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Background: L-Methionine sulfoximine (MSO) inhibits glutamine synthesis in a rodent
animal model, and its limited clinical use is implicitly associated with glutamate
deprivation and neurotoxicity. The purpose of this experiment was to determine the effect
of MSO on pheochromocytoma (PC12) cells and its interaction with propofol-induced
neuro-apoptosis. Objective: To study the effects of MSO on cell viability following 100 μM
propofol treatment and the impact of ribosomal S6 kinase 1 (RSK1) signaling on the PC12
cell line. Methods: PC12 cells were exposed to propofol-triggered neurotoxicity for 6 h and
then subjected to MSO treatment. The gene and protein expression levels of members of
the RSK1 signaling pathway were determined by real-time polymerase chain reaction,
Western blot and histological analyses. The CCK8 test was used to assess cell viability, and
cell proliferation and apoptosis were evaluated by flow cytometric analysis. Results:
Propofol, a gamma-aminobutyric acid (GABA) agonist widely used in general anesthesia,
significantly changed the expr ession level of cAMP response element-binding protein
(CREB) and B cell lymphoma 2 (Bcl2) and solute carrier family 1 member 3 (Slc1a3), but
not extracellular signal-regulated kinase 1/2 (ERK1/2). PC12 cells that were exposed to
propofol for more than 6 h exhibited downregulation of RSK1. MSO aggravated the toxicity
of propofol in PC12 cells via inhibition of the p90RSK1/CREB/Bcl2 signaling pathway.
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12

13 Abstract

14 Background: L-Methionine sulfoximine (MSO) inhibits glutamine synthesis in a rodent animal 

15 model, and its limited clinical use is implicitly associated with glutamate deprivation and 

16 neurotoxicity. The purpose of this experiment was to determine the effect of MSO on 

17 pheochromocytoma (PC12) cells and its interaction with propofol-induced neuro-apoptosis.

18 Objective: To study the effects of MSO on cell viability following 100 μM propofol treatment 

19 and the impact of ribosomal S6 kinase 1 (RSK1) signaling on the PC12 cell line.

20 Methods: PC12 cells were exposed to propofol-triggered neurotoxicity for 6 h and then subjected 

21 to MSO treatment. The gene and protein expression levels of members of the RSK1 signaling 

22 pathway were determined by real-time polymerase chain reaction, Western blot and histological 
23 analyses. The CCK8 test was used to assess cell viability, and cell proliferation and apoptosis 
24 were evaluated by flow cytometric analysis.

25 Results: Propofol, a gamma-aminobutyric acid (GABA) agonist widely used in general 

26 anesthesia, significantly changed the expression level of cAMP response element-binding protein 

27 (CREB) and B cell lymphoma 2 (Bcl2) and solute carrier family 1 member 3 (Slc1a3), but not 

28 extracellular signal-regulated kinase 1/2 (ERK1/2). PC12 cells that were exposed to propofol for 

29 more than 6 h exhibited downregulation of RSK1. MSO aggravated the toxicity of propofol in 

30 PC12 cells via inhibition of the p90RSK1/CREB/Bcl2 signaling pathway.
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33 Background:

34 Propofol is one of most widely used anesthetics in general anesthesia due to its short time 

35 action that easily controls the depth of sedation. Propofol impairs synapse plasticity combined 

36 with learning and memory loss, but the underlying mechanisms of its neuro-apoptotic effects 

37 are elusive (Cattano et al. 2008; Creeley et al. 2013; Karen et al. 2013; Yon et al. 2005; Zhong 

38 et al. 2018; Zhong et al. 2014). PC12 cells are neuron-like cells derived from a 

39 pheochromocytoma of the rat adrenal medulla and are utilized to study neuron signaling 

40 pathways such as Raf-mitogen-activated protein kinase (MEK)-extracellular signal-regulated 

41 kinase (ERK) (Vaudry et al. 2002) due to their similar embryonic derivation.

42 L-Methionine sulfoximine (MSO), a characteristic regulator of glutamine metabolism, inhibits the 

43 activity of glutamine synthetase (GS) and glutamate cysteine ligase (Feary et al. 2017), 

44 potentiating both glutamate dehydrogenase and aspartate amino transferase, and is correlated 

45 with increased antibody productivity in cell lines. Notably, glutamine biosynthesis is catalyzed 

46 by GS, relevant to the metabolism of glutamate, NH4
+, and ATP (Kobayashi & Millhorn 2001). 

47 Subconvulsive doses of MSO reduces glutamine excitotoxicity from edema due to hepatic 

48 encephalopathy (Jeitner & Cooper 2014). GS inhibition has been shown to protect astrocytes 

49 from hyperammonemia for 24 h (Tanigami et al. 2005). However, the in vitro medium used in 

50 this study contained abundant glutamine, suggesting that the protective effect of MSO may 

51 have resulted from its isomer rather than the inhibition of GS (Peters et al. 2018). The 

52 concentrations of glutamate and glutamine must be maintained to prevent excitotoxity, and a 

53 high dose of MSO has been shown to irreversibly inhibit GS activity (Phelps 1975). Propofol 

54 interacts with the neurotransmitter gamma-aminobutyric acid (GABA), which is widely 

55 expressed in the central nervous system. However, the mechanism accounting for propofol-

56 triggered developmental neuro-apoptosis (Bosnjak et al. 2016) and the dose-dependent loss of 

57 consciousness remains unclear. In this study, we examined whether pretreatment with 5 μM 

58 MSO mitigated propofol-induced cell apoptosis and reversed the toxicity in propofol-treated 

59 PC12 cells by measuring the expression levels of proteins in the mitogen-activated protein 

60 kinase (MAPK) signal pathway.

61 Materials and Method:

62 Cell culture and treatment

63 Rat pheochromocytoma cells (PC12 cells) were purchased from the Chinese Academy of 
64 Sciences. Cells were seeded in a 25-cm2 flask at a concentration of 1*105 cells/ml and cultured 
65 in Dulbecco’s modified Eagle’s medium (DMEM F-12; Gibco, Life Technologies, Grand Island NY). 
66 Media were supplemented with 10% fetal bovine serum (FBS, Gibco) and 1% penicillin-
67 streptomycin solution (Gibco). Cells were incubated at 37% under 5% CO2. L-Methionine 
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68 Sulfoximine (5 mM; Yuanye Biotechnology Co., Ltd., China) and propofol (100 µM) were 
69 dissolved in DMEM F-12 (Gibco)

70 CCK-8 assay

71 Cells were seeded in 96-well plates at a concentration of 1*105 cells/ml for adherence. The cells 
72 were treated with MSO and/or propofol, and cell proliferation was measured using a CCK-8 
73 Assay Kit (DOJINDO, Japan) according to the protocol.

74 Apoptosis assay

75 Following treatment with propofol for 4 h alone or in combination with 5 μM MSO, intact and 
76 treated cells were collected for staining with Annexin V-FITC/PI according to the instructions of 
77 the apoptosis detection kit (#559763, BD Biosciences, China) using Cytomics FACSVerse (BD 
78 Biosciences, USA).

79 RT-PCR

80 RT-PCR was performed using the following reagents and primers: GeneStar (2RT Reaction mix 
81 & Script II RT MIX Lot #8BB01, gDNA Remover #A224-104; 2RealStar Green Fast Mixture 
82 #A304-05), Bcl2ll (GeneCopoeia, #RQPO47868),ribosomal S6 kinase 1 (RSK1; GeneCopoeia, 

83 #RQP051014), cAMP response element-binding protein (CREB; forward 5′-

84 ACAGTTCAAGCCCAGCCACAG-3′ and reverse 5′-GCACTAAGGTTACAGTGGGAGCAGA-3′), 

85 Erk1/2 (forward 5′-GCGTTGGTACAGAGCTCCAGAA-3′ and reverse 5′-

86 TGCAGCCCACAGACCAAATATC-3′), glyceraldehyde-3-phosphate dehydrogenase (GAPDH; 

87 forward 5′-ACAGCAACAGGGTGGTGGAC-3′ and reverse 5′-TTTGAGGGTGCAGCGAACTT-3′).

88 Western blot 

89 Cells were Lysed with RIPA buffer supplemented with PMSF (100:1) on ice. As described by 
90 Laemmli (Laemmli 1970), lysates were harvested and measured using a NanoDrop 2000. Then, 
91 total protein was separated by gel electrophoresis and transferred to polyvinylidene difluoride 
92 membranes (0.22-μm pore size; EMD Millipore, Billerica, MA, USA). The membranes were 
93 blocked with 5% BSA (Solarbio Life Science, Inc. China) for 2 h, incubated with a primary anti-
94 Bcl2 antibody (#40639, Signalway Antibody, USA), p90RSK (phospho-Thr348) antibody 
95 (#11105, Signalway Antibody, USA), CREB antibody (#9197S Cell Signaling Technology, Inc., 

96 USA), and GAPDH antibody (#10494-1-AP, Proteintech, Inc., USA) at 4 ℃ overnight, followed 
97 by incubation with a horseradish peroxidase-conjugated secondary antibody (1:10,000; LI-COR 
98 Biosciences, Lincoln, USA).

99 Immunofluorescent staining and immunohistochemical staining

100 The cells were fixed with 4% formaldehyde for 20 min and washed 3 times with PBS before 

101 every step at 37 ℃, including permeabilization with 0.1% Triton X-100 (Solarbio Life Science, 
102 Inc., China) for 5 min, blocking with 5% BSA for 10 min and incubation with p90RSK primary 

103 antibodies (1:100; #11105, Signalway Antibody, USA) at 4 ℃ overnight. The cells were then 
104 stained with a fluorescein-conjugated secondary antibody (1:100, Sigma-Aldrich, Germany) for 
105 2 h. The immunohistochemical staining procedure followed the instructions in the SP-POD Kit 
106 (Beijing Solarbio Science & Technology Co., Ltd., China). The images were acquired with an 
107 Olympus BX53 microscope (Olympus Corporation, Tokyo, Japan), and the number of positive 
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108 cells and field area ratio were measured with Image-Pro Plus version 6.0 software (Media 
109 Cybernetics Inc., Rockville, MD, USA).

110 Statistical analysis

111 Data are presented as the mean ± standard error and were analyzed using SPSS version 17.0 

112 (SPSS, Inc., Chicago, IL, USA) and GraphPad Prism 6 software (GraphPad Software Inc., La 

113 Jolla, CA, USA). Multiple comparisons were performed using one-way analysis of variance, 

114 followed by Dunnett’s post hoc test, as appropriate. P<0.05 was considered to indicate a 

115 statistically significant difference.

116 Results

117

118 1. Effect of MSO on PC12 cells

119 Pretreatment with 5 μM MSO induced cell toxicity in a time-dependent manner, as shown 
120 in Fig 1 (F=4.265, p= 0.028).

121 3. Effect of MSO on propofol-treated PC12 cells

122 MSO had no protective effect on ERK1/2 expression but reduced the expression of P90RSK and 
123 CREB. Cells treated with MSO combined with propofol exhibited greater inactivation of cell 
124 proliferation and downregulation of Bcl2, CREB, expression (Fig 3, F=33.24, p<0.001) and more 
125 apoptosis than highly differentiated rat PC12 cells treated with propofol alone.

126 4. Expression of p90RSK1 in cultured PC12 cells

127 Immunofluorescent images of PC12 cells stained with a p90RSK1 monoclonal antibody 
128 revealed that MSO-treated PC12 cells expressed less p90RSK1 than untreated cells. Western 
129 blot analysis of p90RSK1 expression, as shown in Fig 2A (F=64.89, P<0.001; Fig 2B, 
130 F=79.24, P<0.001), revealed a lower density of the corresponding 90-kDa protein band in 
131 MSO-treated cells than in propofol-treated and normal cells, and RT-PCR analysis supported 
132 this finding. We also used flow cytometry to determine the apoptosis rates, as previously 
133 described. Activation of RSK1 prompts differentiation and outgrowth of neuron-like cells 
134 even in the absence of nerve growth factor (NGF) (Silverman et al. 2004).

135 MSO treatment had no effect on ERK1/2 expression but reduced the number of P90RSK-
136 positive cells and consequently downregulated Bcl2 expression, mitigating cell apoptosis 
137 (Youle & Strasser 2008).

138 2. Effect of propofol on PC12 cells

139 Treatment with 100 µM propofol significantly inhibited the cell viability of highly 
140 differentiated rat PC12 cells within 2 h and induced both apoptosis and death, as shown in 
141 Fig 4 (F=146.9, P<0.001). Propofol remarkably reduced the expression of Bcl2 but not 
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142 CREB. CREB is activated in response to MAPK, which exerts its proapoptotic effect by 
143 mitigating Bcl2 expression (Lonze & Ginty 2002).

144

145 Discussion

146 This study demonstrated that MAPK (RSK1) is highly expressed in PC12 cells but that this 
147 expression is downregulated by the administration of propofol. RSK1 has been shown to 
148 regulate CREB (Silverman et al.), and phosphorylated RSK1, CREB and Bcl2 have been shown to 
149 play a prominent role in cell growth (Subbalakshmi & Murthy 1983). Currently, there is a broad 
150 consensus implicating the RSK family in synaptic plasticity and memory formation. For example, 
151 mental retardation (Coffin-Lowry syndrome) is relevant to the human homolog RSK2 (Putz et al. 
152 2004). Mounting evidence has shown that RSK1 potentiates cell proliferation by modulating 

153 glycogen synthase kinase (GSK)3β, which in turn increases protein synthesis (Lin et al. 2010).

154 Excessive levels of neurotransmitters, including glutamate, glutamine, and GABA, can initiate 
155 programmed cell death. Interestingly, MSO inhibited neuron physiological activity and synaptic 
156 plasticity by lowering the concentration of both glutamate and glutamine in an animal model of 
157 amyotrophic lateral sclerosis (Ghoddoussi et al. 2010). In a recent study, we determined that 
158 the GABA agonist propofol induced hippocampal cell changes in Bax/Bcl2 levels (Lv et al. 2018). 
159 However, propofol at doses less than 50 µM had no effect on viability in PC12 cells (Yang et al. 
160 2019). Moreover, propofol at concentrations from 50 µM to 1 mM reduced the potassium 
161 current amplitude in PC12 cells (Magnelli et al. 1992). Sedation with propofol at a dose of 10 
162 µg/ml has been reported to significantly decrease the expression of the Bcl2 protein, the key 
163 regulator of apoptosis (Adams et al. 2018), to a level that activates the mitochondrion intrinsic 
164 apoptotic pathway. Our previous reports showed that propofol downregulated neural 
165 proliferation and migration and induced apoptosis in vitro and in vivo (Wang et al. 2018; Zhong 
166 et al. 2014). During propofol infusion at 2 mg/kg/h, psychomotor functioning impairment and 

167 anterograde amnesia were observed (Zacny et al. 1992). As previously described, 100 μM 

168 propofol is comparable to 10 μg/ml blood concentration in humans (Cockshott 1985; Magnelli 
169 et al. 1992).

170 We established that inhibition of glutamine synthesis following administration of 5 mM MSO 
171 sensitized propofol-treated cellular processes through downregulation of RSK1, CREB and Bcl2 
172 protein expression in PC12 cells.

173 Although MSO remarkably activates interleukin 6 and tumor necrosis factor alpha under 

174 conditions of lipopolysaccharide treatment (Peters et al. 2018), MSO is not a potent drug to 

175 prevent neuron death due to its effects on the accumulation of glycogen, which in turn can 

176 trigger convulsions. The anti-inflammatory effect of MSO might be relevant to two functional 

177 domains of RSK1, the N terminal kinase domain (part of the protein kinase A) and the C 

178 terminal kinase domain (part of calmodulin-dependent protein kinase [CaMK]), which are 

179 heavily involved in the activation of its downstream proteins, such as CREB and Bcl2 (Lin et al. 

180 2019).
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181 Finally, there were some important limitations of our study. For example, the activity of 
182 glutamate cysteine ligase and glutamine synthesis were not addressed in this study. 
183 Furthermore, we did not identify whether the inhibitory effect of MSO on gene expression could 
184 be ascribed to its isomers binding to signaling pathway receptors or inhibition of GS. In the 
185 future, we will continue to investigate toxic targets of MSO associated with solute carrier family 
186 1 member 3 (Slc1a3).

187 Apoptosis, known as controlled cell death, along with neurodegeneration, has been well 
188 illustrated (Grilo & Mantalaris). Our findings suggest that the presence of late apoptotic cells 
189 was increased following propofol treatment (Yang et al. 2014). The mitogenic program has 
190 been reported to play a vital role in cell proliferation as well as survival. The neurotoxic effect of 
191 MSO is likely due to the direct interaction between glutamate receptors and the mitogenic gene 
192 RSK1 and the downstream effects on Bcl2. However, we did not measure glutamate receptors 
193 or chloride ion channels. MSO is known to affect cellular proliferation through its interactions 
194 with pro-apoptotic and anti-apoptotic proteins and, similar to propofol, causes a reduction in 
195 brain-derived neurotrophic factor (Chen et al. 2017). Our research suggests that MSO inhibits 
196 the p90RSK1-Bcl2-CREB signaling pathway, which in turn aggravates propofol-induced neuronal 
197 apoptosis.
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318

319 Figure 1. A high dose of propofol induced neurotoxicity in a time-dependent manner. Treatment 

320 with 5 μM MSO demonstrated no neuroprotection. Cell viability was further determined by 
321 CCK8. Cell viability was significantly decreased in the MSO plus propofol group. *p<0.05 and 
322 **p<0.01 vs control; #P<0.05 vs the propofol group.

323 Figure 2. Propofol decreased Bcl2 and CREB expression but had no effect on Scl1a3 expression.

324 MSO significantly decreased Scl1a3 gene expression (J). MSO had no protective effect against 
325 exposure to a high dose of propofol and inactivation of the p90RSK1-Bcl2-CREB pathway.

326 RT-PCR and Western blotting analyses were performed to detect the expression of p90RSK1, 
327 ERK1/2, Bcl2, CREB, and GAPDH at the protein (A-E) and mRNA (F -J) levels. *p<0.05 and 
328 **p<0.01 vs control; #P<0.05 vs the propofol group.

329 Figure 3. MSO exposure for 4 h decreased RSK1 marker intensity in vitro. A dendritic segment 
330 was picked according to RSK1 staining from each cell, and the locations for images taken were 

331 defined as 20 μm from the nucleus identified by DAPI staining. Normal PC12 cells showed 
332 stronger red fluorescent intensity than cells treated with propofol or MSO, suggesting that 
333 p90RSK1 plays a vital role in cellular processes. Pretreatment with MSO led to weaker red 
334 fluorescence in cells treated with propofol. F=73.88 *p<0.05 and **p<0.01 vs control; 

335 #P<0.05 vs the propofol group. (n=50 neurons measured per group) Bars: 20 μm.

336 Figure 4. MSO combined with propofol significantly increased the apoptotic rates compared with 
337 propofol alone (one-way ANOVA, F=146.9; #p<0.001, n=3).
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Figure 1(on next page)

cell viability

A high dose of propofol induced neurotoxicity in a time-dependent manner. Treatment with 5
μM MSO demonstrated no neuroprotection. Cell viability was further determined by CCK8.
Cell viability was significantly decreased in the MSO plus propofol group. *p<0.05 and
**p<0.01 vs control; #P<0.05 vs the propofol group.
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Figure 2(on next page)

Western blotting analyses were performed to detect the expression of p90RSK1,
ERK1/2, Bcl2, CREB, and GAPDH at the protein (A-E)

Propofol decreased Bcl2 and CREB expression but had no effect on Scl1a3 expression.
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Figure 3(on next page)

the expression of p90RSK1, ERK1/2, Bcl2, CREB, and GAPDH at the mRNA (F -J) levels.

MSO significantly decreased Scl1a3 gene expression
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Figure 4(on next page)

Immuno-fluorescence of PC12

MSO exposure for 4 h decreased RSK1 marker intensity in vitro. A dendritic segment was
picked according to RSK1 staining from each cell, and the locations for images taken were
defined as 20 μm from the nucleus identified by DAPI staining. Normal PC12 cells showed
stronger red fluorescent intensity than cells treated with propofol or MSO, suggesting that
p90RSK1 plays a vital role in cellular processes. Pretreatment with MSO led to weaker red
fluorescence in cells treated with propofol. F=73.88 *p<0.05 and **p<0.01 vs control;
#P<0.05 vs the propofol group. (n=50 neurons measured per group) Bars: 20 μm.
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Figure 5(on next page)

The apoptotic rates of PC12

MSO combined with propofol significantly increased the apoptotic rates compared with
propofol alone (one-way ANOVA, F=146.9; #p<0.001, n=3).
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