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This study aimed to research the eûects of diûerent dietary concentrate to forage (C:F)
ratio on growth performance, rumen fermentation and bacteria diversity of barn feeding
Tibetan sheep. The experiment contains ûver treatments (HS1, HS2 HS3, HS4 and HS5;
n=8, respectively) based on dietary C: F ratios 0:100, 15:85, 30:70, 45:55, and 60:40,
respectively. The ruminal bacterial community structure was investigated through high-
throughput sequencing of 16S rRNA genes in V4 hypervariable region. The results showed
that increasing dietary concentrate feed level from 0% to 60% exerted a positive eûect on
DMI, BW gain, gain rate and feed conversation ratio (FCR) in Tibetan sheep. The increases
dietary concentrate feed level elevatedNH3-N, propionate and valerate concentrations,
whereas, reduced molar ratio of acetate to propionate (A/P ratio) (P<0.05). For rumen
bacterial diversity, increases in dietary concentrate content contributed to lower alpha
diversity indexes including Shannon wiener, Chao1 and observed species, meanwhile,
signiûcantly increased the abundances of the phylum Bacteroidetes and the genus
Prevotella_1 (P<0.05). In conclusion, increases dietary concentrate content improved the
growth performance and Tibetan sheep fed diets of 45% concentrate obtained a better
performance; the inclusion of concentrate in feed changed rumen fermentation from
acetate fermentation to propionate fermentation, and improved the energy utilization
eûciency of Tibetan sheep; the increased in concentrate content signiûcantly reduced
rumen bacteria diversity and changed the abundance of some core bacteria.
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24

25 Abstract:

26 This study aimed to research the effects of different dietary concentrate to forage (C:F) ratio 

27 on growth performance, rumen fermentation and bacteria diversity of barn feeding Tibetan 

28 sheep. The experiment contains fiver treatments (HS1, HS2 HS3, HS4 and HS5; n=8, 

29 respectively) based on dietary C: F ratios 0:100, 15:85, 30:70, 45:55, and 60:40, respectively. 

30 The ruminal bacterial community structure was investigated through high-throughput sequencing 

31 of 16S rRNA genes in V4 hypervariable region. The results showed that increasing dietary 

32 concentrate feed level from 0% to 60% exerted a positive effect on DMI, BW gain, gain rate and 

33 feed conversation ratio (FCR) in Tibetan sheep. The increases dietary concentrate feed level 

34 elevatedNH3-N, propionate and valerate concentrations, whereas, reduced molar ratio of acetate 

35 to propionate (A/P ratio) (P<0.05). For rumen bacterial diversity, increases in dietary concentrate 

36 content contributed to lower alpha diversity indexes including Shannon wiener, Chao1 and 

37 observed species, meanwhile, significantly increased the abundances of the phylum 

38 Bacteroidetes and the genus Prevotella_1 (P<0.05). In conclusion, increases dietary concentrate 

39 content improved the growth performance and Tibetan sheep fed diets of 45% concentrate 

40 obtained a better performance; the inclusion of concentrate in feed changed rumen fermentation 

41 from acetate fermentation to propionate fermentation, and improved the energy utilization 

42 efficiency of Tibetan sheep; the increased in concentrate content significantly reduced rumen 

43 bacteria diversity and changed the abundance of some core bacteria. 

44 Keywords Rumen bacterial diversity, Tibetan sheep, 16S rRNA, Concentrate-to-forage ratio, 

45 Rumen fermentation parameter, Growth performance

46 Abbreviation key: C:F ratios= dietary concentrate to forage ratio, HS1= C:F ratio of 0:100, 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27807v2 | CC BY 4.0 Open Access | rec: 9 Jul 2019, publ: 9 Jul 2019



47 HS2= C:F ratio of 15:85, HS3= C:F ratio of 30:70, HS4= C:F ratio of 45:55, HS5= C:F ratio of 

48 60:40, DMI=dry matter intake, ADG=average daily BW gain, FCR = feed conversation ratio.

49 Introduction

50 Tibetan sheep (Ovis aries) live exclusively on the Qinghai Tibetan Plateau (QTP) with a 

51 altitude greater than 3,000 (An et al. 2005), they have adapted well to extremely harsh 

52 environment and ingested grasses as their sole source of nutrition (Sasaki 1994; Wiener et al. 

53 2003). Under traditional management, Tibetan sheep mainly grazed on natural pasture without 

54 concentrate supplementation, and always suffered seasonal live-weight variations and viciously 

55 cycled in <alive in summer, strong in autumn, thin in winter, tired in spring=, due to seasonal 

56 fluctuations in natural pasture supply and the contradiction between herbage supply and 

57 livestock's requirement on the alpine pasture (Dong et al. 2006; Xue et al. 2005; Xu et al. 2017). 

58 During growing season (June to Oct.), natural pasture can provide enough herbage for livestock, 

59 the local people only drive livestock to alpine pasture for grazing. During non-growing season 

60 (Nov to May) and vegetation green-up periods, grazing livestock shared low performance mainly 

61 attributed to the decrement in herbage supply (both in quantity and quality). In addition, 

62 irrational grazing during this period destroyed regular growth of alpine plants and function 

63 recovery of alpine pasture. Previous studies have confirmed that spring short term rest-grazing is 

64 an effective measure for the functional recovery of alpine meadows (Li et al. 2014; Li et al.2017; 

65 Ma et al.2017), the local government encourages pastoralists to feed their livestock in warm shed 

66 during spring grazing break. However, few studies concerning growth performance of barn 

67 feeding Tibetan sheep during late non-growing and vegetation green-up periods were conducted, 

68 but which was quiet important for providing pastoralists guidance in livestock breeding.

69 The rumen microorganisms play an important role in the digestion of proteins, 
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70 carbohydrates, starch, sugars and fats, which provides energy and proteins to the host by 

71 producing volatile fatty acids and bacterial proteins through anaerobic fermentation (Ceconi et 

72 al. 2015; Jiang et al. 2015) and finally affects ruminants performance. The rumen 

73 microorganism can be affected by many factors, such as diet, hosts and geographic region 

74 (Clark. 1975; Lee et al. 2012). The dietary nutrition level is a major factor affecting rumen 

75 microbial diversity, healthy status and production capacity of ruminants (Clark. 1975). The 

76 effect of diet on the structure of rumen microbial communities has been widely investigated in 

77 Yak, Tan sheep, Holstein dairy cows, Mehshana buffalo and goats (Pitta et al. 2014; Jiao et al. 

78 2015; Pitta et al. 2016; Wang et al. 2016; Xue et al. 2016). However, as the dominant ruminant 

79 and living foundation for local herdsman, the studies of Tibetan sheep have only focused on 

80 the growth performance, slaughter performance and economic benefit under different dietary 

81 supplementation (Baruah et al. 2012; Chen et al. 2015c; Dodd et al. 2011; Feng et al. 2013; 

82 Lee et al. 2012; Xu et al. 2017), but few comprehensive studies focused on the growth 

83 performance, rumen fermentation and rumen microbial communities of Tibetan sheep. 

84 Therefore, this study aimed to investigate the growth performance, rumen fermentation and 

85 rumen bacterial diversity of Tibetan sheep under different dietary concentrate-to-forage ratios 

86 during late non-growing and green-up periods. We hypothesized that different C: F ratios could 

87 affect growth performance, rumen fermentation and rumen bacterial diversity in Tibetan sheep. 

88 These results will be of great importance for providing guidance for local herdsmen in Tibetan 

89 sheep breeding and for future research on rumen microbial metabolism in Tibetan sheep.

90 Materials and Methods

91 Animals and Experimental Design
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92 This study was conducted at Haibei Demonstration Zone of Plateau Modern Ecological 

93 Animal Husandry Scientific and Technology in Haibei Prefecture, Qinghai Province, China 

94 (36°549 N, 100°569 E), from April 2016 to July 2016. All animal care procedures were consistent 

95 with the guidelines from the Institution of Animal Care and the Ethics Committee of the 

96 Northwest Institute of Plateau Biology, Chinese Academy of Sciences (NWIPB20160302). The 

97 processing of the samples after collection was performed strictly in accordance with the 

98 guidelines of NWIPB.

99 A total of 40 female yearling Tibetan sheep with familiar body conditions (21.39±1.18 kg 

100 BW, and not under current antibiotic treatment) were randomly divided into five treatments (8 in 

101 each) under different C:F ratios (on dry matter basis):HS1(0:100), HS2 (15:85), HS3 (30:70), 

102 HS4 (45:55) and HS5 (60:40), respectively. All sheep were allocated into 5 pens within a warm 

103 shed. The concentrate and oat hay were manually mixed and fed (dry matter) based on 3.5% BW 

104 of Tibetan sheep. Before study, all the animals were fed the experimental diet for a 15-day 

105 adaptation phase. During formal 80 day experiment, the experimental animals were separately 

106 fed twice dairy, at 8:00 am and 5:00 pm. The diets, salt brick and clean water were available 

107 throughout the entire experiment. The ingredients and nutrient compositions of the animal diet 

108 are shown in Table 1 and Table S1. The concentrate feed used in this study was produced by 

109 Menyuan Yongxing Ecological Agricultural Development Co., Ltd., and oat hay are harvested, 

110 bundled and stored in the year 2015.

111 Measurement and sampling

112 The diets and oats in each treatment were weighed and recorded daily to estimate individual 

113 dry matter intake (DMI). Diet samples of approximately 500 g from each treatment were 

114 collected, dried at 60 °C, ground through a 1-mm sieve and stored in a vacuum dryer for 
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115 nutritional analysis. To measure animal growth performance, Tibetan sheep were weighed before 

116 feeding using an electronic balance at the beginning and end of formal experiment. We selected 

117 four Tibetan sheep from each treatment group for rumen fluid sampling. Specifically, on 80 th 

118 day, rumen content samples were obtained 3-4 h after the morning feeding using a stomach tube 

119 attached to an electric pump, which has been confirmed to yield similar results for rumen 

120 microorganisms and fermentation parameters as sampling using a rumen cannula (Ramos-

121 Morales et al. 2014). The rumen contents were filtered through four layers of sterilized gauze. 

122 Approximately 67 mL of liquid was obtained from the rumen of each Tibetan sheep. The rumen 

123 fluid was separated into three samples, one (approximately 2 mL) was transferred into sterilized 

124 freezing tubes and stored in liquid nitrogen for DNA extraction; the second sample 

125 (approximately 15 mL) was immediately used to measure the pH; and the third sample 

126 (approximately 50 mL) was used for the assessment of rumen fermentation parameters, including 

127 ammonia nitrogen (NH3-N) and rumen volatile fatty acids (VFAs).

128 Chemical analysis and calculation

129 The feed samples were fried in an oven at 135 °C for 3 h to obtain the DM (AOAC, 1990; 

130 Method No. 930.15). The total N was detected using Kjeldahl method; the crude protein content 

131 was calculated as 6.25×N (Method No. 984.13); the ether extract (EE) was measured using the 

132 Soxhlet system (Method No. 954.02); the acid detergent fiber (ADF) and neutral detergent fiber 

133 (NDF) of diet were analysed using method described by Soest et al. (1991); and the starch was 

134 measured according to PRC national standard (GB 5009.9-2016).

135 The body weight gain (BW gain), gain rate, average daily BW gain (ADG) and feed 

136 conversion ratio (FCR) were calculated according to the following equations:

137 BWgain (kg) = BWf 2 BWi
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138 Gain rate (%) = 100 × (BWf 2 BWi) BWi 

139 ADG (g/d) = 1000 × (BWf 2 BWi) t

140 FCR =  DMconsume (BWf 2 BWi)

141 where BWf and BWi are the final and initial body weights (kg), respectively, t is the 

142 experimental time (d), and DMconsume is the total feed consumed during the experiment (kg DM). 

143 The ruminal fluid pH was measured using a portable pH meter (PHSJ-3F; Precision Instruments 

144 Company, Shang Hai, China). For VFAs measurements, the rumen fluid was centrifuged at 

145 12,000 g for 15 min, and the VFAs in the supernatant were analysed using a gas chromatograph 

146 Agilent 7890A (Agilent Technologies Inc., Santa Clara, CA, USA) equipped with a polar 

147 capillary column (DB-WAX, 30 m×0.25 mm×0.25 ¿m) and a flame ionization detector (FID, 

148 temperature set at 250°C). The temperature-programmed conditions were as follows: the 

149 temperature was maintained at 60 °C for 2 minutes, increased to 180 °C at rate of 10 °C /min, 

150 and increased to 250 °C at rate of 20 °C /min; the shunt ratio was 20:1;the flow rate was 1 

151 mL/min; and the inlet temperature was 200 °C. The NH3-N content in the supernatant was 

152 quantified using a continuous flow analyser (SEAL Auto Analyser 3, Germany) described by 

153 Rhine et al. (1998).

154 DNA extraction and PCR amplification

155 Genomic DNA was directly extracted from 0.2 g of each semisolid-state sample using cetyl 

156 trimethylammonium bromide (CTAB) method (Porebski et al. 1997). The DNA quality was 

157 assessed via 2% agarose gel elcectrophoresis, and metagenomic DNA concentratios were 

158 determined with a NanoDrop 2000 (Thermo, Mass, USA). The DNA was then diluted to 1 ng/¿L 

159 using sterile water and stored at -4°C for PCR amplification.

160 For PCR amplification, the V4 hypervariable region of the bacterial 16S rRNA gene was 

161 amplified using the universal primers 515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 806R 
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162 (5'- GGACTACHVGGGTWTCTAAT-3') with unique barcodes. PCRs were performed in 25 ¿L 

163 reactions consisting of 12.5 ¿L Phusion® High-Fidelity PCR Master Mix (New England 

164 Biolabs), 1 ¿L of forward and reverse primers, 1 ¿L of template DNA and 9.5 ¿L of autoclaved 

165 distilled water. The thermal cycling program consisted of initial denaturation at 94°C for 3 min, 

166 30 cycles of denaturation at 94°C for 40 s, annealing at 56°C for 1 min, and elongation at 72°C 

167 for 1 min and a final incubation step at 72°C for 10 min. For PCR product quantification and 

168 qualification, we obtained mixtures of the same volumes of 1× loading buffer (containing SYBR 

169 Green from Shanghai, SanoBio) and the PCR products were exmined ona 2% agarose gel 

170 electrophoresis. Samples with a bright band between 400and 450 bp were mixed and purified 

171 using a Qiagen Gel Extraction Kit (Qiagen, Germany). Sequencing libraries were then generated 

172 using a TruSeq® UltraTM DNA Library Prep Kit for Illumina (NEB, USA) following the 

173 manufacturer9s recommendations, and the index codes were then added. The library quality was 

174 assessed using a Qubit® 2.0 fluorometer (Thermo Scientific) and an Agilent Bio analyzer 

175 system. The library was sequenced on an Illumina HiSeq PE250 platform (Novogene, Beijing, 

176 China).

177 Analysis of sequencing data

178 The paired-end reads were assigned to samples based on their unique barcodes, and the 

179 barcodes and primer sequences were then trimmed. The raw reads were filtered according to the 

180 following rules: Removing reads containing more than 10% of unknown nucleotides (N); 

181 removing reads containing less than 80% of bases with quality (Q-value)ÿ20. The FLASH 

182 (version 1.2.7) was then used to merge paired-ends reads as raw tags with a minimum overlap of 

183 10bp and mismatch error rates of 2% (Magoc & Salzberg 2011). The noisy sequences of raw 

184 tags were filtered by QIIME (version 1.9.1) pipeline to obtain the high-quality clean tags 
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185 (Caporaso et al. 2010). The reads were then compared with a Gold database using the UCHIME 

186 algorithm to detect and remove the chimaera sequences (Edgaret et al. 2011). All the sequences 

187 were analysed using Uparse software (version 7.0.1001), and sequences with greater than or 

188 equal 97% similarity were assigned to the same operational taxonomic unit (OTU). Taxonomic 

189 information for each representative sequence was annotated using the Greengenes database 

190 based on the RDP classifier algorithm (version 2.2) (Wang et al. 2007).

191 Statistical analysis

192 Alpha and species diversity indexes, including the Shannon-Wiener indexe, Chao1 index, 

193 Good9s coverage and observed species were calculated by Qiime and graphed using Origin 

194 (version 8.0). The correlation among growth performance, rumen fermentation parameters and 

195 bacteria diversity were analyzed using SPSS (version 17.0), and heat map of correlations were 

196 also prepared using Origin. The beta diversity based on weighted UniFrac distance, was 

197 visualized through a principal coordinate analysis (PCoA). One-way ANOVA with Tuckey9s test 

198 was performed to compare the differences in relative abundances among different treatments, 

199 and Duncan9s multiple comparison test was used to determine the effects of dietary C: F ratios 

200 on BW gain, gain rate, ADG, DMI, DM consume and FCR using SPSS (version 17.0). Effects 

201 were considered significant at P<0.05. The results are shown as the means± SEMs. 

202 Results

203 Growth performance of Tibetan sheep

204 As shown in Table 2, treatments HS4 and HS5 significantly increased BW gain, gain rate 

205 and ADG, whereas reduced FCR as compared to treatments HS1 and HS2 (P<0.05). Tibetan 

206 sheep fed diet in group HS1 showed the lowest growth performance. No significant difference 

207 were detected in BW gain and FCR between treatments HS4 and HS5, and the initial BW showed 
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208 no notably difference among the five groups (P=0.196). 

209 Rumen fermentation parameters

210 As shown in Table 3, the NH3-N, propionate and valerate concentrations in treatments HS4 

211 and HS5 were significantly higher than that of other three groups (P<0.05). There was a 

212 decreasing trend for total VFA, acetate and isovalerate concentrations, but no significant 

213 differences were detected among the groups. The increases in dietary concentrate level 

214 significantly decreased A:P ratio (P<0.05). The ruminal pH tended to decrease, but no significant 

215 difference was detected (P>0.05), and the average pH value was approximately 6.61. 

216 Sequencing and taxonomic composition of the rumen bacterial community

217 A total of 1,497,607 PE reads were obtained, and 1,461,673 clean reads from 20 different 

218 samples were generated after quality control (Table S2). All the sequences were aligned and 

219 clustered into OTUs using a 97% sequence identity as a cut-off, which yielded a total of 49,216 

220 OTUs (Table S2). Rarefaction curves were generated with a 3% cut of for comparisons of 

221 species and richness as shown in Fig. 1. All the curves of the observed species numbers tended 

222 to saturate to a plateau at the minimum sequence number of 60,000 tags. In addition, the HS4 

223 and HS5 groups tended to cluster together with a lower observed species number than the HS1, 

224 HS2 and HS3 groups. 

225 The taxonomic analysis detected a total of 41 phyla (Table S3), and the most abundant 

226 phyla were Bacteroidetes (52.18%), Proteobacteria (20.34%) and Firmicutes (14.34%). The top 

227 ten phyla, which exhibited the highest relative abundances, were prevalent in all the samples, 

228 accounting for nearly 98% of all sequences (Fig. 2A). The moderate abundant phyla included 

229 Fibrobacteres (1.25%), Cyanobacteria (1.04%), Acidobacteria (0.96%), Tenericutes (1.49%), 
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230 Actinobacteria (0.96%) and Verrucomicrobia (0.47%). The other known phyla accounted for 

231 1.48%, whereas the remaining sequences that were unclassified accounted for 0.26%.

232 At the genus level, we detected 129 distinct genera across all the groups (Table S4), and 10 

233 genera whose relative abundances more than 1% were perceived as the most important bacteria 

234 that affecting the rumen environment and digestive system (Fig. 2B). The genus with relatively 

235 high across all the samples were Prevotella_1 (26.81%), Succinivibrionaceae_UCG-002 

236 (7.11%), Ruminobacter (6.03%), Rikenellaceae_RC9_gut_group (4.73%), Prevotellaceae_UCG-

237 003 (2.65%). Minor genera, such as Prevotellaceae_UCG-001, Erysipelotrichaceae_UCG-004, 

238 Fibrobacter, Christensenellaceae_R-7_group and Ruminococcaceae_NK4A214_group 

239 accounted for 1.23%, 1.09%, 1.01%, 1.22 and 1.09% of the sequences, respectively. The other 

240 known genera accounted for 11.32% of the sequences, whereas sequences that were unclassified 

241 accounted for 34.23% of the sequences. 

242 Effect of diets with different C:F ratios on the bacterial community

243 To determine alpha diversity, we calculated Shannon-Wiener, Chao 1, observed species and 

244 Good9s coverage indexes, as shown in Fig. 3. The indexes of Shannon-Wiener, Chao 1 and 

245 observed species in treatments HS1, HS2 and HS3 were significantly higher than treatments HS4 

246 and HS5 (Fig. 3A, B and C). The Good9s coverage among five treatment were greater than 99% 

247 (Fig. 3D). As shown in Fig. 4, the PCoA result showed that the rumen bacterial communities of 

248 the five treatments were mainly classified into three clusters (Fig. 4). The HS1 and HS2 

249 treatments clustered very closely together, the HS4 and HS5, and the HS3 treatments formed two 

250 clusters. In addition, HS3 treatment were closer to the cluster composed of the HS1 and HS2 

251 treatments, which only represented 7.14% of the variability obtained with PC2.
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252 The relative abundance of bacterial taxa was used to describe the impact of diets with 

253 different C:F ratios on bacterial community. At the phylum level, top 8 phylum (relative 

254 abundance >1%) were analyzed in Table S5. The ruminal compositions of the HS1 to HS3 

255 treatments contained a significantly lower relative abundance of Bacteroidetes, whereas higher 

256 relative abundances of Proteobacteria, Acidobacteria, and Actinobacteria than those of the 

257 HS4 and HS5 treatments (P<0.05). No significant differences were found in the other phyla 

258 (P>0.05). At the genus level, top 12 genera (relative abundance >1%) were analyzed in Table 

259 S6. Treatments HS4 and HS5 shared a higher relative abundance of Prevotella_1 than the other 

260 three treatments (P<0.05). No significant differences were found in the rest of genera (p>0.05). 

261 Relationships between rumen bacterial diversity and host growth performance

262 As shown in Fig. 5, a significant negative correlation was found between bacterial diversity 

263 (including the Shannon-Wiener, Chao1, and observed species indexes) and growth performance 

264 (including BW gain, ADG, and DMI) with increases in the C:F ratio (P<0.05). FCR showed a 

265 negative correlation with increases in the DMI, BW gain and ADG and a positive correlation 

266 with the Shannon-Wiener, Chao1 and observed species indexes. In addition, growth performance 

267 showed significant positive correlations with increases in the dietary C:F ratio (P<0.05).

268 Relationships between rumen fermentation parameter and microorganisms 

269 A heat map of the correlations between the top 45 genera (relative abundance >0.1%) and 

270 rumen fermentation was constructed (Fig. 6). A total of 360 correlation coefficients were 

271 generated, and 33 of these coefficients (9.17% of the total correlation coefficients) showed 

272 significant correlations (P<0.05). The fermentation parameters pH, acetate, isovalerate and A:P 

273 were significantly positively correlated with most genera (e.g., Victivalls, Thalassospira and 

274 Sphaerochaeta), whereas valerate and NH3 showed a negative correlation with most genera (e.g., 
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275 Victivalls, Ruminococcaceae_UCG_02, and Thalassosphira ). Prevotella_1, which was the most 

276 abundant genera, was significantly positively (P<0.05) correlated with NH3, propionate and 

277 valerate and negatively correlated with pH. No significant correlation were detected between 

278 butyrate and the top 45 genera.

279 Discussion

280 Growth performance of barn-fed Tibetan sheep

281 Previous studies mainly aimed to ensure that Tibetan sheep live through grazing breaks (Ma 

282 2008; Xie et al. 2014), and there is little knowledge on the BW gain and feed efficiency of 

283 Tibetan sheep fed diets with different C:F ratios during late non-growing and vegetation green-

284 up periods. Our results revealed that increases in dietary concentrate feed levels within a certain 

285 range (0% to 45%) exerted a positive effect on the feed intake, BW gain and FCR of Tibetan 

286 sheep during spring grazing breaks. This finding can be mainly attributed to the fact that high-

287 concentrate diet contains more digestive energy and nonstructural carbohydrates (Wang 2015), 

288 which leads to increased nutrient intake, faster digestion through the digestive tract, and then 

289 improved growth performance and higher feed efficiency (Haddad & Ata 2009; Haddad 2005).

290 Under traditional grazing, Tibetan sheep exhibit low growth performance (ADGÿ36~55 

291 g/d) during spring, and more seriously, unsustainable grazing during this period decreases the 

292 plant species richness and biomass in alpine pasture (Ma 2008). In contrast, shortened rest-

293 grazing increases the standing herbage biomass by 77%~189% (Li et al. 2017; Ma et al. 2017). 

294 Herein, we confirmed that a diet with diet with a 45% concentration supplementation 

295 significantly improves the performance of Tibetan sheep. Therefore, the use of spring rest-

296 grazing combined with barn feeding could increase livestock performance and promote the 

297 functional recovery of alpine pasture.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27807v2 | CC BY 4.0 Open Access | rec: 9 Jul 2019, publ: 9 Jul 2019



298 Effect of different C: F ratios on rumen fermentation parameters 

299 The pH, NH3-N concentration and VFA molar ratio are the main internal environmental 

300 indicators of rumen fermentation. If the rumen pH was in the range of 6.2 to 7.0, the ecological 

301 environment of rumen microorganisms could be relatively stable, which could ensure normal 

302 rumen fermentation (Weng et al. 2013; Zhang et al. 2013). In our study, the ruminal pH ranged 

303 from 6.42 to 6.86, and this finding indicated that the increased proportion of concentrate did not 

304 induce acidosis, which is usually defined as a decrease in the rumen pH to less than the threshold 

305 value of 6.0 (Nocek 1997). The ruminant pH values obtained in the present study are inconsistent 

306 with previous studies (Cerrillo et al. 1999; Chen et al. 2015a). The pH value can be affected by 

307 many factors, such as higher doses of flour or starches (Lettat et al. 2010; Minuti et al. 2014), the 

308 time from concentrate feed supplementation to ruminal liquid collection (Lettat et al. 2010), and 

309 the insertion depth of the rumen catheter (Li et al. 2009). In our study, increases in the dietary 

310 concentrate level tended to decrease the ruminal pH, but no significant difference was detected 

311 (P>0.05), which could be due to the starch content. The HS1 and HS2 groups had a lower starch 

312 content (25.58 and 26.95 mg/g, respectively), which led to a higher pH value, whereas the HS3, 

313 HS4 and HS5 groups had a higher starch content (32.55, 33.72 and 39.37mg/g, respectively), 

314 which resulted in a relatively lower pH value. The dietary C:F ratios did not significantly affect 

315 the total volatile fatty acids, which is in accordance with previous research (Chen et al. 2015a). 

316 This result might be due to the ability of the rumen system that can adapt to appropriate dietary 

317 C:F ratios through the self-adjustment of rumen microorganisms. Ammonium nitrogen which is 

318 the final product through the decomposition of protein and nonprotein in feed, and it is also the 

319 main nitrogen source for the synthesis of bacterial protein by rumen microorganisms. In our 

320 study, high concentrate feed level elevated NH3-N concentration, which is consistent with the 
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321 former study (Reddy & Reddy. 1985; Yang et al. 2001). The high dietary concentrate increased 

322 nitrogen content in the rumen, thereby increasing ruminal ammonia nitrogen (Moorby et al. 

323 2006). As for individual VFA concentrations in current study, diets with high-concentrate levels 

324 slightly reduced acetate concentration, whereas significantly increased propionate proportion, 

325 thereby resulting in a significant reduction of A: P ratio. (Andrade & Schmidely 2006; Polyorach 

326 et al. 2014). From the point of view of energy utilization, a decrease in the A:P ratio reflects an 

327 improvement in the feed energy utilization efficiency, which also explains the improved growth 

328 performance of Tibetan sheep in the high-concentrate groups (HS4 and HS5).

329 Core bacterial communities in the rumen

330 Although rumen microbial community composition varies with diet and host, a 8core

331 microbiome9 is found across a wide geographical range (Herdson et al. 2015). The dominance of 

332 Bacteroidetes or Proteobacteria could be attributable to variations in diet, environment, hosts 

333 and farming practices over a wide geographical range (Amato et al. 2013; Henderson et al. 

334 2013). In our study, different dietary concentrate level induced Bacteroidetes (55.02%) to 

335 become the most abundant phyla, followed by Proteobacteria (22.10%), and this microbial 

336 distribution of major phyla was similar to that obtained in previous studies on Yaks (Chen et al. 

337 2015b). These results might be related to the functions of rumen bacteria. Members of the 

338 phylum Bacteroidetes have a greater ability to degrade protein and carbohydrates than species 

339 belonging to Proteobacteria (Huo et al. 2014; Pitta et al. 2014). Our study also found that the 

340 relative abundance of Firmicutes was the third largest phylum and was lower than that of 

341 Proteobacteria. Similar results were observed in bovines and cattle during the transition from 

342 forage to concentrate (Jami et al. 2013). However, Xue et al. (2016) observed that the most 

343 abundant phyla in the rumen of natural pasture-grazing Tibetan sheep are Bacteroidetes, 
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344 followed by Firmicutes. One possible reason for this difference is that the hosts investigated by 

345 Xue et al. (2016) were grazed on natural pasture and that the forage nutrition and types differed 

346 from those in our study, and these differences might have resulted in a higher abundance of 

347 Firmicutes.Additionally, the phylum Fibrobacteres, with an abundance less than 1.5%, 

348 comprised only a small fraction of the community composition compared with those of other 

349 phyla, and these results agree with previous studies (Petri et al. 2013; Wang et al. 2016).

350 In our study, although different C:F ratio did not change the core structure of the rumen 

351 microbiome, the relative abundances of Bacteroidetes and Proteobacteria showed noticeable 

352 shifts at phylum level. Tibetan sheep fed high-concentrate diets significantly increased the 

353 relative abundance of Bcateroidetes, whereas, reduced the relative abundance of Proteobacteria. 

354 Pervious research revealed that Bacteroidetes were the major rumen microorganisms in 

355 degrading non-fibrous carbohydrates and contained genes related to the degradation of non-

356 fibrous polysaccharides (Russell & Diezgonzalez. 1998). In our study, high concentrate feed 

357 contained more non-fibrous carbohydrates and polysaccharides, thus, increased the abundance of 

358 Bacteroidetes. At the genus level, Prevotella_1 was the predominant genus, and the relative 

359 abundances of this genus significantly increased with increases in dietary C:F ratio. This finding 

360 was consistent with that previously obtained by Stevenson & Weimer et al. (2007). The high 

361 abundance of this genus can perhaps be explained from two points of view. Firstly, it if possible 

362 that this bacterial genus has a wide metabolic niche due to genetic relatedness or to the high 

363 genetic variability that enable this genus to occupy different ecological niches within the rumen. 

364 Secondly, Prevotella_1 strains play an important role in the degradation and utilization of plant 

365 noncellulosic polysaccharides, protein, starch and xylans. The increase in the abundance of this 

366 genus could be attributed to dietary nutrition changes, such as increased dietary protein and 
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367 starch. In addition, Prevotella_1 is also considered to be associated with propionic acid 

368 production (Strobel 1996), which might also explain the increasing proportion of propionate 

369 obtained with increase in the C:F ratio.

370 Relationship between bacterial diversity and growth performance of Tibetan sheep

371 In the past 50 years, humans have drastically altered the diet that ruminants consume. The 

372 use of grain feed increases the productivity of animals and the economic benefit of animal 

373 husbandry. In our study, the diversity and richness was significantly lower in high dietary C:F 

374 ratios treatments than low dietary C: F ratios (HS1, HS2 and HS3). Lin et al. (2015) found that 

375 the Shannon diversity index of bacteria were higher in low concentrate diet group than in high 

376 concentrate diet group concentrate diet group (Lin et al., 2015). Liu et al. (2015) discovered the 

377 diversity of ruminal epithelial bacterial community from goats fed the hay diet were significantly 

378 higher than those fed the high-grain diet (Liu et al., 2015). Diet composition may effect on the 

379 diversity index of microorganisms.The increase in microbial diversity could be because low 

380 dietary concentrate diets provide a greater range of carbohydrate substrates (e.g., cellulose and 

381 many heteropolysaccharides) than high dietary concentrate treatments and/ or because 

382 microorganisms grow faster in high pH conditions (Hobson & Stewart. 2012).The growth 

383 performance results indicated that increases in the concentrate feed level from 0 to 45%, exerted 

384 a positive effect on the feed intake, BW gain, gain rate and FCR in Tibetan sheep. Therefore, 

385 based on our findings, we can conclude that improved growth performance is not linked to a 

386 higher diversity of rumen microorganisms. It is well known that a decrease in the bacterial 

387 diversity can induce the evolution of a certain bacterial group and thereby its dominance in the 

388 community. Thus, in our study, a decrease in bacteria diversity is associated with a higher 

389 dominance index (phyla Bacteroidetes and genera Prevotella_1), which ensured that the host 
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390 could receive more nutrition and ultimately exhibits an improved growth performance. In 

391 addition, in our study, increases in the dietary C:F ratio from 0:100 to 30:70 were associated with 

392 increases in both the rumen bacterial diversity and the host growth performance, whereas, dietary 

393 C:F ratios of 45:55 and 60:40 could only promote growth performance of Tibetan sheep. 

394 Briesacher et al. (1992) observed that the digestive of the rumen is influenced by the number of 

395 bacterial species and the total abundance of bacteria. Wanapat et al. (2003) investigated the 

396 microorganisms in cattle and swamp buffaloes and observed that swamp buffaloes exhibit a 

397 stronger ability to digest cellulose than cattle due to their greater abundance of bacteria 

398 (1.6×109/mL) compared with that of cattle (1.36×109/mL). In our study, the HS3 group (C: F 

399 ratio 30:70) exhibited a richer microbial community and an increased in microbial 

400 diversity.Therefore, the inclusion of 30% concentrate in feed might be a good choice of diet that 

401 can be provided to Tibetan sheep. However, we did not perform digestibility experiments with 

402 all the treatments, which is a limitation of this study. Therefore, whether a rumen environment 

403 with a high bacterial richness and a high bacterial diversity is associated with a higher digestive 

404 capacity of Tibetan sheep remains to be investigated.

405 Conclusion

406 The different dietary C: F ratios affected the growth performance, rumen fermentation and rumen 

407 bacterial diversity of Tibetan sheep. Increasing the dietary concentrate feed level from 0% to 

408 60% exerted a positive effect on the DMI, BW gain, gain rate and FCR of Tibetan sheep during 

409 late non-growing and green-up period, and Tibetan sheep fed with 45% concentrate level for 

410 barn feeding can result in a better improvement in animal performance. Moreover, high C:F 

411 ratios significantly increased ammonium nitrogen , reduced the A:P molar ratio and changed the 

412 composition of the bacterial community. 
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Figure 1
Figure 1 The rarefaction analysis anomg the 20 diûerent samples.

The group HS1 samples included sheep HS1.1, HS1.2, HS1.3 and HS1.4. The treatment HS2
samples included sheep HS2.1, HS 2.2, HS2.3 and HS4. The treatment HS3 samples included
sheep HS3.1, HS3.2 HS3.3 and HS3.4. The treatment HS4 samples included HS4.1, HS4.2,
HS4.3 and H4.4. The treatment HS5 samples included HS5.1, HS5.2, HS5.3 and H5.4. The
treatment HS1= concentrate to forage ratio 0:100, HS2= concentrate to forage ratio 15:85,
HS3= concentrate to forage ratio 30:70, HS4= concentrate to forage ratio 45:55,
HS5=concentrate to forage ratio 60:40.
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Figure 2
Dominant bacterial phylum in individual samples and the shared genera across the
ruminal samples.

(A) The top 10 shared bacterial taxonomic composition across ruminal samples at the phylum
level. (B) The top 10 shared bacterial toxonomic composition across ruminal samples.
Percentage is shown on the X-axis. The box represent the interquartile range between the
ûrst and the third quartiles, and the symbol<44= represent the max value, <×= represent
the variation range from 1% to 99% and <¥=represent the mean value. The treatment HS1=
concentrate to forage ratio 0:100, HS2= concentrate to forage ratio 15:85, HS3= concentrate
to forage ratio 30:70, HS4= concentrate to forage ratio 45:55, HS5=concentrate to forage
ratio 60:40.
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Figure 3
The diûerences in bacteria community diversity and richness indexes among diûerent
feeding treatment.

(A) The Shannon-Wiener diversity among each treatment. (B)The Chao1 richness estimator
among each treatment. (C) The observed species in each treatment. (D) The good coverage
in samples among each treatment. The treatment HS1= concentrate to forage ratio 0:100,
HS2= concentrate to forage ratio 15:85, HS3= concentrate to forage ratio 30:70, HS4=
concentrate to forage ratio 45:55, HS5=concentrate to forage ratio 60:40.
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Figure 4
The principal coordinate analysis (PCoA) using weighted UniFrac metrics.

The treatment HS1= concentrate to forage ratio 0:100, HS2= concentrate to forage ratio
15:85, HS3= concentrate to forage ratio 30:70, HS4= concentrate to forage ratio 45:55,
HS5=concentrate to forage ratio 60:40.
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Figure 5
The heat map of the correlations between bacterial diversity and growth performance of
Tibetan sheep.

DMI=dry matter intake; ADG=average daily body weight gain; FCR=feed conversion ratio;
BW again= body weight gain. The treatment HS1= concentrate to forage ratio 0:100, HS2=
concentrate to forage ratio 15:85, HS3= concentrate to forage ratio 30:70, HS4= concentrate
to forage ratio 45:55, HS5=concentrate to forage ratio 60:40. * signiûcant at P<0.05.
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Figure 6
The heat map of the correlations between bacterial diversity and growth performance of
Tibetan sheep.

DMI=dry matter intake; ADG=average daily body weight gain; FCR=feed conversion ratio;
BW again= body weight gain. The treatment HS1= concentrate to forage ratio 0:100, HS2=
concentrate to forage ratio 15:85, HS3= concentrate to forage ratio 30:70, HS4= concentrate
to forage ratio 45:55, HS5=concentrate to forage ratio 60:40. * Signiûcant at P<0.05.
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Table 1(on next page)

The nutritional composition of the whole diets among diûerent treatments (% DM basis).

a The tratments HS1, HS2, HS3, HS4 and HS5 refer to the C:F ratios of 0:100, 15:85, 30:70,

45:55 and 60:40, respectively. b DM= dry matter; CP= crude protein; EE= ether extract;

ADF= acid detergent ûbre; NDF= neutral detergent ûbre. c Manufactured by Menyuan
Yongxing Ecological Agricultural Development Co., Ltd. Contained corn (48%), wheat (30%),
soybean meal (7%), colza cake (6%)cottonseed meal (5%), , salt (1%), pre-mix (1%),CaHPO4
(1%) and CaCO3 (1%).
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Groups a

Items

HS1 HS2 HS3 HS4 HS5

Ingredient (%)

Concentrate feeds c 0 15 30 45 60

Oats hay 100 85 70 55 40

Nutrient content

DM b 93.42 92.70 91.82 91.23 90.35

CP 6.31 7.69 9.37 10.38 11.94

Starch (mg/g) 25.58 26.95 32.55 33.72 39.37

EE 2.13 2.21 2.36 2.37 2.49

ADF 34.1 30.68 27.33 23.79 19.64

NDF 57.64 52.04 44.85 39.05 33.12

Calcium 0.35 0.40 0.48 0.55 0.61

Magnesium 0.24 0.27 0.32 0.35 0.42

Phosphorus 0.22 0.27 0.33 0.38 0.45

1
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Table 2(on next page)

The eûects of diûerent dietary C: F ratios on the growth performance of Tibetan sheep.

a The treatments HS1, HS2, HS3, HS4 and HS5 refer to concentrate-to-forage ratios of
0:100,15:85, 30:70, 45:55 and 60:40. DMI=dry matter intake; DM consume= DMI×t, t is
experimental time(d), BW=body weight; ADG= average daily BW gain . FCR= feed
conversion ratio. Values in the same row with diûerent superscripts are signiûcantly diûerent
(P<0.05).
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Groups a

Items

HS1 HS2 HS3 HS4 HS5

p-value

Initial BW (kg) 21.31±0.92 22.13±3.06 21.25±1.69 19.88±1.1.81 22.19±2.34 0.196

Final BW(kg) 23.81±1.25d 26.44±3.07cd 28.38±2.23bc 29.75±2.62b 32.94±3.49a ÿ0.01

BW gain (kg) 2.50±0.76d 4.31±1.92c 7.13±1.71b 9.88±1.43a 10.75±1.79a ÿ0.01

Gain rate (%) 11.73±3.50d 19.93±6.54c 33.78±8.63b 49.98±7.13a 48.59±7.56a ÿ0.01

ADG (g/d) 31.25±9.45d 53.91±12.91c 89.06±21.33b 123.44±17.91a 134.38±22.41a ÿ0.01

DMI (g/dÿ 670.30±45.26c 719.16±120.09bc 741.21±71.22abc 807.68±32.29ab 851.93±98.86a ÿ0.01

DM consume (kg) 53.62±3.62c 57.53±8.98bc 59.30±5.70bc 64.61±4.98ab 68.15±7.91a ÿ0.01

FCR 23.86±9.75a 13.94±3.38b 8.92±3.06c 6.67±1.15c 6.44±1.00c ÿ0.01

1

2
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Table 3(on next page)

The eûects of diûerent dietary C: F ratios on the rumen fermentation parameters of
Tibetan sheep.

a The Treatments HS1, HS2, HS3, HS4 and HS5 refer to concentrate to forage ratios of 0:100,

15:85, 30:70, 45:55 and 60:40, respectively. b Values in the same row with diûerent
superscripts are signiûcantly diûerent (P<0.05).
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Groups a

Parameters

HS1 HS2 HS3 HS4 HS5

P b

Ammonia nitrogen (mg/L) 46.20±12.37c 46.20±12.3

7c

64.00±3.88b 67.10±8.21b 107.06±15.0

7a

<0.05

Acetate (%) 77.82a 71.70b 64.10b 60.14±8.55b 64.55±2.15b 0.32

Propionate (%) 12.60±0.71b 16.02±0.18b 22.79±1.13a 26.81±3.60a 29.38±0.95a <0.05

Butyrate (%) 8.25±0.38 10.66±1.73 11.30±0.40 11.51±2.20 12.02±0.40 0.23

Isovalerate (%) 0.79±0.10a 0.92±0.07a 0.83±0.02a 0.58±0.03b 0.72±0.09b 0.23

Valerate (%) 0.52±0.02b 0.70±0.04b 0.98±0.03b 1.11±0.04a 1.50±0.12a <0.05

Total volatile fatty acids (mmol/L) 74.94±10.76 66.12±2.95 65.21±1.00 67.44±1.56 61.24±7.67 0.11

Acetate to propionate ratio (A:P) 6.38±1.55a 4.47±0.16a 2.85±0.24b 2.24±0.39b 2.19±0.69b <0.05

pH 6.86±0.01 6.83±0.03 6.83±0.04 6.63±0.06 6.42±0.10 0.41

1
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