
 

A peer-reviewed version of this preprint was published in PeerJ
on 7 October 2019.

View the peer-reviewed version (peerj.com/articles/7745), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Elbrecht V, Braukmann TWA, Ivanova NV, Prosser SWJ, Hajibabaei M,
Wright M, Zakharov EV, Hebert PDN, Steinke D. 2019. Validation of COI
metabarcoding primers for terrestrial arthropods. PeerJ 7:e7745
https://doi.org/10.7717/peerj.7745

https://doi.org/10.7717/peerj.7745
https://doi.org/10.7717/peerj.7745


 

1 

Title: Validation of COI metabarcoding primers for terrestrial arthropods 1 

 2 

Running Title: Primers for arthropod metabarcoding 3 

Word count: ____ 4 

Authors: Vasco Elbrecht1*, Thomas WA Braukmann1, Natalia V Ivanova1,2, Sean WJ Prosser1, 5 

Mehrdad Hajibabaei1,2, Michael Wright1,2, Evgeny V Zakharov1,2, Paul DN Hebert1,2, Dirk Steinke1,2 6 

 7 

Affiliations:  8 

1) Centre for Biodiversity Genomics, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 9 

2W1, Canada 10 

2) Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario, 11 

N1G 2W1, Canada 12 

 13 

*Corresponding author: Vasco Elbrecht (elbrecht@uoguelph.ca),  14 

 15 

Abstract: 16 

Metabarcoding can rapidly determine the species composition of bulk samples and thus aids 17 

ecosystem assessment. However, it is essential to use primer sets that minimize amplification bias 18 

among taxa to maximize species recovery. Despite this fact, the performance of primer sets employed 19 

for metabarcoding terrestrial arthropods has not been sufficiently evaluated. Thus this study tests the 20 

performance of 36 primer sets on a mock community containing 374 species. Amplification success 21 

was assessed with gradient PCRs and the 21 most promising primer sets selected for metabarcoding. 22 

These 21 primer sets where also tested by metabarcoding a Malaise trap sample. We identified eight 23 

primer sets, mainly those including inosine and/or high degeneracy, that recovered more than 95% of 24 

the species in the mock community. Results from the Malaise trap sample were congruent with the 25 
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mock community, but primer sets generating short amplicons produced potential false positives. Taxon 26 

recovery from the 21 amplicon pools of the mock community and Malaise trap sample were used to 27 

select four primer sets for metabarcoding evaluation at different annealing temperatures (40-60 Co) 28 

using the mock community. Temperature did only have a minor effect on taxa recovery that varied with 29 

the specific primer pair.  30 

This study reveals the weak performance of some primer sets employed in past studies. It also 31 

demonstrated that certain primer sets can recover most taxa in a diverse species assemblage. Thus there 32 

is no need to employ several primer sets targeting the same amplicon. While we identified several 33 

suited primer sets for arthropod metabarcoding, the primer selection depends on the targeted taxonomic 34 

groups, as well as DNA quality, desired taxonomic resolution, and sequencing platform employed for 35 

analysis. 36 

 37 

Key words: DNA metabarcoding, primer bias, degeneracy, insects, biodiversity. 38 

39 
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 40 

Introduction 41 

Over the past decade, two methodological and technological advances have made it possible to 42 

address the urgent need for the capacity to undertake large-scale surveys of biodiversity (Vörösmarty et 43 

al. 2010; Dirzo et al. 2014; Steffen et al. 2015). First, the emergence of DNA barcoding which uses 44 

sequence variation in short, standardized gene regions (i.e. DNA barcodes) to discriminate species, has 45 

made it possible to quickly and reliably characterize species diversity (Hebert et al. 2003). Second, 46 

high-throughput sequencers (HTS) permit the inexpensive acquisition of millions of sequence records 47 

(Reuter et al. 2015). The coupling of HTS with DNA barcoding, commonly known as metabarcoding, 48 

allows for characterization of biodiversity at unprecedented scales (Creer et al. 2016) as shown by 49 

studies on terrestrial (Gibson et al. 2014; Beng et al. 2016), freshwater (Hajibabaei et al. 2011; Carew 50 

et al. 2013; Andújar et al. 2017), and marine (Leray & Knowlton 2015) ecosystems.  51 

Metabarcoding studies on bulk collections of animals usually targets a 658 bp region of the 52 

cytochrome c oxidase subunit I (COI) (Folmer et al. 1994; Andújar et al. 2018). This gene region has 53 

gained broad adoption because of the rapidly expanding reference database (Ratnasingham & Hebert 54 

2007; Porter & Hajibabaei 2018b) and its good taxonomic resolution (Meusnier et al. 2008). Ribosomal 55 

markers have been suggested as an alternative (Deagle et al. 2014; Marquina et al. 2018) because their 56 

slower rate of evolution results in more conserved motifs/regions aiding the design of universal primer 57 

sets. However, reference databases for ribosomal markers are very limited for most taxonomic groups 58 

(Clarke et al. 2014) and ribosomal primer sets show no substantial improvement in taxon recovery over 59 

well-designed COI primer sets (Elbrecht et al. 2016; Clarke et al. 2017; Elbrecht & Leese 2017; 60 

Krehenwinkel et al. 2017).  61 

An important consideration for metabarcoding studies is the primer combination used for 62 

amplification of the target fragment. It is critical that primer sets optimally match the template 63 
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sequences of the target species. Mismatches between primer and template is skewing read abundance 64 

and lead to a substantial bias in taxon detection (Piñol et al. 2014; Elbrecht & Leese 2015). Failure to 65 

minimize amplification bias reduces the amount of taxa detected in a sample (Elbrecht & Leese 2017). 66 

Furthermore, insufficient sequencing depth and/or low DNA concentration can introduce stochastic 67 

effects that additionally bias taxon recovery (Barnes & Turner 2015; Leray & Knowlton 2017). 68 

 The effectiveness of primer sets can be evaluated by in vitro tests with mock communities 69 

(Elbrecht & Leese 2015; Brandon-Mong et al. 2015; Leray & Knowlton 2017) or by in silico tests 70 

(Clarke et al. 2014; Elbrecht & Leese 2016; Piñol et al. 2018; Bylemans et al. 2018b; Marquina et al. 71 

2018). The failure to evaluate primers can seriously compromise data quality. For instance, a primer set 72 

(Zeale et al. 2011) often employed for analyzing the gut contents of insect predators (see references in 73 

(Jusino et al. 2018) lacks degeneracy, leading to poor taxon recovery (Brandon-Mong et al. 2015). The 74 

use of multiple primer sets or even multiple marker genes was proposed to improve taxon recovery 75 

(Alberdi et al. 2017; Zhang et al. 2018). This approach may be optimal for samples of very 76 

phylogenetically divergent groups such as protists (Pawlowski et al. 2012) or marine benthic 77 

communities (Cowart et al. 2015; Wangensteen et al. 2018; Drummond 2018). However, given the 78 

increased cost and time (Bohmann et al. 2018; Zhang et al. 2018), the use of multiple primer sets is 79 

unnecessary for taxonomic groups with limited diversity. We hypothesize that in the case of  terrestrial 80 

arthropods a single well-designed primer set can be sufficiently effective, and the use  multiple primer 81 

sets is not necessary. 82 

This study compares the performance of commonly used and newly developed primer sets on 83 

the recovery of  species in a bulk DNA extract from 374 insect species (Braukmann et al. 2018) and 84 

from a Malaise trap sample. Based on a hierarchical testing scheme (Figure 1) using gradient PCRs and 85 

assessing species recovery with metabarcoding, we selected four primer pairs whose metabarcoding 86 

performance was tested on a range of annealing temperatures. 87 

 88 
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Material and Methods 89 

Tested samples and experimental outline 90 

We used two samples to test a range of primer sets for metabarcoding: a mock community  of 91 

374 species  (Braukmann et al. 2019) and a sample collected with a Malaise trap (Figure 1). The mock 92 

community is comprised of 374 species (Figure 1A), each specimen represented by a individual BIN 93 

(taxonomic breakdown shown in Figure S1A, (Ratnasingham & Hebert 2013)). A detailed list of 94 

specimens and their Barcode of Life Datasystems process IDs (BOLD, Ratnasingham & Hebert 2007) 95 

is given in Table S1. For most specimens, the full 658 bp barcode region was available through BOLD, 96 

but we completed reads for three taxa with shorter sequences by extracting haplotypes from our 97 

metabarcoding data using a denoising approach (Elbrecht et al. 2018b). The resulting reference library 98 

is available as a fasta file (See Scripts S1 for the fasta file). To compare mock community results with a 99 

field sample, we collected insects with a Townes-style Malaise trap (Bugdorm, Taiwan) deployed in a 100 

grassland/forest area near Waterloo, Ontario, Canada (43°29'30.8"N 80°36'59.6"W). We selected a 101 

single weekly sample (June 30 - July 7, 2018) and dried it for three days in a disposable grinding 102 

chamber. The sample was  ground to fine powder using an IKA Tube Mill control (IKA, Breisgau, 103 

Germany) at 25,000 rpm for 2 x 3 minutes. DNA was extracted from 21 mg of ground tissue using the 104 

DNeasy Blood & Tissue kit (Qiagen, Venlo, Netherlands). 105 

These mock community DNA extracts were used to test 36 primer pairs by comparing amplification 106 

success across a range of annealing temperatures. Twenty-one primers pairs whose amplicon 107 

concentrations plateaued in amplicon concentration at lower annealing temperatures were selected for 108 

metabarcoding both the mock community and the Malaise trap sample. Four representative primer sets 109 

showing high success in species recovery were selected to determine the optimal annealing temperature 110 

for maximizing species recovery from bulk samples (see Figure 1). 111 

 112 
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Gradient PCRs 113 

Thirty-six primer combinations commonly used for metabarcoding were selected for gradient 114 

PCR tests (Figure 2). Some of these primers represent new combinations, as well as new variants of 115 

primers by shifting the primer binding site by 3 bp, by incorporating degeneracy, or by replacing 116 

inosine "I" with "N" and vice versa. PrimerMiner v0.18 was used to generate an alignment 117 

visualization (Elbrecht & Leese 2016) using reference sequences for 31 arthropod orders downloaded 118 

and aligned as part of an earlier study ((Vamos et al. 2017). The plot of the full alignment with binding 119 

sites for all primers used in this study is available in Figure S2. 120 

Mock community gradient PCRs for 36 primer combinations were run on an Eppendorf 121 

Mastercycler pro (Hamburg, Germany). PCRs were set up with 2× Multiplex PCR Master Mix Plus 122 

(Qiagen, Hilden, Germany), 0.5 µM of each primer (IDT, Skokie, Illinois), 12.5 ng DNA, and 123 

molecular grade water (HyPure, GE, Utha, USA) for a total volume of 25 µL. One positive control and 124 

one negative control using the BF2 + BR2 primer set (Elbrecht & Leese 2017) were included with each 125 

primer set. 126 

The following thermocycling protocol was used: initial denaturation at 95°C for 5 min then 29 127 

cycles of denaturation at 95°C for 30 s followed by a gradient of annealing temperatures from 44.5 3 128 

64.5 °C for 30 s with extension at 72°C for 50 s, and a final extensions of 5 min at 72°C. PCR success 129 

and fragment length were determined by visualizing amplicons on a 1% agarose gel. Amplicon 130 

concentration was quantified without prior cleanup using a High Sensitivity dsDNA Kit on a Qubit 131 

fluorometer (Thermo Fisher Scientific, MA, USA). 132 

 133 

Primer selection for metabarcoding 134 

Based on the results of gradient PCR (Figure 1B), we selected 21 primer sets for metabarcoding 135 

that showed strong, consistent amplification and reached plateau in amplicon concentration at lower 136 

annealing temperatures (Figure 1C, Figure S8). A few primer sets generated amplicons at 46°C, but 137 
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were excluded because they failed to reach an asymptote in concentration at lower annealing 138 

temperatures. 139 

 140 

Metabarcoding (mock community and malaise trap) 141 

21 primer sets for both the mock community and the Malaise trap sample where selected for 142 

DNA metabarcoding and Illumina MiSeq sequencing. We employed a fusion primer based two-step 143 

PCR protocol that amplifies target fragments in the first step and attaches in-line tags and Illumina 144 

TruSeq library sequence tails during the second PCR (Elbrecht & Steinke 2018). We used in-line tags 145 

of different length and sequenced half the samples reverse orientation as well as amplicons shifted 146 

against each other to ensure sufficient sequence diversity for sequencing (Elbrecht & Leese 2015). The 147 

7 bp tags with different insert lengths were randomly generated using R scripts (Elbrecht & Steinke 148 

2018), but were subsequently manually edited to maximize the Levenshtein distance between tags 149 

(Figure S3). Figure S4 shows the fusion primer sequences used for library preparation. For the first 150 

PCR step, we used the  same protocol as for the gradient PCR, but used a fixed annealing temperature 151 

of 46°C and 24 cycles of amplification. One negative control containing the BF2 + BR2 primer 152 

combination and one containing no primers were included in the PCR (see Table S2 for primer list). 153 

 154 

1 µL of the PCR product generated by each primer set was used as template for the second PCR 155 

step (with no quantification or reaction cleanup) under similar PCR conditions except the extension 156 

time was increased to 2 minutes while  the number of cycles was reduced to 14. PCR products were 157 

cleaned using SPRIselect (Beckman Coulter, CA, USA) with a sample to volume ratio of 0.76x. DNA 158 

concentration was quantified using a Qubit fluorometer, High Sensitivity dsDNA Kit (Thermo Fisher 159 

Scientific, MA, USA). Subsequently, individual libraries were equimolar pooled following adjustment 160 

for amplicon length (Table S1). The mock community library was sequenced on an Illumina MiSeq 161 

with 300 bp paired end sequencing (v3 chemistry) with a 5% PhiX spike in. Amplicons for the Malaise 162 
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sample were generated with half the DNA amount (6.25 ng) and 29 cycles for the first PCR step. 163 

Individual libraries were pooled equimolar, but we factored in the preference for shorter reads by 164 

Illumina sequencing using the mock community sequencing results (Figure S9, Table S1). The Malaise 165 

sample was also sequenced on a Illumina MiSeq with 300 bp paired end sequencing (v3 chemistry) 166 

with a 5% PhiX spike in.  167 

 168 

Bioinformatic processing 169 

Quality control of raw sequence data was done with FastQC v0.11.7 and multiQC v1.4 (Ewels 170 

et al. 2016). Sequence data were first demultiplexed and processed with the R wrapper script JAMP 171 

v0.68 (https://github.com/VascoElbrecht/JAMP). Reads were paired-end merged using Usearch 172 

v11.0.667 (Edgar 2010), allowing for more relaxed settings with respect to mismatches between reads 173 

(fastq_maxdiffs = 99, fastq_pctid = 75). Primer sequences were subsequently trimmed using cutadapt 174 

v1.18 with default settings (Martin 2011). Reads deviating by more than 10 bp from the expected 175 

amplicon length were discarded. Usearch (Edgar & Flyvbjerg 2015) was used to remove reads with an 176 

expected error probability of 1 or higher, and to dereplicate and map reads against the 374 reference 177 

sequences of the mock community (usearch_global with minimum 97% identity). Resulting tables were 178 

automatically summarized into a hit table of all samples using the function map2ref implemented in 179 

JAMP. The hit table was subsampled using a custom R script (Scripts S1) to determine the number of 180 

taxa detected at different sequencing depths. Figure 3 overviews the processing steps and all scripts are 181 

available in Scripts S1. 182 

Data for the Malaise sample was processed using the same pipeline but mapped against a 183 

reference database consisting of public sequence records for arthropods found in Ontario (downloaded 184 

from BOLD December 2018). Gaps and terminal Ns were removed from all sequences. Sequences 185 

outside the length range of 648-668 bp were discarded (Scripts S1). Reads were mapped against this 186 

reference database using map2ref, but singletons in each sample were discarded and mapping required 187 
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a 99% match and maxaccepts=0, maxrejects=0, to reduce the number of false positives. Reads 188 

matching to the same Barcode Index Number (BIN, Ratnasignham & Hebert 2013) were collapsed and 189 

reads that matched reference sequences that lacked a BIN assignment were merged based on taxonomy, 190 

and combined into 11 MOTUs. 191 

 192 

Gradient metabarcoding 193 

Out of the 21 metabarcoded primer sets, we selected four primer sets that recovered most of the 194 

mock community (ArF5 + Fol-degen-rev, BF3 + BR2, mlCOIintF + Fol-degen-rev and fwhF2 + 195 

fwhR2n, Figure 1D) to evaluate the impact of nine annealing temperatures (40.0, 41.6, 43.7, 46.0, 48.5, 196 

50.8, 53.0, 54.7 and 56.0 °C) on taxon recovery. Temperatures below 46°C were specifically chosen to 197 

explore the impact of non-specific amplification. Other than running the first and second PCR step as 198 

gradient PCRs, all laboratory conditions and bioinformatic steps were identical to the prior mock 199 

community metabarcoding run. For tagging samples in the second PCR step, additional fusion primers 200 

were developed (Fig S5) and checked for sufficient Levenshtein distance (Fig S6, (Elbrecht & Steinke 201 

2018)). Individual samples were equimolar pooled, and the library sequenced using an Illumina MiSeq 202 

with 300 bp paired end sequencing (v3 chemistry) and a 5% PhiX spike in. Bioinformatic analysis was 203 

identical to the previous mock community MiSeq run at 46 °C annealing temperature. 204 

 205 

Statistical analysis 206 

For statistical analysis R v3.5.0 was used - all scripts to generate figures are available in Scripts 207 

S1. The relative abundance of reads per taxon (above 0.001%) for each of the 21 primer sets (Table S1) 208 

tested with the mock community was analysed using a Principal Component Analysis implemented in 209 

the R package FactoMineR v1.34. The same data was used to visualize the similarity between 210 

communities recovered with each primer set, using the R package vegan v2.5-2. A dendrogram was 211 

generated using both Jaccard similarity and Bray3Curtis dissimilarity.  212 
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Results 213 

Gradient PCR results and primer set selection 214 

All primer sets generated amplicons with the expected length (Fig. S7) although a few 215 

amplicons showed faint secondary bands after gradient PCR. Amplicon concentrations reached an 216 

asymptote for 21 of the 36 primer sets (58%) at  < 50°C and they were selected for sequencing (Fig. 217 

S8). While some other  primers showed clear bands in the agarose gel (Fig. S7), they were excluded 218 

from sequencing because of their limited annealing temperature range. 219 

Amplification success for  newly designed primers was mixed (Fig. S7 & Fig. S8). A more 220 

degenerate version of ZBJ2ArtF1c + ZBJ2ArtR2c had decreased amplification efficiency. Substituting 221 

N for inosine led to increased amplification efficiency for BF1i+BR1i, while replacing inosine with N 222 

reduced amplification efficiency for Bn+En. The binding site of the BF2 primer was shifted 3 bp 223 

forward (BF3) to reduce slippage effects (Elbrecht et al. 2018a). In combination with the BR2 primer 224 

set, both versions showed similar amplification efficiency. 225 

 226 

Metabarcoding and bioinformatic processing 227 

Sequencing of the mock community tested with 21 primer sets on MiSeq (300 bp PE) produced 228 

24,348,000 reads of good quality (Q30=<85.8% of reads). Raw sequence data is available on NCBI 229 

SRA via accession number SRX4908948. Sequencing depth was negatively correlated with amplicon 230 

length (Fig. S9, linear regression, p < 0.0001), with at least 0.28 million sequences per sample. The 231 

number of discarded sequences after data processing varied among primer sets (Fig. 3A); on average  232 

80.61% (SD = 9.84%) of the reads were mapped to the 374 reference sequences. For the primer sets 233 

MZplankF2 + C_LepFolR, BF3 + BR2, BF2 + BR2 and AncientLepF3 + C_LepFolR more than 3% of 234 

the amplicons deviated by more than 10 bp from the expected amplicon length (Fig. 3, Fig. S10). 235 

Primer combinations involving mlCOIintF, BF1, BF2 and fwhF2 showed length variation of 1-2 bp 236 
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base pairs (Fig. S10). Additionally, an average of 12.03% (SD = 8.07%) of all reads were discarded 237 

through expected error quality filtering (min ee = 1, Fig. 3A). In particular, longer amplicons with little 238 

or no overlap in paired end sequencing were affected (Fig. 3B). Raw read data mapped against 239 

reference sequences is depicted in Table S1. 240 

The Malaise sample yielded 16,629,020 reads of good quality (Q30=<92.59% of reads). Raw 241 

sequence data is available on NCBI SRA via accession number SRX5175597. Sequencing depth was 242 

positively correlated with amplicon length (linear regression, p = 0.0004, Fig S9), but there was a 243 

reduced length bias in comparison to the mock community sequencing run (Fig. S9). 244 

 245 

Primer performance and BIN / species recovery with metabarcoding 246 

Recovery of the mock community was high for most primer sets with an average of 91% of the 247 

374 species recovered (SD = 0.64%, subsampling to 100,000 reads, Figure 4A). With decreasing 248 

sequencing depth, recovery diminished, as shown by rarefaction curves (Fig. S11). The primer sets 249 

ZBJ2ArtF1c + ZBJ2ArtR2c, LepF1 + MLepF12Rev and LCO1490 + Ill_C_R showed poor species 250 

recovery in comparison with the other primers. Interestingly, rarefaction analysis showed no strict 251 

relationship between recovery and primer degeneracy. For example, LCO1490 + HCO2198 had no 252 

degenerate sites but had good recovery (90% of taxa). However, primers that lacked degeneracy often 253 

had low amplification success and detected fewer species than primer sets with degeneracy (Fig. S12). 254 

The primer combinations fwhF2 + fwhR2n, BF2/BF3 + BR2, ArF5 + Fol-degen-rev and mlCOIintF 255 

showed the best performance with similar recovery rates (recovery =< 95% of the community, Fig.4, 256 

Fig. S12). Taxa recovery was consistent across orders, except for Hymenoptera which where often 257 

recovered with lower read counts (Fig. S1A). A Principal Component Analysis (PCA) of relative taxon 258 

recovery shows that primer combinations with similar taxon recovery tended to cluster together (Fig. 259 

S13), although only 29.36% of variability can be explained by both components. Jaccard similarity and 260 
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Bray-Curtis based dendograms (Fig. S14) illustrate that recovery is generally similar among primers, 261 

but that combinations with poor species recovery tend to cluster together. 262 

 263 

Sequencing of the Malaise sample confirmed the strong performance of some primer sets, but 264 

others showed lower species recovery (Figure 4B). As the species composition of the Malaise sample 265 

was unknown, BIN counts at different sequencing depths were used to estimate taxon recovery for all 266 

sets of primers. Heat maps for both the Malaise sample (Fig. S18) and the mock community (Fig. S12) 267 

were generally congruent but short amplicons from the Malaise sample detected more taxa present in 268 

very low abundance. This trend was also reflected in the number of taxa detected with each primer set 269 

(Figure 4B) because longer amplicons such as Ill_B_F + HCO2198, AcientLepF3 + C_LepFolR or 270 

LCO1490 + HCO2198 exhibited lower taxon recovery than shorter fragments. Most primers that 271 

performed well for the mock community also did so for the Malaise sample (highlighted in green in 272 

Figure 4B), except the ArF5 + Fol2degen2rev primer set. These patterns were consistent with varying 273 

sequencing depths with no asymptote reached in the rarefaction analysis (Fig. S19). Additionally, the 274 

rarefaction analysis shows a greater range in the number of taxa detected with different primer sets than 275 

for the mock community (Fig S11). Detection across orders was very consistent for primer sets that 276 

show good taxa recovery, while especially Hymenoptera and Hemiptera were underrepresented with 277 

primer sets recovering fewer taxa (Fig S1B). 278 

 279 

Gradient PCR metabarcoding 280 

When the performance of the four good performing primer pairs was analyzed at nine annealing 281 

temperatures, 23,770,810 sequences (NCBI SRA; ID: SRX4908947) were obtained with good read 282 

quality (Q30 =< 82.9% of reads).  Sequence coverage averaged 0.58 million (SD = 0.1 million) per 283 

sample with a lowest value of 0.38 million reads. Results at 46°C were very similar to the prior 284 

metabarcoding run with abundance differences mostly affecting low abundant OTUs (Figure S15, 285 
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linear regression adj. R2 > 0.97). Changes in annealing temperature from 40 - 56°C only had minor 286 

effects on species recovery (Figure 5). In particular, two primer sets (mlCOIintF + Fol2degen2rev; 287 

fwhF2 + fwhR2n) showed little variation in species recovery across the range of annealing 288 

temperatures. By comparison, recovery rates decreased at temperatures above ~53°C for both BF3 + 289 

BR2 and ArF5 + Fol2degen2rev (Figure 5, Figure S16). Length variation in amplicons as a result of 290 

primer slippage was not temperature dependent, but the BF3+BR2 primer set generated more short 291 

non-target amplicons at lower temperatures (over 1/4 of sequences, Figure S17). 292 

 293 

Discussion 294 

 Using a mock community, we tested a total of 36 different primer combinations, 21 of which 295 

were selected for a more detailed metabarcoding analysis. While we did not run replicates for most 296 

primer sets, results at 46 °C for gradient metabarcoding and the mock community run were similar. 297 

This result is consistent with previous studies which indicated that replicates typically produce similar 298 

results (Elbrecht et al. 2017; Braukmann et al. 2018), particularly when the variation of low abundant 299 

OTUs (i.e. < 0.001 %) introduced by stochastic effects is ignored (Leray & Knowlton 2017). 300 

Consequently, for metabarcoding of bulk samples, replication should be done at the sampling level 301 

(Hurlbert 1984) rather than using DNA extracts or replicate PCRs. While technical replicates do 302 

increase confidence in experimental outcomes (Zepeda-Mendoza et al. 2016; Elbrecht & Steinke 2018; 303 

Macher & Weigand 2018), they deliver limited information given the  substantial increase in cost and 304 

laboratory workload. If the detection of rare taxa is important for a project, an increase in sequencing 305 

depth (Smith & Peay 2014; Braukmann et al. 2018) and use of a tagging system resistant to tag 306 

switching (e.g. fusion primers (Elbrecht et al. 2017)) is a good alternative to replication. Even with the 307 

shallow sequencing depth (100,000 reads) used in this study, most primer sets recovered a majority of 308 

the taxa in the mock community. This was not necessarily the case for the Malaise trap sample (Figure 309 
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S19) which is more diverse than the mock community tested (Steinke et al. In Prep). However, the 310 

comparison of  taxon recovery at different sequencing depth by the tested primer sets allowed for good 311 

benchmarking, without capturing the full community. We were also able to characterize the positive 312 

bias of the Illumina MiSeq towards shorter fragments (Figure S9), which can be off set by adjusted 313 

amplicon concentrations when running fragments of different length in the same run (Fig. S9). 314 

 315 

Primer performance 316 

As several primer sets recovered most of the taxa in the mock community in similar proportions 317 

(Figure 4A), our study has identified several suitable primer sets for metabarcoding terrestrial 318 

arthropods communities. The exact choice of primer set will depend on the context of a study, required 319 

amplicon length and desired taxonomic resolution (Meusnier et al. 2008; Porter & Hajibabaei 2018a). 320 

For instance, the fwhF2 + fwhR2n primer set produces a 205 bp amplicon that is ideal when targeting 321 

degraded DNA in eDNA or gut contents (Bylemans et al. 2018a). The BF1 + BR2 and all three 322 

mlCOIintF-based primer sets  generate slightly longer fragments (316/313 bp), but they are prone to 323 

slippage (Elbrecht et al. 2018a) which can cause problems with sequence denoising (Callahan et al. 324 

2017) during data analysis. We overcame this problem for the longer BF2+BR2 fragment (421 bp) by 325 

moving the BF2 primer 3 bp forward (BF3). The BF3 + BR2 combination as well as the ArF5 + 326 

Fol2degen2rev primer set represent good choices for long (>400 bp) COI fragment amplification. The 327 

ArF5 + Fol2degen2rev primer set appears to be less affected by non-specific amplification at lower 328 

annealing temperatures than the BF3 + BR2 primer pair. Although these longer fragments improve 329 

taxonomic resolution, they show less overlap in Illumina paired end sequencing leading to more reads 330 

being excluded during quality filtering (Figure 3). 331 

We observed an increase in rare taxa detected with short amplicons in the Malaise sample, but 332 

these are likely false positives due to the decreased taxonomic resolution of shorter amplicons 333 

(Meusnier et al. 2008; Porter & Hajibabaei 2018a). Even though the ZBJ2ArtF1c + ZBJ2ArtR2c 334 
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primer set detected over 700 taxa in the Malaise sample, a value comparable to other well performing 335 

primer pairs, it failed to detect abundant BINs that most of the other primer pairs recovered (Fig. S18). 336 

Well performing primers showed no bias against specific orders, while less suitable primers did 337 

struggle with detection of Hymenoptera and Hemiptera. The decreased detection of Hymenoptera in the 338 

mock community can likely be attributed to the lysis protocol used for DNA extraction from the insect 339 

abdomens (Braukmann et al. 2019). This was not the case for the malaise sample, where the bulk 340 

sample was ground to a fine powder, making the tissue more accessible to the lysis buffer.   341 

 342 

Primer design 343 

Primer sets with differing degeneracy, inosine inclusion, and differences in the primer binding 344 

region showed variable taxonomic recovery making it difficult to establish clear predictors for primer 345 

performance. While degeneracy generally improves the universality of a primer (Krehenwinkel et al. 346 

2017), some highly degenerate primers performed poorly in our tests (Figure 4). Additionally, even if a 347 

primer set shows good taxon recovery, it can still be susceptible to dimerization, to non-specific 348 

amplification, or to primer slippage (Elbrecht et al. 2018a) (Figure S10). Until these complexities are 349 

difficult to predicted in silico, it is important to validate metabarcoding primer sets in vivo using taxa 350 

and samples from the targeted ecosystems. For example, the BF2+BR2 primer set generated non-351 

specific amplicons (often bacterial), which can become a serious complication for eDNA studies where 352 

target DNA is scarce (Macher et al. 2018; Hajibabaei et al. 2019b). High primer degeneracy will likely 353 

increase primer universality but decrease specificity. This is less problematic when metabarcoding 354 

DNA extracts from bulk specimen samples where target DNA predominates, but can be different for 355 

environmental DNA samples. 356 

The present study did not reveal if the use of inosine can reduce problems created by high primer 357 

degeneracy. Some primers modified with inosine performed well, but others did not. The same was true 358 

for highly degenerate primers. However, we did show that for the fusion primer system (Elbrecht & 359 
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Steinke 2018), primers employed in the second PCR step can be designed with "N" instead of inosine 360 

(Figure S5). This substantially reduces costs when large fusion primer quantities are needed for reliably 361 

tagging and sample multiplexing. Primer performance could be further improved by adding degeneracy 362 

and / or using inosine, but performance will suffer if too much degeneracy is added. Despite careful 363 

primer design following best practices (Abd-Elsalam 2003), primer performance can still vary in its 364 

suitability for the primer binding site. A primer that works well on paper, might still not work in vivo 365 

and we strongly recommend testing primers with a mock community or field sample. 366 

 367 

Annealing temperature  368 

While primer choice is critical for metabarcoding projects, PCR is also biased by the polymerase 369 

used (Nichols et al. 2018), cycle number (Vierna et al. 2017; Krehenwinkel et al. 2017), GC content 370 

(Braukmann et al. 2019), inhibitors (Demeke & Jenkins 2009; Sellers et al. 2018), and annealing 371 

temperature (Aylagas et al. 2016; Clarke et al. 2017; Krehenwinkel et al. 2018). It is generally assumed 372 

that primers bind better at lower annealing temperatures as potential mismatches between template and 373 

primer have less influence. While touchdown PCR does not improve species recovery (Clarke et al. 374 

2017), lower annealing temperatures slightly increase it (Aylagas et al. 2016). Although it seems 375 

intuitive that lower annealing temperatures lead to better taxonomic recovery, previous studies 376 

explored only a limited temperature range never going below 46°C, likely due to the increased risk of 377 

non-specific amplification. We studied four representative primer pairs at 9 different annealing 378 

temperatures across a wider range (gradient PCR from 40 - 56°C) and were unable to find a universal 379 

effect of annealing temperature. BF3 + BR2, mlCOIintF + Fol2degen2rev and fwhF2 + fwhR2n primer 380 

sets are largely unaffected by changes in annealing temperature. On the other hand, recovery peaks at 381 

48.5 °C for the ArF5 + Fol2degen2rev primer set. For all four primer pairs, annealing temperatures 382 

between 46 - 50 °C are probably good choices for metabarcoding. However, this highly depends on 383 

melting temperature (Tm). It is advisable to test newly designed metabarcoding primer across an 384 
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annealing temperature gradient. However, given that of most tested primers did perform similarly well 385 

at temperatures usually used for metabarcoding, sequencing gradient PCRs might not always be 386 

necessary. Running the four primer pairs at temperatures below 46 °C did not substantially increase 387 

taxa recovery, while for some primers it also increased the risk of dimer amplification and occurrence 388 

of non-target DNA. 389 

 390 

No need for multiple primer sets 391 

Eight primer combinations (Figure 4, highlighted in green) each detected 95% or more of the taxa 392 

present in the mock community, and most of them could therefore be suitable choices for 393 

metabarcoding studies targeting terrestrial arthropods. Of these, seven showed very good performance 394 

with the malaise trap sample. This is in stark contrast to earlier studies (Alberdi et al. 2017; Zhang et 395 

al. 2018) recommending the use of multiple primer sets to increase coverage. This discrepancy can be 396 

explained by primer choice, because (Zhang et al. 2018) used LCO1490 and HCO2198 primers which 397 

lack degeneracy, and (Alberdi et al. 2017) worked with gut content samples, thus replicates might be 398 

substantially affected by stochastic effects resulting from low DNA yield. Additionally, the primers 399 

used (ZBJ2ArtF1c + ZBJ2ArtR2c) by Alberdi et al. (2017) performed poorly in our study. This 400 

particular primer combination (Zeale et al. 2011) is widely used for metabarcoding studies (Jusino et 401 

al. 2018) but our results show substantial amplification bias, confirming the low taxon recovery 402 

observed before for this primer pair (Brandon-Mong et al. 2015). An alternative primer pair to analyze 403 

gut content from predators consuming insects could be the pair fwhF2 + fwhR2n because it shows 404 

better taxonomic recovery. 405 

The use of COI primer sets with limited or no degeneracy such as in (Zhang et al. 2018; Jusino et 406 

al. 2018) is not recommended. In general, careful primer design and validation (ideally using mock 407 

communities) cannot be replaced by the use of multiple COI primer sets (Alberdi et al. 2017; Zhang et 408 

al. 2018) or ribosomal markers (Deagle et al. 2014), given the increased workload of a multi 409 
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marker/primer approach and the limited taxonomic resolution of ribosomal markers (Clarke et al. 2017; 410 

Marquina et al. 2018). These results were also recently confirmed by (Hajibabaei et al. 2019a), which 411 

showed that the use of multiple primer sets did not substantially improve taxa detection. 412 

 413 

 414 

Conclusions 415 

Our study demonstrates that the fwh2, BF1/2/3 + BR2 and mlCOIintF based primer sets all 416 

perform well when metabarcoding terrestrial arthropod samples. For most of these primer sets, 417 

annealing temperatures of 46-50°C are ideal. When data is analyzed for Exact Sequence Variants 418 

(ESVs), the BF3 + BR2 primer set is recommended as it is not affected by primer slippage. The present 419 

study also reinforces the importance of careful primer validation using mock and field samples, 420 

especially when primer performance has not yet been evaluated for the taxonomic group under study. 421 

As a general rule, the use of multiple primer sets seems rarely justified as it increases laboratory effort 422 

without substantially improving taxon recovery. 423 

 424 

 425 

Data availability 426 

Raw sequence data is available on the NCBI SRA archive; accession SRX4908948 provides data for 427 

the mock community, accession SRX5175597 for the Malaise sample, and accession SRX4908947 for 428 

the gradient PCR experiment. Demultiplexed read 1 and read 2 files are available for all sequencing 429 

runs under the accessions listed in Table S3. The JAMP bioinformatics pipeline is available on GitHub 430 

https://github.com/VascoElbrecht/JAMP with the used settings detailed in Scripts S1. Sequence 431 

alignments generated with PrimerMiner are available at Dryad DOI. 432 
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Supporting Information 439 

 440 

Figure S1: Mock community composition. 441 

Figure S2: Sequence alignment for 29 insect orders, including primer binding annotations. The 442 

alignment was used for primer development. 443 

Figure S3: Evaluation of Levenshtein distances for fusion primers used to metabarcode the 21 primer 444 

sets. 445 

Figure S4: Fusion primers used to metabarcode the 21 primer sets. 446 

Figure S5: Fusion primers used for gradient metabarcoding. 447 

Figure S6: Evaluation of Levenshtein distances for fusion primers used in gradient PCR. 448 

Figure S7: Gradient PCR gels for the initial 36 primer combinations. 449 

Figure S8: Amplicon concentration of the 36 primer sets after the first gradient PCR test. 450 

Figure S9: Sequencing depth for the mock community metabarcoding run. 451 

Figure S10: Distribution of read lengths after paired end merging for the mock community 452 

metabarcoding run. 453 

Figure S11: Rarefaction curves showing taxon recovery for the mock sample with different primer 454 

sets. 455 

Figure S12: Heat map showing taxon recovery for the mock sample with different primer sets. 456 

Figure S13: Principal component analysis of the metabarcoding OTU table for the mock community 457 

metabarcoding run. 458 
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Figure S14: Jaccard similarity and Bray-Curtis distance based on taxa recovered from the mock 459 

community metabarcoding run 460 

Figure S15: Plot showing the similarity between taxon recovery at 46 °C with primers of both the 461 

mock community metabarcoding and the final gradient metabarcoding run. 462 

Figure S16: Heat map showing taxon recovery with four primer sets at different annealing 463 

temperatures (40 - 56 °C). 464 

Figure S17: Distribution of read length after paired end merging for the final gradient run. 465 

Figure S18: Heat map showing taxon recovery for the Malaise trap metabarcoding run with 21 primer 466 

sets. 467 

Figure S19: Rarefaction curves showing taxon recovery for the Malaise trap metabarcoding run with 468 

different primer sets. 469 

Scripts S1: R scripts used for bioinformatics processing, figure generation and statistical analysis. 470 

Table S1: Raw OTU table for both the 21 primer and the gradient metabarcoding run, as well as details 471 

on mock sample composition. 472 

Table S2: Primer sequences and primer combinations evaluated in this study.  473 
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 474 

Figure 1: Overview of the experimental design. The performance of 36 primer pairs was tested via 475 

gradient PCRs with a mock community of insects (A). The 21 pairs that showed best amplification 476 

results (B) were selected for further DNA metabarcoding runs utilizing both the mock community and 477 

a Malaise trap sample (C). Based on the metabarcoding results, four primer sets showing the good 478 

performance were selected for a third test that examined the effects of varying annealing temperatures 479 

on taxon recovery and non-specific amplification (D). Based on all results, the optimal primer sets were 480 

designated (E).   481 
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 482 

Figure 2: Target and amplicon length for the 36 primer sets evaluated via gradient PCR. The 21 primer 483 

sets selected for sequencing are highlighted in yellow while an ID for each pair is shown on the left. 484 

Primer references: (Folmer et al. 1994; Meyer 2003; Hebert et al. 2004; Hajibabaei et al. 2006; 485 

Meusnier et al. 2008; Hajibabaei et al. 2011; Zeale et al. 2011; Park et al. 2011; Yu et al. 2012; 486 

Hajibabaei et al. 2012; Leray et al. 2013; Geller et al. 2013; Gibson et al. 2014; Hernández-Triana et 487 

al. 2014; Shokralla et al. 2015; Brandon-Mong et al. 2015; Gibson et al. 2015; Prosser et al. 2015; 488 

Elbrecht & Leese 2017; Vamos et al. 2017; Wangensteen et al. 2018; Galan et al. 2018). 489 
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 490 

Figure 3: Proportion of sequences discarded or mapped to reference sequences in the mock 491 

community. A: Bar plots show the relative proportion of reads that were discarded or mapped. 492 

Numbers in bars indicate the proportion of reads that matched one of the 374 species in the mock 493 

community.  The number for each primer pair on the x-axis corresponds with that in Figure 2. B: 494 

Proportion of sequences discarded by max expected errors = 1 filtering using Usearch, plotted against 495 

the length of the target region (in bp). Red line indicates linear regression.  496 

497 
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 498 

Figure 4: Bar plot showing the number of BINs recovered using metabarcoding with 21 primer pairs. 499 

The dark grey bar indicates subsampling at 10,000 reads while the light grey bar indicates subsampling 500 

at 100,000 reads per sample, each run with 1,000 replicates. Error bars show the standard deviation. 501 

Primer combinations affected by primer slippage (Elbrecht & Steinke 2018) are marked with a red X. 502 

A: Mock sample data, with primer combinations highlighted in green that detected more than 350 of 503 

the 374 BINs, while those that recovered fewer than 310 BINS are highlighted in red. B: Malaise trap 504 

data - primer combinations highlighted in green detected more than 750 BINs while those highlighted 505 

in red detected less than 600 BINs. 506 
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 508 

Figure 5: Bar plot showing the number of BINs recovered from the mock community at different 509 

annealing temperatures. The dark grey bar indicates subsampling at 10,000 reads, while the light grey 510 

bar depicts subsampling at 100,000 reads per samples; both were run with 1,000 replicates. Error bars 511 

show the standard deviation. 512 

 513 
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