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two genomes, we got a repetitive element (ICRd motif), which repeats massively in the
diploid Gossypium raimondii (D5) genome while almost absent in the diploid Gossypium

arboreum (A2) genome. We further explored the existence of ICRd motif in G. raimondii, G.

arboreum, and two tetraploids (AADD) cotton G. hirsutum and G. barbadense by
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15 Abstract: The Activity of genome-specific repetitive sequence is the main cause of the genome variation between 

16 Gossypium A and D genomes. Through the comparative analysis of the two genomes, we got a repetitive element 

17 (ICRd motif), which repeats massively in the diploid Gossypium raimondii (D5) genome while almost absent in the 

18 diploid Gossypium arboreum (A2) genome. We further explored the existence of ICRd motif in G. raimondii, G. 

19 arboreum, and two tetraploids (AADD) cotton G. hirsutum and G. barbadense by fluorescence in situ 

20 hybridization (FISH), and observed the ICRd motif exists in D5 and D-subgenomes but not in A2 and A-

21 subgenome. The ICRd motif was investigated through its two constituents, a length variable tandem repeat region 

22 (TR) and a conservative sequence (CS), which highly repeat and evenly distribute in chromosomes of D5 genome. 

23 The ICRd motif was revealed as the common conservative region of ancient LTR-TEs. The identifications and 

24 investigation of the ICRd motif promote the study on the A and D genome differences, facilitate the research on the 

25 Gossypium genome evolution, and provide assistance to subgenome identification and genome assembling. 

26 Keywords: Gossypium; D genome; Repetitive element; Genome-specific; Fluorescence in situ hybridization 

27 (FISH); Evolution

28 1. Introduction

29 Repetitive DNA sequences are common in eukaryotic genomes, account for a huge fraction of the host genome 

30 (Ibarra-Laclette et al., 2013) and are highly correlated with the size of the host genome (Feschotte, 2008). Repetitive 

31 DNA can be divided into two major groups by their structures: tandem repeats and interspersed repeats (Jurka et al., 

32 2005). The tandem repeats are known as simple repeat sequences (SSR), including micro-satellites, mini-satellites, 

33 and satellites (M.Lesk, 2002; Singh, 2015). The Interspersed repeats also were called as transposable elements (TEs) 

34 or transposons.

35 After the first report of the TEs in maize (McCLINTOCK, 1950; Brink & Williams, 1973; Goldschmidt, 2002), 

36 TEs were identified in many eukaryotic species (Munoz-Lopez & Garcia-Perez, 2010). There are thousands of 

37 different TE families in plants, which display the extreme diversity (Sanmiguel & Bennetzen, 1998; Bennetzen, 

38 2005; Morgante, 2006). Finnegan first proposed a TE classification system, which includes two classes based on 

39 their transposition mechanisms: media by RNA (Retrotransposons) or DNA (DNA transposons) (Bowen & Jordan, 

40 2002; Wessler, 2006; Arkhipova, 2018). Wicker unified the TEs nomenclatures and classification system applying 

41 mechanistic and enzymatic criteria (Wicker et al., 2007, 2008, 2009; Seberg et al., 2009). TEs play important roles 

42 in such as variations in intron size (Deutsch & Long, 1999; Zhang et al., 2011; Koonin, Csuros & Rogozin, 2013), 

43 segmental duplication (Del Pozo & Ramirez-Parra, 2015), transfer of organelle DNA to the nucleus (Adams & 

44 Palmer, 2003), expansion/contraction of tandem repeats and illegitimate recombination (Finnegan, 1989; Koike, 

45 Nakai & Takagi, 2002). Long Terminal Repeat Retrotransposons (LTR-TEs), which are usually scattered throughout 
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46 genomes, is the most abundant TE type and can cause genome expansion over a short evolutionary period 

47 particularly in plant genomes (Piegu et al., 2006). The genome-specific TE is an efficient approach to study species 

48 formation and genome evolution in genome comparative research (Dong et al., 2018).

49 Gossypium diverged from the common ancestor with Theobroma cacao approximately 33.7 MYA (Wang et 

50 al., 2012). Gossypium comprises eight diploids (2n=2x=26) genomic groups: A, B, C, D, E, F, G, K, and one 

51 allotetraploid (2n=4x=52) genomic group: AD (WANG, WENDEL & HUA, 2018). They are good materials for 

52 polyploidization, genomic organization and genome-size variation researches due to its dramatic genome diversity: 

53 from the smallest New World D genome of an average 885 Mb to the Australian K-genome of an average of 2576 

54 Mb (Hendrix & Stewart, 2005). The accumulation of different lineage-specific TEs was thought to be responsible 

55 for the variation of genome size in Gossypium genomes (Hawkins et al., 2006; Lu et al., 2018). Of the eight genomic 

56 groups of Gossypium, the A and D groups are the main subjects investigated (Du et al., 2018) in cotton genomics 

57 research, because the major cultivated cotton G. hirsutum was known as formed from the reuniting of the 

58 progenitors of G. arboreum (A2) and G. raimondii (D5) (Paterson et al., 2012). The key trait difference between G. 

59 arboreum and G. raimondii is the former producing spinnable fibers but the latter not, meanwhile in genomics, the 

60 former has a genome size (1,746 Mb/1C) that is around two times of the latter (885 Mb/1C) (Hendrix & Stewart, 

61 2005). Genome sequencing showed that the numbers of protein-coding genes between A (41,330) and D (37,505) 

62 genomes are not obviously different, while the lineage-specific TE content is the main reason for the size gap of A 

63 and D genome (Li et al., 2015; Du et al., 2018). Moreover, the transposable elements were suggested to play an 

64 important role during cotton genome evolution and fiber cell development (Wang, Huang & Zhu, 2016). Thus the 

65 research on the lineage-specific repetitive sequences between A and D genome is a meaningful path to investigating 

66 the specification dynamic.

67 Fluorescence in situ hybridization (FISH) is a versatile tool to visualize the distribution of sequences in 

68 chromosomes and plays a vital role in recent cytogenetic research. More and more repetitive sequences in the cotton 

69 genome were reported recently with FISH, and the identification and localization of these repetitive sequences 

70 would facilitate genome sequencing and understanding the mechanism of genome evolution (Lu et al., 2018). One 

71 lineage-specific repetitive element that repeats many times in A genome while absent in D genome was reported and 

72 suggested as an important contributor to the size gap between the A and D genome (Lu et al., 2018).

73 The D genomic group represents a diverse group of diploids that diverged from a branch of A, B, C, E, F, G, 

74 and K genomic groups about 5-10 million years ago (MYA) (Senchina et al., 2003). Although the D genome is the 

75 smallest one in genome size in Gossypium, a set of repeat elements with high proliferation in the D genome while 

76 absence in A genome was discovered in this work. The discovery and characterization of these novel repetitive 

77 elements provided new components for repetitive sequences database and insight into the evolution of Gossypium.

78 2. Materials and Methods 

79 2.1 Plant Materials

80 The plant materials were obtained from National Wild Cotton Nursery in Hainan Island, China, sponsored by 

81 the Institute of Cotton Research of Chinese Academy of Agricultural Sciences (ICR-CAAS). They were also 

82 conserved in the greenhouse at ICR-CAAS9 headquarter in Anyang City, Henan Province, China. The DNA and cell 

83 came from the plant materials of cotton species listed in Table 1, based on the newest nomenclatures of Gossypium 

84 species (WANG, WENDEL & HUA, 2018).

85 The genome sequences of G. raimondii (Paterson et al., 2012), G. arboreum (Li et al., 2014), G. hirsutum 

86 (AD)1-BGI (Wang et al., 2017), (AD)1-NBI (Zhang et al., 2015; Wang et al., 2019), (AD)1-JGI (Li et al., 2015), G. 

87 barbadense (AD)2-HAU (Yuan et al., 2015) were downloaded from the Cottongen (https://www.cottongen.org/). 

88 The other assemblies of G. barbadense (AD)2-CAS (Liu et al., 2015) were obtained from the website 

89 (http://database.chgc.sh.cn/cotton/index.html). 

90 Table 1. The plant materials involved in this work.

Species Ploidy Genome Accession
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G. arboreum 2x A2 Shixiya-1

G. raimondii 2x D5 D5-07

G. hirsutum 4x (AD)1 CCRI-12

G. barbadense 4x (AD)2 Xinhai-7

91 2.2 Characterization of the Repetitive Element and Bioinformatics Analysis

92 Perl scripts were used in this work to do data management, such as parsing the software results, extracting 

93 sequences from genomes or databases, and whole genome insertion analysis. BLASTN was used to identify the 

94 element repeats in genomes or other databases, with a threshold of greater than or equal to 80% matching ratio 

95 meanwhile 80% similarity, with reference to the 80-80 rules suggested previously (Wicker et al., 2007). The TRs 

96 were identified with Tandem Repeats Finder (Benson, 1999). Alignments were performed using MUSCLE (Edgar, 

97 2004). The Unipro UGENE was used to present the alignments and train consensus sequences.(Edgar, 2004) The 

98 inner enzyme annotation was realized by online CD-search in NCBI (Marchler-Bauer et al., 2017). RepeatMasker 

99 was used to annotate the insertions and estimate the proportion of repetitive sequences in genomes. 

100 The flanking LTRs of LTR-TEs were identified with the LTRharvest (Ellinghaus, Kurtz & Willhoeft, 2008). 

101 Subsequently, the Vmatch was used to cluster the LTRs (Kurtz, 2003). The divergence time of the LTR-TEs was 

102 estimated using the formula T = d/2r, where r represents a substitution rate of 1.3 × 1028 per site per year (Ma & 

103 Bennetzen, 2004), and d means the distances of paired LTRs, which was calculated based on the Kimura two-

104 parameter (Kimura, 1980). The insertions of repetitive sequences in genomes were illustrated by R language (R 

105 Core Team, 2014).

106 2.3 Fluorescence in situ hybridization (FISH)

107 The probe was designed with the PCR product of ICRd motif, which was obtained from the forward primer: 

108 TTCTATTTTATCCATCGTTATG, reverse: GGAGATAGGATTTGTTGCT; and followed the amplification 

109 procedure: firstly, 95°C for 5 min of pre-degeneration; then 30 cycles at 95°C for 30 s, 52°C for 30 s, and 72°C for 2 

110 min. The final extension was done at 72°C for 6 min. The composition of the reaction mix using the following: 

111 gDNA (~5 µg/ml), primers (~0.8 µM), PCR Master Mix (Thermo), and H2O. The gDNA extracted from leaves of 

112 cotton plants (Table 1). The probe was purified and labeled with digoxigenin-dUTP via nick translation, according 

113 to the instructions of the manufacturer (Roche Diagnostics, USA). Mitotic chromosome preparation and FISH 

114 procedures were conducted using a modified protocol (Wang et al., 2001).

115 3. Results

116 3.1. One Specific Repetitive Sequence in Gossypium D5 Genome

117 One segment in G. raimondii (D5) genome (Chr05: 50639971-50641791) was filtered out as genome-specific 

118 in D5, by comparative genome analysis of G. raimondii (Paterson et al., 2012) and G. arboreum (A2) (Li et al., 2014) 

119 with BLAST. This sequence is highly repeated and spreading all over 13 chromosomes of the D5 genome 

120 (Supplementary Table 1), while do not exist in A2 genome. We queried it in Repbase (Chen et al., 2007a) and NCBI, 

121 but no related annotation was found. Then we performed LTRharvest (Ellinghaus, Kurtz & Willhoeft, 2008) and 

122 CD-search (Marchler-Bauer et al., 2017), which revealed it is neither LTR nor coding sequence. 

123 Manual inspection revealed the structure of the genome-specific sequence having two constituents, a tandem 

124 repeats array (referred as TR hereafter) composed of 133 bp basic units, and an unknown conservative sequence 

125 (referred as CS hereafter) (Figure 1). Based on this feature, we totally identified 72 sequences from D5 genome 

126 (Supplementary Table 2), for abbreviation, they were termed as the ICRd motif naming following our previous work 

127 (Lu et al., 2018). Among the 72 ICRd motifs, the TRs are length-variable having a variety of the basic unit content 

128 that 2-20 basic units (Figure 2a), while the CSs are stable and have an average size ~ 860 bp. 

129 To verify the genome specificity and chromosome distribution of the ICRd motif, we used the PCR product of 

130 ICRd motif from G. raimondii to designed the probe for fluorescence in situ hybridization (FISH) on the mitotic 
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131 chromosomes of diploid A2 and D5, and tetraploid G. hirsutum ((AD)1), G. barbadense ((AD)2). The probe generated 

132 bright signals covering all the chromosomes of D5 and D-subgenome, but none signal on the A2 and A-subgenome 

133 (Figure 3). These cytogenetic inspections were in accordance with the genomic comparative analysis and further 

134 revealed that the ICRd motif is a genome-specific and highly repetitive element in the D5 genome, as well as in the 

135 D-subgenome of tetraploid cotton. 

136 3.2 LTR-TEs Inserted with ICRd Motif

137 We compared the insertion loci of 72 ICRd motifs with the whole genome repeats annotation (gff file) of the 

138 D5 genome (Paterson et al., 2012) and found that each of the motifs is one to one harbored in 72 LTR-TEs 

139 (Supplementary Table 3), which meant the former is the inner part of the latter. 

140 We extracted the 72 LTR-TEs sequences from D5 genome and parsed their structure, which showed all of 72 

141 LTR-TEs are incomplete, lacking either enzyme or flanking LTRs, the required elements for an intact LTR-TE 

142 (Wicker et al., 2007). We align all these LTR-TEs together and got their consensus accumulation histogram 

143 (Supplementary Figure 1), which showed these TEs have a vast sequence variety among each other, however, an 

144 only conservative region was observed, which is just the insertion region of the ICRd motif (Figure 4), revealing that 

145 the ICRd motif is more stable than other elements along with the degradation and the evolution of the TEs. 

146 Of the 72 LTR-TEs, 25 were identified having flanking LTRs, which were used to represent the classification 

147 and evolution of these TEs. The LTR cluster results showed except two TEs have similarity in LTR region the other 

148 23 TEs are absolutely different from each other, which further revealed they do not belong to the same family based 

149 on the LTR similarity rules (Wicker et al., 2007). The estimated active date curve of these TEs almost all prior to 10 

150 MYA and peak in ~30 MYA (Figure 5), in the close period with that G. raimondii and T. cacao diverged 

151 approximately 33.7 MYA (Wang et al., 2012), but far earlier than the putative divergence time of Gossypium A and 

152 D genomes (Wendel & Cronn, 2001). These revealed these LTR-TEs are ancient TEs and potentially contribute to 

153 the speciation formation of Gossypium.

154 3.3 Abundant Constituents of ICRd Motif in D5 genome

155 Toward the further analysis of the genomic feature of the ICRd motif, we separately investigated its two 

156 constituents that TR and CS, on their content and distribution feature in the D5 genome (Figure 6a). In total 350 TR 

157 insertions were detected (Supplementary Table 2), which are different in length due to different times of the unit 

158 repeating comprising among 2321, and mainly 2310 times of the basic unit (Figure 2b). The longest TR insertion in 

159 D5 (D503: 25689303325697234) comprising 61 units up to 8 kb, which was extraordinary and unknown on how it 

160 formed. On the other hand, in total 463 CSs were found (Supplementary Table 2). Combining analysis of the 

161 insertion loci of the two constituents, we found 72 TRs are closely followed by 72 CSs, which just constitute the 

162 ICRd motifs (Figure 1). 

163 Further analysis proved the TR and CS are evenly distributed on the chromosomes based on Ç2 test (the 

164 number of insertions is proportional to the size of the chromosome), where for the TR insertions, Ç2 = 5.56 (df = 12, 

165 P > 0.9), and for the CSs, Ç2 = 9.08 (df = 12, P > 0.5). The even distributions meant the CS and TR are possible 

166 ancient repetitive sequences that have evolved along with the chromosomes. The G. raimondii genome sequencing 

167 work had reported that most TEs in G. raimondii are deletion derivatives lacking the domains that are typically 

168 necessary for transposition that the only 3% of LTR base pairs derived from full-length LTR-TEs (Paterson et al., 

169 2012). Here the hundreds of constituents of ICRd motif in D5 are potentially the fragments produced from the 

170 ancient LTR-TEs. 

171 3.4 The disappearance of ICRd Motif from Gossypium 

172 With the aim to observe the disappearance of the ICRd motif in the newly formed Gossypium A genome, we 

173 selected one pair segments from the highly collinear Chromosome 1 in the two cotton species to observe (Li et al., 

174 2014). The segment from Chromosome 1 of G. raimondii (D501) harbor one ICRd motif and its homologous 

175 segment from A201 was got based on homologous SSR markers (Supplementary Table 4). The illustration of the 
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176 syntenic block of the two segments showed the ICRd motif together with its host LTR-TE were totally abandoned 

177 on the A201 segment, while their up- and downstream conservative regions remained (Figure 7). In the upstream, we 

178 observed two insertions rich in repeat sequences special on A201 segment (Supplementary Table 4), which was 

179 potentially due to the recent TE expanding event happened in A genome (Lu et al., 2018). Thus, we observed that 

180 the ICRd motifs and host LTR-TEs were directly abandoned from the genome with the recent formation of A 

181 genome (Wendel & Cronn, 2001; Wendel, Flagel & Adams, 2012), but remained in the D genome despite mass 

182 damage accumulation. 

183 3.5 Distributions of ICRd Motifs in Tetraploid Cotton

184 Tetraploid cotton G. hirsutum and G. barbadense are the major cultivated fiber-producing cotton species. 

185 Research on the genome of these two species is an important approach to improve the cotton yield and quality. 

186 However, due to the huge amount of homologous segments between A and D-subgenomes, the tetraploid cotton 

187 genome assemblage has been a great challenge to molecular geneticists (Bowers et al., 2003; Chen et al., 2007b). 

188 Three versions of G. hirsutum genome assembly((AD)1-BGI (Li et al., 2015), (AD)1-NBI (Zhang et al., 2015), 

189 (AD)1-JGI (Wang et al., 2017)), and two G. barbadense versions ((AD)2-HAU (Yuan et al., 2015) and (AD)2-CAS 

190 (Liu et al., 2015)) have been reported recently, however, the quality of the sequenced genomes require improvement 

191 in order to benefit cotton molecular breeders. Application of the lineage-specific repetitive element (LSR), the ICRd 

192 motifs are important tools in evaluating the quality of the genome assembly of the tetraploid cotton.

193 To observe the assembling quality of the ICRd motif in tetraploid genomes, we queried it with BLAST in the 

194 five tetraploid genome assemblies, including 3 versions of G. hirsutum ((AD)1) and two versions of G. barbadense 

195 ((AD)2) (Table 2). For the (AD)1 assemblies, the blast result from the NBI version was in agreement to the FISH 

196 inspection that the ICRd motifs only generated the signals on the D-subgenome chromosomes (Figure 3). However, 

197 the BGI and JGI versions were inconsistent with the FISH inspection results, that ICRd motif was misassembled in 

198 the A-subgenome. For the (AD)2 assemblies, the CAS showed a better assembling than HAU, because the ICRd 

199 motifs were located in all 13 D-sub chromosomes of CAS, but mainly matched with the unassembled scaffolds of 

200 HAU (Supplementary Table 5). This means the (AD)2-CAS showed better scaffolds assembling than the (AD)2-

201 HAU. Thus, the G. hirsutum genome assembly (AD)1-NBI, and the G. barbadense genome assembly (AD)2-CAS 

202 are a conclusive version based on the comparison of the BLAST query and our cytogenetic experiment. 

203 Table 2. The distribution of ICRd motif on different genome assemblies of tetraploid cotton. 

Assemblies Reference ICRd motif

(AD)1-BGI (Li et al., 2015) Dh01-Dh13; Ah02, Ah05, Ah07, Ah08

(AD)1-NBI (Zhang et al., 2015) Dh01-Dh13; None in A-sub

(AD)1-JGI (Wang et al., 2017) Dh01-Dh13; Ah11

(AD)2-CAS (Liu et al., 2015) Db01-Db13; None in A-sub

(AD)2-HAU (Yuan et al., 2015) Db01, Db02, Db06-Db09, Db12; None in A-sub

204 4. Discussion

205 4.1 The Identification of ICRd Motif and Gossypium Evolution

206 TEs have played an important function in Gossypium speciation and the accumulation of different genomic-

207 specific TEs were thought to be responsible for the variation of genome size in Gossypium genomes (Hawkins et al., 

208 2006). Through FISH inspection, some A genome-specific repetitive elements have been well identified and 

209 characterized (Liu et al., 2016), but the similar work in the D genome has not yet been reported, this may be because 

210 the genome-specific repetitive sequences in A genome are much more than that in the D genome (Liu et al., 2018). 

211 However, in this work, starting with comparative genomic data, we screened out one kind of specific sequence in the 

212 D genome, and subsequently, we identified and characterized TEs. 
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213 The TEs harboring the ICRd motif showed an ancient active date approximately 10 MYA, while the time of 

214 divergence of the A and D genomes from the common ancestor is estimated to have occurred 5-10 MYA (Grover et 

215 al., 2004), thus the ICRd motifs existed in the ancestor and disappeared along with the formation of A genome. 

216 Though the previous researches have stated the accumulation of lineage-specific TEs, which is thought to be 

217 responsible for the variation of Gossypium genomes (Hawkins et al., 2006), and the LTR-TE activities after 5 MYA 

218 mainly contributed to the two-fold size difference of the A and D genomes (Zhang et al., 2015). Based on our 

219 analysis, we presumed that as same as the activity of new repetitive sequences, the extinction of ancient repetitive 

220 sequences, such as the disappearance of ICRd motif in the A genome, also contributed significantly to the genome 

221 evolution. Through FISH, we observed that the ICRd motifs were only distributed in D-subgenome chromosomes, 

222 and the results were in agreement to the previous studies which reported that the TE have proliferated in the 

223 progenitor genomes but were retained after allopolyploid formation in the D subgenome (Zhang et al., 2015).

224 4.2 ICRd Motif Support Cytogenetic Markers for Tetraploid Cotton

225 The identification of ICRd motif provides new subgenome marker for the accurate assembling of tetraploid 

226 cotton (Chen et al., 2007a). Chromosome identification is the foundation of plant genetics, evolution and genomics 

227 researches (Saranga, 2007; Xie et al., 2012). Although many species have been sequenced, the rapid identification of 

228 subgenome is still useful in applied researches. FISH has been used as a reliable cytological technique for 

229 chromosome identification in many species (Wang, Guo & Zhang, 2007). The identification of cotton chromosomes 

230 evolved recently with the FISH technique (Gan et al., 2012). In this study, the identified ICRd motifs can be used as 

231 a new cytological marker in Gossypium, especially in tetraploid. And the repetitive sequence probes are easier and 

232 more successful to be detected than other probes. Several similar makers have been reported (Liu et al., 2016). The 

233 addition of these new cytological markers will enrich the marker database for chromosome identification and 

234 facilitate cotton genomic studies.

235 Eukaryotic genomes have a high proportion of TEs and these TEs make the eukaryotic genomes assembly 

236 much more difficult than simple genomes (Treangen & Salzberg, 2012). Many reported genome sequences have 

237 gaps because of the high proportion of TEs (Adams et al., 2000). Allopolyploid genomes are especially difficult to 

238 assemble homologous fragments from sub-genomes (Chen et al., 2007a). The incorrect assembling of the genomes 

239 leads to ambiguity in research, which, in turn, produce biases and errors when interpreting results (Adams et al., 

240 2000). Though the three versions of genome assembly of G. hirsutum, two versions of G. barbadense have been 

241 released, their accuracies are inconsistent as revealed by BLASTN of the ICRd motif. Here, our FISH results were in 

242 agreement to two tetraploid cotton genome assemblies, (AD)1-NBI of G. hirsutum, and (AD)2-CAS of G. 

243 barbadense. Moreover, the ICRd motifs also assist to assure the source of the unpackaged scaffolds in the genome 

244 assemblies, for instance, in the scaffolds the presence of the ICRd motifs can aid in the assigning of the scaffolds to 

245 the D-subgenome chromosomes 

246 5. Conclusions

247 We identified a kind of repetitive sequence in Gossypium D genome but absent in A genome, the ICRd motifs, 

248 were found to be retained in D-subgenome and not in A-subgenome. We analyzed their structure, genomic 

249 distribution, affiliation, and evolution, which revealed a conserved region which harbored the ancient LTR-TEs, in 

250 the D genome. The identification and characterization of ICRd motif provided new insight into understanding the TE 

251 evolution along with the formation of the cotton genomes as well as providing a convenient and applicative tool to 

252 distinguish the A and D genome subsets of the tetraploid cotton genome assembly.

253 Supplementary Materials:, Figure S1: Supplementary Figure 1. The whole alignment of the 72 LTR-TEs, Table S1: Blast of the 

254 1.8 kb sequences in G. raimondii genome, Table S2: The ICRd motifs and their constituents, Table S3: The structures of the 

255 LTR-TEs harboring the ICRd motif, Table S4: The information of the two homologous segments, Table S5: Blast results of the 

256 ICRd motif with tetraploid cotton. 
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Figure 1(on next page)

The structure of ICRd motif

a: The self-blast of the ICRd motif showed the inner repeats; b: The structure of ICRd motif; c:
The basic TR unit; d: The examples of the structure illustration of the LTR-TEs inserted with
ICRd motif.
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Figure 2
The content of the basic unit in the TRs

a: The basic unit content in the TRs involved in the ICRd motifs, displayed from small to
large; b: The number of ICRd TRs that harboring diûerent unit content, the x-axis adopt the
intervals of unit content for convenient exhibition.
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Figure 3
The FISH images of ICRd motif (red) hybridized to mitotic chromosomes of four species.

a: G. arboreum (AA); b: G. hirsutum (AADD); c: G. barbadense (AADD); d: G. raimondii (DD).
Bar = 5¿m.
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Figure 4(on next page)

The consensus accumulation histogram from the whole alignment of the 72 LTR-TEs .

The region marked with the black line is the ICRd motif region.
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Figure 5
The accumulation of putative active date of the LTR-TEs.
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Figure 6(on next page)

The distribution of the ICRd motif and its constituent in the D5 genome

a: Insertions of the ICRd motif and its constituents in the D5 genomes; b, c: ICRd TR and TR-c

chromosomal distribution, the expected (grey) and actual (white) distributions across all
chromosomes are illustrated; in addition, the density per megabase is shown for each
chromosome.
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Figure 7(on next page)

The colinearity of the two homologous segments.
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