve in ways that make it highly vulnerable to lipid incursion from the non-CNS 1106 

compartment. In particular, it is predicted that exposure to the higher cholesterol content of the 1107 

more lipid-rich lipoproteins from outside the CNS will lead to cholesterol overload in neurons 1108 

and other CNS-specific cell types.  This in turn will result in endosomal-lysosomal pathology, 1109 

tau tangles and excessive formation of Aβ, similar to what is seen in AD.   1110 

 1111 

In support of this hypothesis, similar endosomal-lysosomal pathology is seen in NPC, a disease 1112 

characterised by faulty cholesterol transport, resulting in the accumulation of unesterified 1113 

cholesterol in late endosomes and the formation of tau tangles.  Likewise, excess cholesterol has 1114 

been shown to increase amyloidogenesis by stimulating amyloidogenic processing of APP at the 1115 
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expense of the non-amyloidogenic pathway, resulting in increased levels of Aβ.  During this 1116 

amyloidogenic processing, high levels of the intermediate βCTF fragment are produced, which 1117 

have been shown to trigger endosomal-lysosomal abnormalities similar to those observed in 1118 

early AD progression.  Presumably, the reason Aβ levels are much lower in NPC than in AD is 1119 

because cholesterol build-up tends to affect late endosomes in the former disease, rather than 1120 

early endosomes where Aβ is produced. 1121 

 1122 

But cholesterol is not the whole story here. Breakdown of the BBB also exposes the brain to 1123 

higher levels of FFAs.  It is argued here that such exposure will lead to neuroinflammation, as a 1124 

result of these FFAs stimulating microglia by binding to TLR4 and other microglial receptors, 1125 

similar to how FFAs activate macrophages outside the CNS and to how ethanol triggers 1126 

microglial-mediated neuroinflammation.  1127 

 1128 

This may help explain why the overall structural pattern of damage to the brain inflicted by long-1129 

term alcohol abuse so strongly resembles that seen in AD, and why there are similar behavioural 1130 

deficits.  In particular, frontal regions of the brain (especially the prefrontal cortex and basal 1131 

forebrain) suffer significant shrinkage in both ARBD and AD, helping to explain why both 1132 

diseases are associated with deficits both in olfaction and in executive functions requiring 1133 

attentional and inhibitory control, reasoning, problem-solving, the setting of goals and of 1134 

planning.  Similarly, both ARBD and AD are associated with shrinkage of the medial temporal 1135 

lobes, including pronounced atrophy of the hippocampus and entorhinal cortex, resulting in the 1136 

anterograde amnesia so characteristic of AD, along with more specific deficits in spatial 1137 

memory. 1138 

 1139 
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However, it is hard to explain how such similarities might occur as a result of neuroinflammation 1140 

alone.  Studies have shown that inhibition of neurogenesis plays almost as important a role in 1141 

ARBD, which would better explain why the principal areas of brain atrophy in ARBD and AD, 1142 

the frontal and medial temporal regions, also host two of the principal neurogenic niches of the 1143 

brain, the subventricular and subgranular zones.  These provide new cells for the prefrontal 1144 

cortex and the hippocampus, respectively.  It is argued here that the principal mechanism by 1145 

which ethanol inhibits such neurogenesis, involving extrasynaptic GABAARs, means that such 1146 

regions are also likely to be similarly affected by long-term exposure to other molecules with 1147 

weakly anaesthetic properties, including FFAs. Whilst the mechanism by which such inhibition 1148 

occurs appears to be complex, and may well involve other receptors and pathways, these shared 1149 

properties, and the shared mechanism seen in most forms of anaesthesia (Bertaccini, Trudell & 1150 

Franks, 2007), suggest that long-term neurodegeneration will result in both cases.   1151 

 1152 

Whilst this aspect of the lipid-invasion model might be considered to be its most speculative, it 1153 

may help to explain why general anaesthesia is also considered a potential risk factor for AD 1154 

(and dementia in general) amongst elderly patients (Bohnen et al., 1994; Eckenhoff et al., 2004; 1155 

Xie & Tanzi, 2006; Vanderweyde et al., 2010; Fodale et al., 2010; Papon et al., 2011; Chen et 1156 

al., 2014), as well as being associated with marked deterioration in those already affected with 1157 

AD (Bone & Rosen, 2000; Xie et al., 2007; Planel et al., 2007; Papon et al., 2011). However, 1158 

such an association is still a matter of dispute (Needham, Webb & Bryden, 2017),  and a number 1159 

of studies suggest that, where it does occur, anaesthesia-related deterioration is accompanied by 1160 

increases in Aβ synthesis and oligomerisation, and by tau hyperphosphorylation (Eckenhoff et 1161 

al., 2004; Xie & Tanzi, 2006; Xie et al., 2007; Planel et al., 2007; Fodale et al., 2010; Papon et 1162 

al., 2011).  If so, this tends to rule out any GABA-related mechanism. 1163 
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 1164 

But these are not the only reasons for suspecting a link with GABAARs. Ever since the first 1165 

practical anaesthetic agents were discovered in the middle of 19th century (Robinson & Toledo, 1166 

2012),  and later shown (independently) by Hans Horst Meyer and Charles Ernest Overton to 1167 

display a remarkable correlation between potency and hydrophobicity (Sandberg & Miller, 2003; 1168 

Lugli, Yost & Kindler, 2009), there has been considerable interest in their mechanism of action. 1169 

Following the findings of Franks and Lieb in the 1980s this interest has focused on hydrophobic 1170 

sites on membrane proteins (Franks & Lieb, 1990), particularly those of the Cys-loop ligand-1171 

gated ion channel superfamily, which includes inhibitory GABAARs and glycine receptors, as 1172 

well as the excitatory acetylcholine and 5-HT3 serotonin receptors (Jenkins et al., 2001; 1173 

Bertaccini, Trudell & Franks, 2007; Thompson, Lester & Lummis, 2010).   1174 

 1175 

In terms of the obvious therapeutic endpoints of anaesthesia, including coma and analgesia, the 1176 

findings of such research are not likely to have any relevance either to AD or ARBD. But the 1177 

role of extrasynaptic GABAARs in anaesthesia-mediated anterograde amnesia clearly does, 1178 

given the importance of such amnesia in ARBD and, particularly, in AD.  This is especially the 1179 

case now that research has shown that the same high-affinity extrasynaptic GABAARs that have 1180 

been shown to play a critical role in such amnesia, also play a critical role in neurogenesis.  1181 

Given that the hippocampal region is a principal region of such neurogenesis (Ming & Song, 1182 

2011) and is also known to be central to the formation of new memories (as well as being 1183 

heavily degraded in both ARBD and AD), it is readily apparent how chronic exposure to ethanol, 1184 

with its weakly anaesthetic properties, is able to cause progressive deterioration of this region.  1185 

 1186 
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But this same mechanism also appears to explain why FFAs, with similar low anaesthetic 1187 

potencies, are largely excluded from the brain by the BBB.  This despite FFAs being highly 1188 

energy-rich molecules and despite the brain being one of the most highly energy-consuming 1189 

organs of the body. However one explains the requirement for the BBB to in some way protect 1190 

the brain from damage from external sources, it is not clear that FFAs could not be transported 1191 

across it in the way many other macromolecules, including ketone bodies, are.  They could thus 1192 

provide the brain with a much-needed additional energy source.  Indeed, the transporter ABCB1 1193 

(also known as P-glycoprotein 1 or multidrug resistance protein 1) is already known to transport 1194 

lipids, including FFAs, across the BBB in the reverse direction (Gonçalves, Gregório & Martel, 1195 

2011) and its decreased expression has been associated with increased AD risk (van Assema & 1196 

van Berckel, 2016).  Therefore, there seems little reason why the BBB could not have evolved a 1197 

similar transporter in the reverse direction.  That the BBB has not evolved such transporters, it is 1198 

argued here, is because FFAs, at levels commonly seen in the rest of the body, would be inimical 1199 

to the normal working of the brain.  As would be the case if more cholesterol-rich lipoproteins 1200 

could gain access to the brain, for the reasons discussed in 2.6. 1201 

 1202 

It is been shown how breakdown of the BBB, by allowing such lipid invasion, is predicted to 1203 

result in the anterograde amnesia, amyloid plaques and tau tangles, so characteristic of AD, as 1204 

well as endosomal-lysosomal pathology and neuroinflammation.  However, in pointing to 1205 

GABAARs as major agents of AD progression, the lipid-invasion model may also help to 1206 

explain the severe disruptions of the normal "body clock" commonly seen in patients with AD.  1207 

Although the neurological mechanism behind this biological clock is yet to be fully elucidated, it 1208 

is generally agreed that, in vertebrates, the neurons of the suprachiasmatic nucleus (SCN) 1209 

provide a central role (Stephan & Zucker, 1972; Cohen & Albers, 1991; Ehlen & Paul, 2009; 1210 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27811v5 | CC BY 4.0 Open Access | rec: 18 Nov 2019, publ: 18 Nov 2019



A lipid-invasion model for Alzheimer's Disease 

 

Page 54 

 

Albers et al., 2017). Furthermore, within the SCN it is clear that GABAARs play a critical role, 1211 

including in their extrasynaptic form (Ehlen & Paul, 2009; McElroy et al., 2009; Hu et al., 2016; 1212 

Albers et al., 2017; McNeill, Walton & Albers, 2018), with some estimates suggesting that over 1213 

90% of SCN neurons express and respond to GABA (McNeill, Walton & Albers, 2018).  A 1214 

number of studies have shown that ethanol modulates circadian clock regulation (Prosser, 1215 

Mangrum & Glass, 2008; Ruby et al., 2009; Brager et al., 2011; Prosser & Glass, 2015), 1216 

including by its action at low concentrations on extrasynaptic GABAARs  (McElroy et al., 1217 

2009).  Given that the lipid-invasion model already proposes that FFAs inhibit neurogenesis by 1218 

acting at low concentrations on extrasynaptic GABAARs to disrupt their normal behaviour, there 1219 

is therefore a good reason to believe that FFAs might also be disrupting normal circadian 1220 

rhythms by a very similar mechanism. 1221 

 1222 

Of course, given that disruption of the body clock in AD is primarily inferred from behavioural 1223 

abnormalities, particularly in regard to sleep patterns, it may be that what is being observed is 1224 

merely a secondary consequence of amnesia and the general loss of self-control associated with 1225 

AD. However, given that such sleep disturbances seem to be apparent very early in AD 1226 

progression (Macedo, Balouch & Tabet, 2017), when amnesia and other AD-associated deficits 1227 

are only beginning to be noticeable, it seems likely that what is being seen has a physiological as 1228 

well as a purely psychological basis. 1229 

 1230 

An obvious challenge with the lipid-invasion model is how it explains FAD.  In the vast majority 1231 

of cases (Wu et al., 2012; Lanoiselée et al., 2017)  these result from mutations in Aβ-related 1232 

genes, primarily in presenilin-1 (PSEN1), but also in APP and presenilin-2 (PSEN2).  As shown 1233 

in Figure 3, APP is the precursor protein from which Aβ is cleft, as a result of the amyloidogenic 1234 
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pathway, whilst PSEN1 and PSEN2 provide catalytic components of the γ-secretase (Lanoiselée 1235 

et al., 2017), responsible for the final step in such Aβ formation.  Similarly, as stated earlier, an 1236 

additional copy of the APP gene, such as is seen in Down's Syndrome, is associated with a 1237 

much-increased risk of developing early-onset AD.  This would appear to strongly suggest that it 1238 

is amyloidogenesis rather than lipid-invasion that causes AD.  However, it should be 1239 

remembered that the lipid-invasion model assigns an important role for Aβ in BBB 1240 

disintegration, a role well-supported by the literature.  Also, as stated earlier, experimental 1241 

results have shown that Aβ has a role as a regulatory apolipoprotein, with raised levels of Aβ 1242 

being associated with increased secretion of lipid-rich lipoproteins, including chylomicrons.  1243 

Taken together, it can be seen how overexpression of Aβ, as seen in FAD, will result in lipid 1244 

invasion the same way as it does in LOAD.  Similarly, because ApoE has been shown to protect 1245 

the BBB against damage, with ApoE4 associated with BBB impairment, it can be seen how the 1246 

lipid-invasion model can perfectly adequately account for ApoE genotype as an important risk 1247 

factor for AD. 1248 

 1249 

Moreover, because it explains LOAD as a consequence of all forms of BBB damage, rather than 1250 

just as a result of amyloidogenesis, the model arguably provides a less problematic explanation 1251 

than the amyloid hypothesis for why LOAD is so much more common than FAD. Ultimately, 1252 

anything that substantially damages the BBB, including simple wear and tear, is likely to result 1253 

in AD. For this reason, attempting to treat AD by inhibiting amyloidogenesis alone is unlikely to 1254 

be an effective treatment.  By the time AD is diagnosed, even in the case of FAD, it is likely that 1255 

the BBB damage will be too advanced to benefit much from such inhibition. 1256 

 1257 
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Rather, the model predicts that effective treatment will need to have several goals, including 1258 

protecting the BBB from further damage (and, if possible, reversing any damage that has already 1259 

occurred), reducing levels of FFAs entering the brain (by other means), inhibiting 1260 

neuroinflammation and preventing inhibition of neurogenesis.  1261 

 1262 

Finally, it can be argued that the explanation of LOAD provided by the model is more consistent 1263 

with the majority of highly prevalent pathologies in the elderly. Excluding cancer, which denotes 1264 

a collection of pathologies with often very different genetic and biochemical origins, some form 1265 

of mechanical failure would seem to be central to them all.  In particular, stroke and heart 1266 

disease are known to be associated with rupture of blood vessels.  For this reason, the lipid-1267 

invasion model, in placing failure of the BBB at the heart of LOAD aetiology, would seem to sit 1268 

more comfortably than alternative explanations with our current understanding of other common 1269 

devastating diseases of the elderly. 1270 

 1271 

4 Conclusion 1272 

 1273 

This all points to a much more complex explanation of AD progression, in which Aβ and tau 1274 

tangles are only two of the more visible factors, in many ways as much symptomatic as 1275 

causative. Indeed, rather than attempting to treat AD by reducing the extent of amyloid plaques 1276 

and tau tangles, the model clearly suggests that treatment would be greatly more efficacious if it 1277 

were to focus on more "upstream" factors.  This most obviously includes treatments to repair and 1278 

prevent further damage to the BBB, and to reduce levels of invading FFAs and lipid-rich 1279 

lipoproteins within the brain. The model also suggests that treatments to reduce FFA-mediated 1280 
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neuroinflammation and inhibition of neurogenesis would also be efficacious. Certainly, 1281 

treatments focused on specific aspects of AD pathology have yet to show meaningful efficacy. It 1282 

is argued here that this is because they have all been based on models of AD that do not 1283 

sufficiently capture the complexity of the disease, resulting in treatments that are too narrowly-1284 

focused and missing the most efficacious targets.  By contrast, the lipid-invasion model shows 1285 

AD to be a much more complex disease, explaining why it is associated with so many distinct 1286 

brain pathologies.  Whilst this implies that effective treatment may prove much more challenging 1287 

than once hoped, the better understanding of the disease provided by the model will surely 1288 

greatly improve the chances of discovering such treatments. 1289 

  1290 
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