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Abstract: This work sought to develop an inelastic scattering imaging system based on Raman1

spectroscopy for the detection of the fungal phytopathogen, Pseudocercospora fijiensis, which causes2

Black Sigatoka disease in banana crops, very important in Colombian agro-industrial economy. This3

system consists of a modified stereoscope with an optical setup able to simultaneously capture spectral4

images together with its Raman spectra. The camera has two different bandpass filters attached, centered5

in the spectral region of C=O stretching of Chitin and the equatorial bending vibration of β−1,3-glucan,6

molecules of the fungal cell wall. In this way, the system can get images with unique spectral features,7

suitable for training a convolutional neural network in order to get a recognition pattern of the fungal8

strain growing in the PDA agar. As a result, the instrument was able to detect the presence of P.fijiensis9

over the culture media.10
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1. Introduction12

The different varieties of banana, belonging to the genus Musa, are one of the most important crops in13

the tropical and subtropical regions of the world [1]. This crop is attacked by several diseases among Black14

Sigatoka (BS) is one of them, which is caused by the fungus Ascomycete Pseudocercospora fijiensis (Synonym:15

Mycosphaerella fijiensis), this fungus attacks the leaves of plants of the genus Musa, causing foliar spots16

that widen with the course of the disease [2], decreasing the photosynthetic capacity of the plant, which17

translates into a lower growth and early maturation [3]. This disease was first described in 1964 on the18

island of Fiji in Southeast Asia (Rhodes, 1964) spreading to all banana crops around the world reaching19

America around 1972 [5]. In the case of Colombia, export bananas have become one of the most important20

crops in the country. In 2014, according to data from FAOSTAT (FAO, 2017), Colombia had more than21

73,000 hectares (hectares) of bananas planted and production of 1’770,899 tons a year of bananas, ranking22

third in the Colombian economy after coffee and flowers and thus contributing to 0.4% of GDP [6]. One of23

the greatest challenges is to reduce the use of fungicides since it increases the production costs by 13.8%24
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and reduces competitiveness in highly demanding markets regarding the presence of these substances25

[8], for this reason a device able to supply an effective tool for the detection of P.fijiensis was designed by26

getting the inelastic scattering signature of two molecules of the fungal cell wall, for the purposes of this27

work chitin and β − 1, 3-glucan were selected to provide evidence about the presence of this organisms,28

[9], for instance the latter molecule is considered a molecular bio-marker for fungi [10]. Raman inelastic29

scattering was selected for primarily two reasons, (i) there is no need for sample preparation, and (ii) a30

spectral fingerprint region associated with the molecular structure of the sample can be obtained. The31

phenomenon, known as polarizability, is associated with the interaction of the molecular cluster with an32

electric field. Electrons move to opposite directions creating a temporal dipole and oscillation frequency33

[12] [11], the oscillation frequency, and the amplitude defines a very specific organic functional group,34

the linear combination of oscillations and amplitudes is exclusive of each molecule in the region between35

[200-1800] cm−1 [13]. Using two filters, the first in the spectral region of (788.78-939.85) cm−1 associated36

with the equatorial bending vibrations and covers both alpha and beta type carbohydrate monomers. In37

particular, the 893 cm−1 band which is considered a marker for beta-glucans [15], [16]. The second filter38

was selected for the detection of chitin, which has two Raman peaks in the region of (1600-1700) cm−1
39

which corresponds to amid I group due to C=O stretching vibrations of the peptide bond [14]. By selecting40

filters that match the bio-marked criteria it is possible to have an exclusive signal of the phytopathogen by41

taking images composed of the intensities of the peaks at the corresponding spectral band. By selecting42

chitin and beta-1,3-glucan, evidence for the presence of the phytopathogen can be ascertained. This43

fingerprint makes possible to run image recognition algorithms, usually, this task is traditionally relied44

on in PCA (Principal components analysis) [17], [18], but in this work, the technique selected was a deep45

learning algorithm, called convolutional neural networks, which is mainly used in image processing. The46

platform selected for that task was Tensorflow implemented over Python, that gives access to one of the47

most powerful image classification systems: PNASNET-5 (Progressive Neural Architecture Search) one of48

the latest and fastest architectures for pattern recognition, based on a sequential optimization by increasing49

the level of complexity each time an image is added [19][20]. The combination of deep learning together50

with the use of Raman scattering made it possible to achieve a detection with a confidence level above51

90%.52

2. Materials and Methods53

2.1. Plant material54

Black-leaf-streak-susceptible Williams (triploid, AAA genome group) plants were obtained from55

the in vitro culture facilities of the Plant Biotechnology Unit Universidad Catolíca de Oriente, Rionegro,56

Colombia. Two-month-old plants were kept under greenhouse conditions at 29◦C and relative humidity57

(RH) above 95% with standard fertilization and irrigation practices until inoculation.58

2.2. Pseudocercospora fijiensis strains59

Two isolates of P.fijiensis (C139 and 080930) from the collection of isolates of the Group-Biotecnología60

Vegetal Unalmed -CIB were used for the infection. Those fungi were grown on potato dextrose agar (Difco,61

Becton Dickinson, Franklin Lakes, NJ) and incubated at 25± 1◦C until a colony of about 1 cm in diameter62

was obtained.63

Inoculation of banana with mycelial fragments of P.fijiensis was performed as reported in [36]. After64

inoculation, plants were kept in an infection chamber at constant temperature of 29◦C, RH of 95%, and 1265

h of light and 12 h of darkness. Fragments of infected leaves of an approximate area of 1 square centimeter66

were used to determine the presence of the fungus. an uninfected leaf was also used as control.67
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2.3. Optical Setup68

The optical setup consists of two different microscopes, a BoecoTM stereoscope and a RossbachTM
69

microscope, the former was used as the optical stage, it brings a 10x optical magnification suitable to70

study peel and leaves injuries were is more likely to find an infection process by a fungal strain [37]. The71

RossbachTM microscope in the other hand was used to supply the positioning stage of the optical system,72

specifically, the laser and sample alignment, the x,y mechanism, and the coarse and fine focus knobs.73

74

The microscope eyepieces were coupled with a spectrometer and a camera. The former is a B&W Tek TM
75

(Model BTC-110S), with a spectral range of (400-2500)cm−1 and a dynamic range of 30dB. The camera76

on the other hand is a FLIRTM Flea 3 Gigabit Ethernet, containing a CCD ICX 655 SonyTM sensor with a77

quantum efficiency of 50% for the green channel, 54dB of dynamic range and a temporal dark noise of78

7.45e−, those specifications are ideal to get very low optical intensity signals. This sensor came without79

focusing lenses, for that reason a 4x Rossbach objective was used for this task.80

81

The filtering section is conformed by a ThorlabsTM laser line filter with a FWHM of 3nm, two82

bandpass filters Omega.Inc centered at 578 nm and 557 nm with a FWHM of 8 nm and 5nm respectively.83

The dichroic mirror obtained from an EpsonTM projector whose spectral response at 45◦ can be seen84

in figure 1 was combined with a Omega.Inc Rapid Edge filter (cut-on=540nm) to reduce the Rayleigh85

backstering signal.86

It is important to mention that the laser was modified in order to get a wider spot, by removing the87

collimating lenses. Originally the spot was 5mm in diameter but after the modification the size increase to88

9mm due to the divergence angle of the laser diode (5◦), this was made in order to encompass a broader89

area.90

91

Figure 1. Spectral Response of the 45◦ long-pass filter

3. Results and Discussion92

The following setup was designed to simultaneously obtain an image and a spectrum in order to93

associate the picture taken by the camera with the spectral information produced by the interaction of the94

laser light and sample.95

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27808v1 | CC BY 4.0 Open Access | rec: 17 Jun 2019, publ: 17 Jun 2019



Version June 17, 2019 submitted to Journal Not Specified 4 of 14

3.1. Optical Setup96

Figure 2 shows the components and the different optical elements of the device, it is comprised of a97

532nm laser diode and a ThorlabsTM laser line filter, CWL = 532 ± 0.6 nm, FWHM = 3 ± 0.6 nm attached98

to the optical output, this arrangement reduces the spectral bandwidth of the laser, after that, the laser99

beam is then deflected by a high pass filter at 45◦, with a cut-on wavelength of 550nm. Once the sample is100

illuminated, an excitation in the molecules is produced temporarily generating an induced dipole, this101

dipole can oscillate with the same frequency of the incident photon, producing Rayleigh scattering102

Figure 2. Micro Raman Setup

The emerging photons may have a slightly different energy value, which is dependent on the type of103

molecules present in the sample (polarizability), this type of scattering is what we call, inelastic, which104

should not be confused with the emission of fluorescence, because it always emits at the same wavelength,105

regardless of the excitation [23]. Despite this marked difference, the lower intensity of the inelastic signal106

is one of the main obstacles when detecting a Raman signal. Once the emission occurs, it is necessary to107

eliminate or attenuate Rayleigh scattering, since only 1 in 1000 photons is inelastic. The inelastic signal108

could be perceived as noise compared to the amplitude of the elastic signal [24].109

In order to attenuate the Rayleigh scattering, a pair of filters were used, the first is the same one that110

deflects the beam 90◦, however this filter does not block efficiently all Rayleigh radiation, whereby a111

second filter (Rapid Edge Omega.Inc, cut-on=540nm) was positioned parallel to the microscope field112

of view to clean the remaining radiation. The Schmidt prism compensates the inclination angle of the113

stereoscope objective lenses to couple with the eyepieces.114

115

For the CCD sensor of the camera, it was necessary to use a negative lens in order to capture the116

image of the sample produced by the equipment and cover most of the sensor area. As was mentioned117

before, the main objective is to capture certain spectral Raman bands, corresponding to characteristic118

vibrational modes of the β-1,3-glucan and chitin. To do this the bandpass filters were attached directly to119

the lens of the CCD sensor. Both filters allow to eliminate the residual Rayleigh radiation and at the same120
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time isolates the spectral region of interest. The spectrometer was attached to the other eyepiece with only121

the dichroic mirror and the Edge filter intercepting its optical path.122

123

3.2. Mycosphaerella fijiensis detection124

The first stage of the experiment consisted of analyzing the interaction of the laser light with the125

microorganism. This is done to establish the possibility of getting inelastic scattering information suitable126

for the phytopathogen detection. The samples were provided by Vegetal Biotechnology of the Universidad127

Nacional de Colombia and tagged as Control, C139 and 080930, the last two corresponds to the artificially128

infected specimens, as shown in Figure 3.129

130

(a) Original Samples (b) Sigatoka leaf spot

Figure 3. Infected leafs with M. fijiensis (080930, C139) and Control

For each sample, a picture was taken with and without a bandpass filter in order to capture131

the inelastic scattering in the region of 893 cm−1 and the whole inelastic spectral response of the132

sample respectively. These were obtained in order to understand the differences between the133

two pictures and determine the types of images used in the deep learning training. The selection of134

images is based on the amount of spectral features needed to determine the presence of the phytopathogen.135

136

Figure 4 shows the pictures taken (without filters) of an infected sample and control137

The black spot in figure 4 b) corresponds to one of the injuries observed in figure 3 b). The laser138

highlights two of those spots, providing some evidence about the possibilities of laser light in the139

phytosanitary diagnosis. However, the intention is to demonstrate if the inelastic scattering could give140

information about the presence of these organisms. A spectrum of the injures was taken showing the141

following features, see figure 5142

As mentioned earlier, the main Raman bands for chitin and β − 1, 3−glucan are the ones associated143

with the respective ν-C=O stretching of the peptide bonds (Amid I) and β C-H bending vibrations [21].144

[22]. These signals are typically found at 1655 cm−1 and 893 cm−1 respectively. In Figure 5, two peaks145

with those features are observed at (1563.81-897.91) cm−1. It is, therefore, plausible to affirm that these146

corresponds to the CO and CH stretch vibrational modes of the chitin and β-1,3-glucan molecules. Thus,147

we demonstrate that by selecting the correct filters, we can observe corresponding features in the spectral148

images as well..149

Further images analysis will provide definitive evidence about the advantages of using this device for150

the detection of phytopathogens. After the image processing to increase the intensity level through an151
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(a) Control (b) M. fijiensis

Figure 4. Pictures Without filters

Figure 5. Inelastic Spectrum of P. fijiensis
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averaged sum of frames to simulate a increase in the exposure time, the results were the following 6:152

153

(a) Control (b) P. fijiensis 557 nm filter 080930 sample

(c) P. fijiensis 557 nm filter c139 sample

Figure 6. P.fijiensis control and two samples with 557nm filter and gamma correction

The difference with respect to the control under the same conditions of illumination (532 nm,154

FWHM=3 nm, 112.5 mW) brings conclusive results about the presence of the microorganism in the155

different samples. Nevertheless, an analysis of the ratio can be made between red and green channels. By156

creating a protocol to handle all the process of phytopathogens diagnosis, a 2D histogram (just like in157

figure 7) shows the response of the sensor in those channels specifically.158
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(a) Control 2D

(b) P.fijiensis 557 nm filter 080930 sample 2D

(c) P.fijiensis 557 nm filter c139 sample

Figure 7. P.fijiensis control and two samples with 557nm filter 2D

The methodology of image processing shows significant differences between samples and control.159

Though there is a signal coming from the control, the distribution with respect to the red channel is160
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different as in the case of the infected samples. Their 2D histograms show similar behavior in both cases,161

which is a tendency towards the green channel. This is more evident for the sample 080930, but it is162

also perceptible for C139. The next step was to develop an automated protocol to distinguish between163

diseased from healthy tissue. The classification process was made with a CNN (convolutional neural164

network) trained with 100 images of each label with different intensity levels and changing the position in165

order to produce an effective learning pattern based on the spectral features only instead of geometrical166

or illumination conditions. For this experiment, two sample holders were prepared, one with PDA agar,167

the other one with small colonies of P.fijiensis (10 days of incubation) growing in the same type of culture168

media.169

The network was trained to classify four different tags, agar578, agar 557, to learn the spectral features of170

the PDA culture media and Mycos557, Mycos578 to produce a classification model of the phytopathogen,171

the numbers 557, 578 corresponds to the filters which were used to take the pictures. Each image was taken172

with the following parameters: exposure time 1.6s, gain 54dB, once completed this process, the four sets173

of images were uploaded and the training process begins. The selected training parameters were 10000174

training steps, a ReLu activation function and a learning rate of 0.01 which was selected after checking175

the behavior of the loss function (cross entropy) with different values. The batch size selected uses the176

entire validation set for each accuracy computation. Also, every image was randomly cropped and scaled177

helping the network to cope with many possible distortions of the sample images, finally the machine178

learning library used was PNASNet a module with a self-contained piece of a TensorFlow graph based on179

a sequential optimization, that can be reused in a process called transfer learning. The table 1 shows the180

evolution of network learning in different iterations after two hours. In figure 8 a sample of the training181

set for each label is shown.182

8 shows the images taken with different filters after two hours of training.183

Training Parameters

Parameter
Iteration

1 3780 3790 9999

Train Accuracy % 76.5 100 100 100
Cross Entropy 1.29 0.00245 0.00244 0.00095

Validation Accuracy % 89.6 100 100 100

Table 1. Training Parameters for Different Iterations

The final iteration shows a successful reduction of the cross-entropy a parameter that describes how184

accurate is the model in the estimation of the images features. If the machine is classifying correctly, then185

the value of the cross-entropy will be reduced as is shown in the different iterations. Another way to186

interpret this is that the system is converging to the selected label. To test the training randomly selected187

samples of each of the tags were selected, none of them were used previously for the training, in the tables188

2, 3, 4, 5 the results for each sample are shown.189

P.fijiensis, 557 nm filter

% of Recognition

Tag Assay 1 Assay 2 Assay 3

Agar 557 0.041 0.012 0.069
Agar 578 0.092 0.008 0.064
Mycos 557 99.81 99.97 99.83
Mycos 578 0.026 0.007 0.037
Image identified yes yes yes

Table 2. Classification for P.fijiensis Image Taken with a 557 nm filter
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(a) Agar PDA (b) PDA with P.fijiensis Colonies

(c) P.fijiensis 557 nm filter sample (d) P.fijiensis 578 nm filter sample

(e) PDA 557 nm filter image (f) PDA 578 nm filter image

Figure 8. P.fijiensis training set with different filters
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P.fijiensis, 578 nm filter

% of Recognition

Tag Assay 1 Assay 2 Assay 3

Agar 557 0.004 0.002 0.007
Agar 578 0.017 0.003 0.057
Mycos 557 0.002 0.001 0.004
Mycos 578 99.97 99.99 99.93
Image identified yes yes yes

Table 3. Classification for P.fijiensis Image Taken with a 578nm filter

Agar 557 nm

% of Recognition

Tag Assay 1 Assay 2 Assay 3

Agar 557 99.89 99.98 98.89
Agar 578 0.065 0.016 0.283
Mycos 557 0.004 0.001 0.006
Mycos 578 0.033 0.005 0.823
Image identified yes yes yes

Table 4. Classification for Agar Image Taken with a 557nm filter

Agar 557nm

% of Recognition

Tag Assay 1 Assay 2 Assay 3

Agar 557 0.009 0.006 0.023
Agar 578 99.98 99.83 99.82
Mycos 557 0.002 0.001 0.009
Mycos 578 0.008 0.17 0.148
Image identified yes yes yes

Table 5. Classification for Agar Image Taken with a 578nm filter

In all cases, the neural network was able to successfully identify the presence of Pseudocercospora190

fijiensis with a certainty higher than 98%, which was the general purpose of this work. Each of the tables191

has in the upper part a label that indicates, the experiment carried out, for example, the table 2 shows in192

the first row the classification carried out by the algorithm for three different images, in the first test, the193

system was able to recognize the spectral pattern left by the microorganism with 99.81% of certainty, for194

that particular image, this image was not supplied to the machine for training, it was taken later and195

effectively corresponds to the label indicated, this leads to the conclusion that the system has the potential196

to correctly classify a sample. Similar results were obtained for each experiment performed with other197

testing images showing that the system can differentiate healthy tissue from diseased. It should be noted198

that this percentage occurred under controlled conditions of experimentation as those mentioned in the199

methodology.200

201

In summary, after the training with the spectral images, all the times that the system was supplied with202

images with different infected structures or not, it was able to respond correctly, regardless of the type of203

filter or sample, the reason for this is that each image creates a very particular distribution of intensities in204

the corresponding color channels, making it possible to "learn" to differentiate these characteristics, so205

with a deeper training and in different conditions, it would be possible to generate a system capable of206
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executing this task in the countryside or industry.207

208

209

4. Conclusions210

A set of tools was developed to create a system capable of detecting phytopathogens of fungal211

origin, combining algorithms for image processing, electronics, optics, deep learning techniques, and212

mechanical design. The whole system is a synergy of those elements that together with the knowledge of213

the phenomenology of inelastic scattering, introduces into the Colombian agriculture a design that could214

compete with similar solutions of foreign origin.215

The strategy in the selection of filters, allowed us to limit the set of wavenumbers to regions where the216

possible inelastic signals associated with fungal phytopathogens are manifested exclusively, allowing it to217

establish their presence both individually and on plant tissue, the aforementioned strategy was based on218

the review of dozens of similar works related with the fungal wall biochemistry, which was the cellular219

structure most exposed to laser radiation.220

Additionally, the image processing algorithms proved to be an excellent complement in the analysis of the221

Raman scattering signal, which shows that the use of a spectrometer is not necessary once the system is222

already calibrated. In the experiments with P.fijiensis, the operations on the image and the subsequent223

deep learning training gave the computer the capacity to evaluate the image features and determine if the224

phytopathogen is on the plant tissue.225

226
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