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Abstract

For the 2018 YPIC Challenge contestants were invited to try to decipher two unknown English questions
encoded by a synthetic protein expressed in Escherichia coli. In addition to deciphering the sentence, contes-
tants were asked to determine the 3D structure and determine any post-translation modifications left by the
host organism.
We present how we analyzed this unknown sample using a tryptic digest with dynamic exclusion disabled
to increase the signal-to-noise ratio of the measured molecules. Subsequently, spectral clustering was used
to generate high-quality consensus spectra and condense the acquired MS/MS spectral data. De novo spec-
trum identification was used to determine the English questions encoded by the synthetic protein, and any
post-translational modifications introduced by E. coli on the synthetic protein were detected using spectral
networking.
Although the synthetic protein sample for the 2018 YPIC Challenge is not of biological interest, the exper-
imental and computational strategy presented here can be directly used to analyze samples for which no
protein sequence information is available or when the identity of the sample is unknown. All software and
code to perform the bioinformatics analysis is available as open source, and a self-contained Jupyter notebook
is provided to fully recreate the analysis.

1 Introduction

Mass spectrometry (MS) is a powerful analytical
technique to characterize proteins in complex bio-
logical samples. The typical strategy to identify un-
known tandem mass spectrometry (MS/MS) spec-
tra is via sequence database searching [1]. Here,
experimental MS/MS spectra are compared to the-
oretical spectra derived from a protein sequence
database for the organism(s) of interest. Alter-
natively, spectral library searching can be used
to identify unknown MS/MS spectra by compar-
ing them against a library of high-quality, previ-
ously observed spectra with known peptide se-
quences [2, 3].

Both of these approaches depend on the avail-
ability of a ground truth reference set to which the
unknown spectra are compared, either in the form
of a sequence database or a spectral library. Alter-
natively, if such prior information is not available,
such as, for example, during antibody sequenc-
ing or for non-model organisms whose genome

has not been sequenced yet, de novo searching can
be used to directly derive peptide sequences from
the unknown MS/MS spectra based on the mass
differences between pairs of their fragment ion
peaks [4].

Here, we describe our approach to character-
ize an unknown protein sample in the context
of the 2018 Young Proteomics Investigators Club
(YPIC) Challenge. YPIC is an initiative by the Eu-
ropean Proteomics Association (EuPA) to connect
and support young scientists in proteomics. As
part of their activities they organize annual chal-
lenges where participants are invited to analyze
mysterious protein samples [5].

The 2018 YPIC Challenge consisted of trying to
decipher two unknown English questions encoded
by a synthetic protein expressed in E. coli. The
challenge encouraged participants to fully charac-
terize the protein sample through several subtasks,
such as protein sequence identification, detection
of post-translational modifications (PTMs), and
development of bioinformatic approaches.
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Because the sample consisted of an unknown,
synthetic, protein and no sequence database was
available, we used de novo searching, in combina-
tion with spectral clustering, to identify the pro-
tein sequence. Additionally, spectral networking
was used to discover common mass differences be-
tween spectra and detect potential PTMs. Finally,
circular dichroism (CD) spectroscopy was used to
analyze the protein’s secondary structure.

All bioinformatics software that was used to an-
alyze the data is freely available as open source. A
self-contained Jupyter notebook [6] that contains
all processing steps is available at https://github.
com/bittremieux/ypic_challenge_2018, to fully
reproduce the bioinformatics analysis.

2 Materials and methods

2.1 2018 YPIC Challenge description

We received a sample vial containing 12.5µg of an
unknown protein via mail from the organizers of
the YPIC Challenge. As per the included product
sheet, the synthetic protein was expressed in E. coli
by PolyQuant and encoded two concatenated En-
glish questions. The sentence did not contain the
letters ‘B’ and ‘K’, and the letters ‘O’ and ‘U’ were
replaced by the letter ‘K’ in the protein. The pro-
tein sequence was flanked with ‘MAGR’ in the be-
ginning and ‘LAAALEHHHHHH’ at the end for
digestion and purification reasons.

The 2018 YPIC Challenge categories were as fol-
lows:
1. Answer E. coli’s question.
2. Three-dimensional grammar: Find out how

this sentence folds.
3. Bioinformazing: Develop the coolest bioinfor-

matics approach to decipher the sentence.
4. Protein punctuation: Look for the biological

equivalent of punctuation: PTMs left behind
by E. coli.

5. #Bioreactivity: Can you generate and describe
bioreactivity in this Twitter-sized message?

2.2 Experimental procedures

2.2.1 Protein sample preparation

The sample was reconstituted with 125µg 0.1%
formic acid (final concentration 0.1µg/µL pro-
tein). An aliquot (1µg; 10µL) of reconstituted

sample was reduced (50mm dithiothreitol), alky-
lated (150mm iodoacetamide), and digested with
Promega trypsin (1 : 50 enzyme—substrate ratio;
0.02µg trypsin) for 4 h at 37 ◦C with shaking. Di-
gested peptideswere concentrated via speed-vac to
a final concentration of 0.33 fmol/µL.

In addition to the conventional trypsin digest,
following a CD spectroscopy solvent swap, the re-
maining sample was split into three parts and di-
gested with three other proteases: pepsin, chy-
motrypsin, and Lys-C. The conditions for these re-
actions follow the trypsin digest conditions above,
with the exception of the pepsin digestion which
was held at a low pH (pH < 2.0).

2.2.2 LC-MS/MS data acquisition

Peptides were separated with a Waters NanoAc-
quity UPLC and emitted into a Thermo Q-Exactive
HF tandemmass spectrometer. Pulled tip columns
were created from 75µm inner diameter fused sil-
ica capillary in-house using a laser pulling device
and packed with 2.1µm C18 beads (Dr. Maisch
GmbH) to 300mm. Trap columns were created
from 150µm inner diameter fused silica capillary
fritted with Kasil on one end and packed with the
same C18 beads to 25mm. Buffer A was water
and 0.1% formic acid, while buffer B was 98% ace-
tonitrile and 0.1% formic acid. For each injection,
3µL of each sample was loaded with 5µL 2% B
and eluted using the following program: 0min to
90min 2% to 35% B, 90min to 100min 35% to 60%
B, followed by a 35min washing gradient.

The Thermo Q-Exactive HF was set to positive
mode in a top-20 configuration. Precursor scans
(300m/z to 2000m/z) were collected at 60 000 res-
olution to hit an automatic gain control (AGC) tar-
get of 3× 106. The maximum inject time was set to
100ms. Fragment scanswere collected at 30 000 res-
olution to hit an AGC target of 1× 105 with a maxi-
mum inject time of 55ms. The isolation width was
set to 1.6m/z with a normalized collision energy of
27. Precursorswith charge up to+6 that achieved a
minimumAGC of 5× 103 were acquired. Dynamic
exclusion was disabled. The digested sample was
acquired using this method in technical triplicate.

The mass spectrometry proteomics data have
been deposited to the ProteomeXchange Consor-
tium [7] via the PRIDE [8] partner repository with
the dataset identifier PXD014003.

2.2.3 Circular dichroism spectroscopy

Following reconstitution of the protein sample
as described above, the original protein sample,
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minus the two µg of protein aliquoted for in-
tact mass and trypsin digestion experiments, was
speed vac’d to dryness to change to a CD spec-
troscopy buffer. The dried protein sample was re-
constituted in 10mmKPO4 (pH 7.4) to 0.05µg/µL
(assuming 12.5µg original protein per the product
sheet and two µg used for the initial MS experi-
ments) to meet the CD cuvette minimum volume
requirement of 200µL buffer.

2.3 Data analysis

Raw files were converted to the MGF format us-
ing msconvert [9] for further processing. During
conversion MS/MS spectra were centroided using
the vendor algorithm and the precursor m/z and
charge was recalculated based on the preceding
MS scan.

Next, MS/MS spectra were clustered and
consensus spectra were generated using
MaRaCluster [10] with a similarity p-value
threshold of 10−5, precursor mass tolerance
50 ppm, and requiring at least 3 MS/MS spectra
per cluster.

After spectral clustering low-quality clusters
were removed by only retaining the clusters that
represent at least 10 original spectra and whose
consensus spectra have precursor charge 2 or 3.

The high-quality consensus spectra were used
for de novo spectrum identification and spectral net-
working. DeNovoGUI [11] was used as a unified
interface to the Novor [12], DirecTag [13], and
PepNovo+ [14] de novo search engines. Settings
for de novo spectrum identification were precursor
mass tolerance 20 ppm; fragment mass tolerance
0.02Da; and cysteine carbamidomethylation, me-
thionine oxidation, and acetylation of the peptide
N-terminus as variable modifications. Peptide–
spectrum matches (PSMs) were visualized and
manually investigated using DeNovoGUI.

A spectral network was constructed using the
high-quality consensus spectra. Prior to match-
ing spectra to each other they were preprocessed
by removing noise peaks with an intensity below
5% of the base peak intensity and at most the 150
most intense peaks were retained. Next, peak in-
tensities were scaled by their square root before
being normalized by their norm to have a magni-
tude of one. The shifted dot product [15] was used
to match modified spectra to each other with frag-
ment mass tolerance 0.02Da. Each consensus spec-
trum formed a node in the spectral network, with
an edge between two nodes if the shifted dot prod-
uct between the two corresponding spectra was

Figure 1: MS1 scan of the intact synthetic protein
indicating an approximate intact mass of 16.4 kDa.

greater than or equal to 0.8. Peptide sequences
were assigned to nodes in the spectral network if
the corresponding consensus spectra could be iden-
tified by Novor with a minimum score of 70. Only
subgraphs in the spectral network consisting of at
least three nodes were considered.

2.3.1 Code availability

Jupyter notebooks [6] containing all processing
steps and analyses are available at https://
github.com/bittremieux/ypic_challenge_2018.
Custom processing is done in Python us-
ing open-source Python libraries including
NumPy [16], pandas [17], NetworkX [18], Mat-
plotlib [19], Seaborn [20], Pyteomics [21], and
spectrum_utils [22]. The shifted dot product
is implemented as an external C++ module for
Python [15].

3 Results

3.1 Confirmation of intact mass

Prior to any peptide analysis, we determined the in-
tact mass of the protein. While the final 2018 YPIC
Challenge product sheet notes that the molecular
weight of the protein is approximately 16.65 kDa,
we received our challenge sample prior to the dis-
closure of this additional information. An MS1
spectrum of the intact mass confirms that the pro-
tein has an approximate mass of 16.4 kDa (fig-
ure 1).

3.2 Simulated digestion of English
dictionary

When analyzing a protein of unknown sequence,
one key decision is to determine which digestion
enzyme to use. To help inform our decision we
simulated the digestion of various corpuses us-
ing multiple proteases to determine whether they
would generally yield peptides whose lengths are
amenable to detection by mass spectrometry (fig-
ure 2).
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Figure 2: Length of simulated tryptic peptides for
various corpuses. NeXtProt is a database of human
proteins, whereas Cryptonomicon and 50 Shades
of Grey are two English fiction novels.

A simulated digestion of neXtProt [23], a
database of human proteins, with trypsin while al-
lowing for a single missed cleavage showed that
a large portion of the resulting peptides will have
a length between 6 and 10 amino acids, with the
mode of the peptide length distribution at 7. While
peptides of length 7 to 10 are perfectly amenable to
detection by mass spectrometry, there is a signifi-
cant tail in the distribution of peptide lengths. For
example, approximately 15% of the peptides con-
sist of 30 or more amino acids, which is not ideal
for detection by mass spectrometry.

An important issue with using neXtProt is that
peptides in the human proteome are not expected
to be a good proxy for ‘peptides’ found in hu-
man language. One possible reason is that the fre-
quency of amino acids found in the human pro-
teome is unlikely to be the same as the frequency
of letters found in the English language. There-
fore, we also simulated digestions of the textwithin
two different English fiction novels with a varying
vocabulary complexity: Cryptonomicon by Neal
Stephenson [24] and 50 Shades of Grey by EL
James [25]. Text files of the novels were found on-
line andwords containing the letters ‘B’ or ‘K’ were
removedwhile the letters ‘O’ and ‘U’were replaced
by the letter ‘K’, in accordance with the challenge’s
instructions. Additionally, the letters ‘J’, ‘X’, and ‘Z’
were removed as these characters do not represent
valid amino acids.

We found that a simulated digestion of these
two novels yielded peptides whose lengths are
slightly different than the length of peptides gen-
erated from neXtProt (figure 2). The majority of
English peptides is slightly longer than those gen-
erated from neXtProt (the mode of the peptide

length distribution is 10 for Cryptonomicon and
7 for 50 Shades of Grey), while the English pep-
tides include less very long peptides than neXtProt,
as indicated by the right tail of the peptide length
distributions. As a result, we found that trypsin
is a suitable enzyme to digest the synthetic pro-
tein consisting of two English sentences. Addition-
ally, we explored the digestion of neXtProt, Crypto-
nomicon, and 50 Shades of Grey with alternative
proteases, including chymotrypsin, Glu-C, Lys-C,
Arg-C, Asp-N, and pepsin, as well as combined di-
gestions using two different proteases (supplemen-
tary ??). These simulations again indicate that pep-
tides generated from English are typically slightly
longer than those generated from human proteins.

3.3 Synthetic protein identification

Since spectra were collected without dynamic ex-
clusion enabled, molecules that are present in the
sample will be selected multiple times for MS/MS
measurement while spurious signals will only be
measured a limited number of times. A downside
of this approach is that the spectral data will con-
tain multiple spectra that are virtually identical to
each other as the same peptide is repeatedly mea-
sured. To condense the data volume the spectra
were clustered with MaRaCluster [10]. Spectral
clustering groups similar spectra together and cre-
ates a single consensus spectrum to represent each
spectral cluster, reducing the number of spectra
from 110 234 spectra in the original raw files to 380
consensus spectra representing at least ten spectra
after spectral clustering (only retaining the spectra
with precursor charge 2 or 3).

Next, these consensus spectra were identified.
As no sequence database was available for the un-
known synthetic protein de novo identification was
performed. The Novor [12], DirecTag [13], and
PepNovo+ [14] search engines were used through
DeNovoGUI [11]. The resulting PSMs were sub-
sequently manually validated, a task that became
feasible thanks to the reduction in data volume by
the spectral clustering. From the de novo identifi-
cations we were able to decode about 65% of the
unknown synthetic protein (based on the propor-
tion of the mass of the identified peptides versus
the mass of the intact protein). The following sub-
sequences were compiled based on the identified
PSMs, supplemented by some educated guesses:

• Start of protein: “Have you ever wondered
what the mo[st]” (figures 3a to 3d)

• “[questio]ns in life ar[e]” (figure 3e)
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• “[r]espect when it comes to what you” (fig-
ures 3f and 3g)

• End of protein: “[pro]duce in a cell.” (fig-
ure 3h)

Unfortunatelywewere unable to identify the full
synthetic protein as still a third of the sequence is
missing. This is likely due to specific properties of
the corresponding peptides which make them una-
menable to identification using mass spectrometry,
such as very short peptides after tryptic cleavage or
peptides that cannot be properly ionized. We ad-
ditionally tried to obtain complementary peptides
using alternative proteases (pepsin, chymotrypsin,
and Lys-C) to increase the sequence coverage. Un-
fortunately these experiments failed due to the
sample loss observed during the preceding CD ex-
periment (section 3.5).

3.4 Spectral networking to detect
post-translational modifications

The typical approach to identify potentially mod-
ified peptides is by specifying variable modifica-
tions during a sequence database search. Similarly,
variable modifications can be specified during de
novo searching as well. However, de novo search-
ing has to overcome several challenges compared
to sequence database searching, including amino
acid permutation complexity [4], and the inclusion
of variable modifications exacerbates these chal-
lenges. Therefore, to maximize the confidence in
the obtained de novo identifications only frequent
PTMs introduced during sample processing [26]
were specified to avoid a combinatorial explosion
of the search space.

As an alternative strategy to find PTMs we have
employed spectral networking [27]. A spectral net-
workwas constructed by representing each consen-
sus spectrum as a node in a graph and connecting
two nodes if their corresponding spectra are highly
similar as measured by the shifted dot product [15,
28] (figure 4). Because the shifted dot product
takes mass shifts induced by amodification into ac-
count while matching two spectra the spectral net-
work will contain connections between modified
peptides and their unmodified counterparts. Sub-
sequently, based on the precursor mass difference
between connected spectra in the spectral network
and (partial) identifications of the spectra the pres-
ence and identity of various modifications, such as
PTMs or amino acid substitutions, can be derived
(figure 4).

Connected spectra in the spectral network were
manually checked for the presence of PTMs and
the most frequently occurring mass differences
were referenced to common modifications in Uni-
mod [29]. This analysis indicated little to no sys-
tematic presence of PTMs. The most frequent
mass differences were observed between unidenti-
fied spectra of low quality (manual quality assess-
ment), likely derived from small molecular con-
taminants, and did not correspond to any common
modifications. Although a more thorough investi-
gation is recommended to conclusively determine
the presence or absence ofmodifications, these pre-
liminary results indicate that no PTMs are system-
atically introduced on the synthetic peptide by E.
coli.

3.5 Structural analysis using circular
dichroism spectroscopy

We attempted CD spectroscopy to estimate the pro-
tein’s secondary structure. The CD spectra, how-
ever, were inconclusive (data not shown). Based
on absorption spectra acquired at the same time
as the CD spectra, the concentration of protein in
the CD cuvette was negligible. There are several
reasons why the CD and absorption spectroscopy
experiments might have failed. First, the con-
centration of protein (0.05µg/µL) may have been
too dilute, considering the range of ideal protein
concentration for CD spectroscopy is 0.1µg/µL
to 0.2µg/µL. Second, the buffer conditions used
(10mm KPO4 (pH 7.4)) may not be ideal for the
protein’s biochemistry, which would result in poor
resolubilization of the protein. Third, the pro-
teinmay have degraded during −80 ◦C storage and
multiple freeze–thaw cycles during the course of
the other experiments. Any one of these reasons
may have contributed to the loss of protein ob-
served in this experiment.

4 Conclusion

Wehave presented our results in identifying the un-
known synthetic protein as part of the 2018 YPIC
Challenge. Although we did not identify the full
synthetic protein, based on a standard trypsin di-
gest we are able to detect spectral evidence cov-
ering about two third of the unknown sequence.
This is in line with the sequence coverage that
is typically obtained during routine tryptic analy-
ses of biological samples with a similar complex-
ity. Although our attempts to use different pro-
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(a) Consensus spectrum 1945. Sequence: AGRHAVEYK, precursor mass: 386.88m/z, precursor charge: 3, Novor score:
77.50, PepNovo+ score: 62.17.

(b) Consensus spectrum 1503. Sequence: KEVER, precursor mass: 330.69m/z, precursor charge: 2, Novor score: 92.20,
PepNovo+ score: 70.47.

(c) Consensus spectrum 2136. Sequence: WKNDER, precursor mass: 424.21m/z, precursor charge: 2, Novor score:
95.50, PepNovo+ score: 94.61.

(d) Consensus spectrum 5178. Sequence: EDWHATTHEMK, precursor mass: 692.8m/z, precursor charge: 2, Novor
score: 88.70, PepNovo+ score: 139.17.

(e) Consensus spectrum 11694. Sequence: NSLNLLFEAR, precursor mass: 588.82m/z, precursor charge: 2, Novor
score: 94.60, PepNovo+ score: 122.66.

(f)Consensus spectrum 7109. Sequence: ESPECTWHENLTCK, precursor mass: 895.88m/z, precursor charge: 2, Novor
score: 94.10, PepNovo+ score: 192.51.
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(g) Consensus spectrum 7109. Sequence: MESTKWHATYKK, precursor mass: 755.38m/z, precursor charge: 2, Novor
score: 93.20, PepNovo+ score: 156.91.

(h) Consensus spectrum 9658. Sequence: DKCELNACELLLAAALEHHDYNR, precursor mass: 919.1m/z, precursor
charge: 3, Novor score: 57.10.

Figure 3: Relevant PSMs decoding the unknown synthetic protein.

teases to increase the sequence coverage failed due
to lack of sample material and sample loss that
occurred during multiple experiments, we antici-
pate that this strategy would have generated alter-
native peptides [30]. Additionally, using uncon-
ventional digestion strategies such as microwave-
assisted digestion to obtain semi-random peptide
cleavage [31], might have increased the protein se-
quence coverage.

Despite lacking the full protein sequence, we
used spectral clustering and spectral networking to
investigate the presence of frequent modifications.
Based on this analysis we did not see any system-
atic modifications on the synthetic protein. This
corresponds to the lack of notable PTMs in E. coli
as well, although a more extensive analysis is rec-
ommended to conclusively determine the absence
of any modifications.

Although in this case the sample consisted of a
contrived synthetic protein in the context of the
2018 YPIC Challenge, the experimental and com-
putational strategywe have described here can sim-
ilarly be used to analyze other unknown protein
samples that are of more biological interest, such
as, for example, antibody sequencing. Notably,
our spectral clustering approach can be used to in-
crease the signal-to-noise ratio of spectra prior to
de novo identification [32]. Additionally, spectral
networking is an increasingly popular strategy to
analyze small molecules measured by mass spec-
trometry [33].
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