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Abstract 

The two-dimensional (2D) Lewis’s law and Aboav-Weaire’s law are two simple formulas derived from 

empirical observations. Numerous attempts have been made to improve the empirical formulas. In this study, 

we simulated a series of Voronoi diagrams and analyzed the cell topology based on ellipse packing and then 

given the improved formulas. Specifically, we found that the upper limit of the second moment of edge 

number is 3. In addition, we derived the geometric formula of the von Neumann-Mullins’s law based on the 

improved formula of Aboav-Weaire’s law. 

  

 

From atomic to astronomic scales, the omnipresence of trivalent 2D structures have increasingly drawn broad 

and intense scientific interest (Weaire & Rivier 1984; Zsoldos et al. 2004). Understanding the cellular 

topology of these structures has fundamental importance for numerous scientific fields. Two empirical laws, 

the Lewis’s law and the Aboav-Weaire’s law, were used to describe the relationships between the edge 

number (𝑛) and the cell area (A), and between 𝑛 and the average edge number (𝑚) of neighbor cells of the 𝑛-edged cell (Aboav 1970; Lewis 1926; Lewis 1928; Weaire 1974; Weaire & Rivier 1984). Recently, based 

on investigations on ten different kinds of natural and artificial 2D materials, Xu (2019) found that the cells 

can be classified as an ellipse’s inscribed polygon (EIP) and tended to form the ellipse’s maximal inscribed 

polygon (EMIP). This phenomena was named as ellipse packing, which is a short-range order shaped the 2D 

topology by working together with the other short-range order, the trivalent vertices.  

The Aboav-Weaire’s law reads: 
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𝑚 = (6 − 𝛽) + 6𝛽 + 𝜇2𝑛 ,                                                                    (1) 

where six is the average edge number of polygonal cells, 𝛽 is a constant, and 𝜇2 is a variance related to the 

edge distribution of cells (Weaire & Rivier 1984). Then, 𝑛𝑚 is the total edge number of neighbor cells of 

the 𝑛-edged cell. Besides, the Weaire’s sum rule suggested 𝜇2 = 〈𝑛𝑚〉 − 36 = 〈𝑛2〉 − 36, which indicates 

that 𝜇2 ≥ 0 and 𝜇2 will increase with the edge range. Xu (2019) found that 𝛽 is actually a variance and 

equals to the ratio of major axis to minor axis of the fitted ellipse, and the 𝛽  and 𝜇2  describe the 

deformation degrees from circle to ellipse and from EMIP to EIP, respectively. Then, Eq. (1) can be rewritten 

as 

𝑛𝑚 = (6 − 𝑎𝑏) × n + 6𝑎𝑏 + 𝜇2,                                                                    (2) 

where 𝑎 and 𝑏 are semi-major axis and semi-minor axis of fitted ellipse, respectively. 

However, in the above study, the basic geometric data, such as coordinates of vertices, edge number, 

and cell area, were derived from the images of 2D structures. This kind of data collection may affect the 

analysis, for example, it is very difficult to separate points and very short edges (Xu et al. 2017). To improve 

the analysis, we simulated a series of Voronoi diagrams by randomly disordering a regular hexagonal 2D 

structure following previous studies (Zheng et al. 2005; Zhu et al. 2001). The coordinates of seed of the 𝑖-th 

Voronoi polygonal cell are 

{𝑋𝑖 = 𝑋𝑖0 + 𝑘 × 𝑑0 × cos 𝜃𝑖 × 𝜑𝑖 𝑌𝑖 = 𝑌𝑖0 + 𝑘 × 𝑑0 × sin 𝜃𝑖 × 𝜑𝑖  ,                                                           (3)  

where (𝑋𝑖0, 𝑌𝑖0) are the coordinates of the 𝑖-th seed of the regular hexagonal 2D structure, (𝑋𝑖, 𝑌𝑖) are the 

corresponding coordinates after distortion, 𝑑0 is the distance of two neighbor seeds of the regular hexagonal 

2D structure, 𝜃𝑖  is a random angle (0 ≤ 𝜃𝑖 ≤ 2𝜋 ), 𝜑𝑖  is a random number (−1 ≤ 𝜑𝑖 ≤ 1 ), 𝑘  is the 

irregularity of the disordered Voronoi diagram. When 𝑘 = 0, the Voronoi diagram tiles by equal-size regular 

hexagons. The Voronoi diagrams were generated by R software (version 3.5.3) with deldir package (Lee & 

Schachter 1980). The coordinates of vertices, 𝑛 , 𝑛𝑚  and real (measured) area (𝐴𝑅 ) of each cell were 

extracted for the following analysis. For each polygonal cell, the R software (version 3.5.3) with the Conicfit 

package were used to fit an ellipse based on the coordinates of vertices (Chernov et al. 2014; Xu 2019). The 

area of the maximal inscribed polygon of the fitted ellipse ( 𝐴𝑀𝐼𝑃 ) was calculated as 𝐴𝑀𝐼𝑃 =
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0.5𝑛𝑎𝑏𝑠𝑖𝑛(2𝜋/𝑛) (Su 1987). 

Our data clearly showed that, regardless of increasing 𝑘, the average 𝑛 and average 𝐴𝑅 were very 

stable (Fig. 1A-B). The average 𝑛𝑚, 𝜇2, and 𝑎/𝑏 increased with 𝑘 (Fig. 1C-E), but the average 𝐴𝑅/𝐴𝑀𝐼𝑃 

exhibited opposite trend (Fig. 1F). In this study, we confirmed that 𝜇2 could describe the deformation degree 

from EMIP to EIP which proposed by Xu (2019). Based on our data, we found the following formula  𝜇2 = (1 − 𝐴𝑅𝐴𝑀𝐼𝑃 − 𝜀) × 𝑛,                                                                    (4) 

where 𝜀 is a very small variance with unclear meaning. Then, the cell area can be calculated as 𝐴𝐶 = (1 − 𝜇2𝑛 − 𝜀) × 𝐴𝑀𝐼𝑃,                                                                (5) 

where 𝐴𝐶 is the calculated cell area. Two previous studies which simulated Voronoi diagrams based on the 

same method as the present study also found that the 𝜇2 increased with 𝑘 (Zheng et al. 2005; Zhu et al. 

2001). Other studies suggested that the upper limit of 𝜇2 is infinite (Weaire & Rivier 1984; Zsoldos et al. 

2004). When 𝑘 = 0.1, all the cells became 6-edged EIPs, then 𝜇2 = 0 and 𝐴𝐶 was very close to but still 

less than 𝐴𝑀𝐼𝑃. Thus, we proposed 𝜀 > 0. However, according to Eq. (4), the maximal value of 𝜇2 is the 

minimal value of 𝑛 in a given Voronoi diagram. Therefore, 0 ≤ 𝜇2 < 3. Because the 𝜀 is neglectable, Eq. 

(5) can be approximately expressed as following: 𝐴𝐶 ≈ (1 − μ2𝑛 ) × 𝐴𝑀𝐼𝑃.                                                                     (6) 

Using Eq. (6), 𝑛𝑚 can be approximately calculated as 𝑛𝑚 ≈ (6 − 𝑎𝑏) × 𝑛 + 6𝑎𝑏 + 1 − 𝐴𝑅𝐴𝑀𝐼𝑃 ,                                                        (7) 

The values of calculated 𝑛𝑚 (𝑛𝑚𝐶) using Eq. (2) and (7) were very close to each other and to the real 

(measured) 𝑛𝑚 (𝑛𝑚𝑅) (Fig. 1G). The average ratio of 𝑛𝑚𝐶/𝑛𝑚𝑅 calculated by Eq. (7) was 1.000.04 

(2039 cells were analyzed), and 90% of the ratios were concentrated in range of 0.94 to 1.07 (Datasheet S1). 

The values of 𝐴𝐶 calculated using Eq. (6) were also very close to that of 𝐴𝑅 (Fig. 1H). The average ratio 

of 𝐴𝐶/𝐴𝑅 was 1.040.19 (2039 cells were analyzed), and 90% of the ratios were concentrated in range of 

0.83 to 1.41. 
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Fig. 1 Relationship between k and geometric parameters of Voronoi diagrams.  

 

Xu (2019) suggested that the regular hexagonal 2D structure is a specific case of 2D structure tiles by 

EMIPs. When 𝑘 increased to 0.6, the 𝑎/𝑏 and 𝐴𝑅/𝐴𝑀𝐼𝑃 of the disordered Voronoi diagrams were changed 

to very close to the random-seeded Voronoi diagrams (Xu 2019). Thus, the regular hexagonal 2D structure 

also can be considered as a specific case of Voronoi diagram. Combinate the results of this study and the 
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previous study by Xu (2019), we divided the 2D structures into two categories (Table 1):  

 

Table 1 Summary of tile patterns and corresponding geometric formulas. 

Type Tile pattern A𝐶 𝑛𝑚 

I Tile with EMIPs 0.5𝑛𝑎𝑏𝑠𝑖𝑛 (2π𝑛 ) 𝑛𝑚 = n (6 − 𝑎𝑏) + 6𝑎𝑏 + 𝜇2 

II Tile with EIPs 0.5𝑛𝑎𝑏𝑠𝑖𝑛 (2π𝑛 ) (1 − 𝜇2𝑛 − 𝜀) 

Note: 𝑎 and 𝑏 are the semi-major axis and semi-minor axis of fitted ellipse of an 𝑛-edged cell, respectively; 

and 𝜇2 is a the second moment of the edges of the cells; 𝜀 is a very small variance. The regular hexagonal 

2D structure is a specific case of both types of 2D structures. 

 

Based on the above theoretical frame, we improved the summary on the variations of 2D topology 

which proposed by Xu (2019). Assume a trivalent 2D structure contains constant number of vertices, and 

each time change only one global parameter, then there two kinds of basic topological variations (Table 2): 

V1. 𝜇2-variation, which will not change the type and the area of 2D structure, all the other parameters will 

be changed. For instance, the transition between crystalline and amorphous SiO2 film (Büchner & Heyde 

2017; Büchner et al. 2016; Xu 2019), and between the regular hexagonal and disordered Voronoi diagrams 

which reported by the present study and the previous studies (Zheng et al. 2005; Zhu et al. 2001). V2. Scaling, 

which will change the 𝑎𝑏, area of 2D structure and cells, but 𝜇2, 𝑛, and 𝑛𝑚 will not be changed. Besides, 

the non-uniform scaling will change the 𝑎/𝑏. 

 

Table 2 Two kinds of basic topology variations of 2D structures. Symbol  represents the parameter will not 

be changed, and  represents the parameter will be changed. 

 Global parameters Local parameters 

Area of 2D structure μ2 n A ab a/b nm 

V1        

V2       or   
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The non-living and living 2D materials are generally belong to the Type I and II 2D structures, 

respectively (Xu 2019). To obey ellipse packing, the topological variations of Type I 2D structure need to be 

achieved by global adjustment (Büchner & Heyde 2017; Xu 2019); and that for Type II 2D structure can be 

achieved by local fine-turning, e.g. the division related allometric growth of cell edges of biological 2D 

structure (Xu 2019; Xu et al. 2017). The cell growth kinetics of 2D structure also gained a lot of scientific 

attentions. The rate of area change of an 𝑛-edged cell is given by the well-known physical formula of the 

von Neumann-Mullins’s law (Mullins 1956): d𝐴d𝑡 = 𝜋𝑘3 (𝑛 − 6),                                                                              (8) 

where 𝐴 is the cell area, 𝑘 is the reduced cell boundary mobility. The Eq. (8) generally been used to 

describe the cell growth kinetics of Type II 2D structures, such as, soap, mollusc shells (Zöllner & 

Zlotnikov 2018). This equation suggests that the area of cells with more than six edges increase, while 

cells with fewer than six edges shrink and cells with six edges are stable. The geometric formula of the 

von Neumann-Mullins’s law could be derived from the Aboav-Weaire’s law: d𝐴d𝑡 = 𝑛 − 𝑚 = (𝑛 − 6) (1 + 𝑎𝑛𝑏) − 𝜇2𝑛 .                                                        (9) 

Briefly, the Eq. (8) and (9) are the same on the prediction of the relationship between cell growth rate and 

edge number. A recent study suggested that the simulated values of 𝜋𝑘/3 was ranged from 1.0036 to 

1.0290 which matched very well with the theoretical value 𝜋/3 (Zöllner & Zlotnikov 2018). The average 𝑎/𝑏 of shells and soap was about 1.1 (Xu 2019), then the average value of 1 + 𝑎/(𝑛𝑏) is agree well 

with the 𝜋𝑘/3. Based on Eq. (9), for 6-edged cells, the cell growth rate equals to 0 when 𝜇2 = 0; while 

cell area will slowly decreasing when 𝜇2 > 0. That’s because the 𝑚 of 6-edged cells is just slightly 

higher than six according to the improved formula (Eq. (2)) of Aboav-Weaire’s law. The Eq. (9) describes 

the effects of local neighbor relationship and global edge distribution on cell growth rate. Further study is 

needed to test the Eq. (9). Besides, to date, no such kind of equation was established for Type II 2D 

material, especially for the biological 2D structures.  
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