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Abstract 

The two-dimensional (2D) Lewis’s law and Aboav-Weaire’s law are two simple formulas derived from 

empirical observations. Numerous attempts have been made to improve the empirical formulas. In this study, 

we simulated a series of Voronoi diagrams by randomly disordered the seed locations of a regular hexagonal 

2D Voronoi diagram, and analyzed the cell topology based on ellipse packing. Then, we derived and verified 

the improved formulas for Lewis’s law and Aboav-Weaire’s law. Specifically, we found that the upper limit 

of the second moment of edge number is 3. In addition, we derived the geometric formula of the von 

Neumann-Mullins’s law based on the new formula of the Aboav-Weaire’s law. Our results suggested that the 

cell area, local neighbor relationship, and cell growth rate are closely linked to each other, and mainly shaped 

by the effect of deformation from circle to ellipse and less influenced by the global edge distribution. 

  

Introduction 

From atomic to astronomic scales, the omnipresence of trivalent 2D structures have increasingly drawn broad 

and intense scientific interest (Weaire & Rivier 1984; Zsoldos et al. 2004). Understanding the cellular 

topology of these structures is fundamental for numerous scientific fields. Two empirical laws, the Lewis’s 

law and the Aboav-Weaire’s law, were used to describe the relationships between the edge number (𝑛) and 

the cell area (A), and between 𝑛 and the average edge number (𝑚) of neighbor cells of the 𝑛-edged cell, 

respectively (Aboav 1970; Lewis 1926; Lewis 1928; Weaire 1974; Weaire & Rivier 1984). Recently, based 

on investigations on ten different kinds of natural and artificial 2D materials, Xu (2019) found that the cells 

can be classified as an ellipse’s inscribed polygon (EIP) and tended to form the ellipse’s maximal inscribed 

polygon (EMIP). This phenomena was named as ellipse packing, which is a short-range order shaped the 2D 
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topology by working together with the other short-range order, the trivalent vertices.  

The Aboav-Weaire’s law reads: 

𝑚 = (6 − 𝛽) + 6𝛽 + 𝜇2𝑛 ,                                                                      (1) 

where six is the average edge number of polygonal cells, 𝛽 is a constant, and 𝜇2 is a variance related to the 

edge distribution of cells (Weaire & Rivier 1984). Then, 𝑛𝑚 is the total edge number of neighbor cells of 

the 𝑛-edged cell. Besides, the Weaire’s sum rule suggested 𝜇2 = 〈𝑛𝑚〉 − 36 = 〈𝑛2〉 − 36, which indicates 

that 𝜇2 ≥ 0 and 𝜇2 will increase with the edge range. Xu (2019) found that 𝛽 is actually a variance and 

equals to the ratio of major axis to minor axis of the fitted ellipse. Besides, the 𝛽  and 𝜇2  describe the 

deformation degrees from circle to ellipse, and from EMIP to EIP, respectively. Then, Eq. (1) can be rewritten 

as 

𝑛𝑚 = (6 − 𝑎𝑏) × n + 6𝑎𝑏 + 𝜇2,                                                                    (2) 

where 𝑎 and 𝑏 are the semi-major axis and semi-minor axis of the fitted ellipse, respectively. 

However, in the above study, the basic geometric data of ten kinds of 2D structures, such as coordinates 

of vertices, edge number, and cell area, were derived from the images (Xu 2019). This kind of data collection 

may affect the analysis, for example, it is very difficult to separate points and very short edges (Xu et al. 

2017). To improve the analysis, we simulated a series of Voronoi diagrams by randomly disordering the seed 

locations of a regular hexagonal 2D structure following two previous studies (Zheng et al. 2005; Zhu et al. 

2001).  

 

Methods. 

The coordinates of seed of the 𝑖-th Voronoi polygonal cell are 

{𝑋𝑖 = 𝑋𝑖0 + 𝑘 × 𝑑0 × cos 𝜃𝑖 × 𝜑𝑖 𝑌𝑖 = 𝑌𝑖0 + 𝑘 × 𝑑0 × sin 𝜃𝑖 × 𝜑𝑖  ,                                                           (3)  

where (𝑋𝑖0, 𝑌𝑖0) are the coordinates of the 𝑖-th seed of the regular hexagonal 2D structure, (𝑋𝑖, 𝑌𝑖) are the 

corresponding coordinates after distortion, 𝑑0 is the distance of two neighbor seeds of the regular hexagonal 

2D structure, 𝜃𝑖 is a random angle (0 ≤ 𝜃𝑖 ≤ 2𝜋), 𝜑𝑖 is a random number (−1 ≤ 𝜑𝑖 ≤ 1), and 𝑘 is the 

irregularity of the disordered Voronoi diagram (Zheng et al. 2005; Zhu et al. 2001). When 𝑘 = 0, the Voronoi 
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diagram was tiled by equal-size regular hexagons. The Voronoi diagrams were generated by R software 

(version 3.5.3) with deldir package (Lee & Schachter 1980). The coordinates of vertices, 𝑛, 𝑛𝑚 and real 

(measured) area (𝐴𝑅) of each cell were extracted for the following analysis. For each polygonal cell, we used 

the R software (version 3.5.3) with the Conicfit package to fit an ellipse based on the coordinates of vertices 

(Chernov et al. 2014; Xu 2019). The area of the maximal inscribed polygon of the fitted ellipse (𝐴𝑀𝐼𝑃) was 

calculated as 𝐴𝑀𝐼𝑃 = 0.5𝑛𝑎𝑏𝑠𝑖𝑛(2𝜋/𝑛) (Su 1987). 

 

Results and discussion 

Our data clearly showed that, regardless of increasing 𝑘, the average 𝑛 and average 𝐴𝑅 were very stable 

(Fig. 1A-B). The average 𝑛𝑚 , 𝜇2 , and 𝑎/𝑏  increased with 𝑘  (Fig. 1C-E), but the average 𝐴𝑅/𝐴𝑀𝐼𝑃 

exhibited opposite trend (Fig. 1F). In this study, we confirmed that 𝜇2 could describe the deformation degree 

from EMIP to EIP which proposed by Xu (2019). Based on our data, we found the following equation  𝜇2 = (1 − 𝐴𝑅𝐴𝑀𝐼𝑃 − 𝜀) × 𝑛,                                                                    (4) 

where 𝜀 is a very small variance with unclear meaning. Then, the cell area can be calculated as 𝐴𝐶 = (1 − 𝜇2𝑛 − 𝜀) × 𝐴𝑀𝐼𝑃,                                                                   (5) 

where 𝐴𝐶 is the calculated cell area. Two previous studies which simulated Voronoi diagrams based on the 

same method as the present study also found that the 𝜇2 increased with 𝑘 (Zheng et al. 2005; Zhu et al. 

2001). Other studies suggested that the upper limit of 𝜇2 is infinite (Weaire & Rivier 1984; Zsoldos et al. 

2004). When 𝑘 = 0.1, all the cells became six-edged EIPs, then 𝜇2 = 0 and 𝐴𝐶 was very close to but still 

less than 𝐴𝑀𝐼𝑃. Thus, we proposed 𝜀 > 0. However, according to Eq. (4), the maximal value of 𝜇2 is the 

minimal value of 𝑛 in a given Voronoi diagram. Therefore, 0 ≤ 𝜇2 < 3. Because the 𝜀 is neglectable, Eq. 

(5) can be approximately expressed as following: 𝐴𝐶 ≈ (1 − μ2𝑛 ) × 𝐴𝑀𝐼𝑃.                                                                     (6) 

Using Eq. (6), 𝑛𝑚 can be approximately calculated as 𝑛𝑚 ≈ (6 − 𝑎𝑏) × 𝑛 + 6𝑎𝑏 + (1 − 𝐴𝑅𝐴𝑀𝐼𝑃) × 𝑛,                                           (7) 

The values of calculated 𝑛𝑚 (𝑛𝑚𝐶) using Eq. (2) and (7) were very close to each other and to the real 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27797v2 | CC BY 4.0 Open Access | rec: 18 Jun 2019, publ: 18 Jun 2019



(measured) 𝑛𝑚 (𝑛𝑚𝑅) (Fig. 1G). The average ratio of 𝑛𝑚𝐶/𝑛𝑚𝑅 calculated by Eq. (2) was 1.000.04 

(2039 cells were analyzed), and 90% of the ratios were concentrated in range of 0.94 to 1.07 (Datasheet S1). 

The values of 𝐴𝐶 calculated using Eq. (6) were also very close to that of 𝐴𝑅 (Fig. 1H). The average ratio 

of 𝐴𝐶/𝐴𝑅 was 1.040.19 (2039 cells were analyzed), and 90% of the ratios were concentrated in range of 

0.83 to 1.41. 
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Figure 1 Relationships between k and geometric parameters of Voronoi diagrams. (A) Edge number n. (B) 

Real cell area AR. (C) Real total edge number of neighbors nmR. (D) The second moment of edge distribution 

of cells μ2. (E) Ratio of semi-major axis and semi-minor axis a/b. (F) Ratio of AR and AMIP (The maximal area 

of inscribed polygon of fitted ellipse). (G) Ratio of nmC (The calculated total edge number of neighbors) and 

nmR. We used Eq. (2) and (7) to calculate nmC. (H) Ratio of AC (The calculated cell area) and AR. We used 

Eq. (6) to calculate AC. 

 

Xu (2019) suggested that the regular hexagonal 2D structure is a specific case of 2D structure which is 

tiled by EMIPs. When 𝑘 increased to 0.6, the 𝑎/𝑏 and 𝐴𝑅/𝐴𝑀𝐼𝑃 of the disordered Voronoi diagrams were 

very close to the random-seeded Voronoi diagrams (Xu 2019). Thus, the regular hexagonal 2D structure also 

can be considered as a specific case of Voronoi diagram. Combine the results of this study and the previous 

study by Xu (2019), we divided the 2D structures into two categories (Table 1):  

 

Table 1 Summary of tile patterns and corresponding geometric formulas. a and b are the semi-major axis and 

semi-minor axis of fitted ellipse of an n-edged cell, respectively; and μ2 is the second moment of the edges 

of the cells; ε is a very small variance.  

Type Tile pattern A𝐶 𝑛𝑚 

I Tile with EMIPs 0.5𝑛𝑎𝑏𝑠𝑖𝑛 (2π𝑛 ) 𝑛𝑚 = n (6 − 𝑎𝑏) + 6𝑎𝑏 + 𝜇2 

II Tile with EIPs 0.5𝑛𝑎𝑏𝑠𝑖𝑛 (2π𝑛 ) (1 − 𝜇2𝑛 − 𝜀) 

 

Based on the above theoretical frame, we improved the summary on the variations of 2D topology 

which proposed by Xu (2019). Assuming a trivalent 2D structure contains constant number of vertices, and 

each time change only one global parameter, then there are two kinds of basic topological variations (Table 

2): V1. 𝜇2-variation, which will not change the type and the area of 2D structure, all the other parameters 

will be changed. For instance, the transition between crystalline and amorphous SiO2 film (Büchner & Heyde 

2017; Büchner et al. 2016; Xu 2019), and between the regular hexagonal and disordered Voronoi diagrams 

which reported by the present study and the previous studies (Zheng et al. 2005; Zhu et al. 2001). V2. Scaling, 
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which will change the 𝑎𝑏, area of 2D structure and cells, but 𝜇2, 𝑛, and 𝑛𝑚 will not be changed. Besides, 

the non-uniform scaling will change the 𝑎/𝑏. 

 

Table 2 Two kinds of basic topology variations of 2D structures. Symbol  represents the parameter will not 

be changed, and  represents the parameter will be changed. 

 Global parameters Local parameters 

Area of 2D structure μ2 n Cell area ab a/b nm 

V1        

V2       or   

 

The non-living and living 2D materials are generally belong to the Type I and II 2D structures, 

respectively (Xu 2019). To obey ellipse packing, the topological variations of Type I 2D structure need to be 

achieved by global adjustment (Büchner & Heyde 2017; Xu 2019); and that for Type II 2D structure can be 

achieved by local fine-turning, e.g. the division related allometric growth of cell edges of biological 2D 

structure (Xu 2019; Xu et al. 2017). The cell growth kinetics of 2D structure also gained numerous scientific 

attentions. The rate of area change of an 𝑛-edged cell is given by the well-known physical formula of the 

von Neumann-Mullins’s law (Mullins 1956): d𝐴d𝑡 = 𝜋𝑘3 (𝑛 − 6),                                                                              (8) 

where 𝐴 is the cell area, 𝑘 is the reduced cell boundary mobility. The Eq. (8) is generally used to 

describe the cell growth kinetics of Type II 2D structures, such as, soap, mollusc shells (Zöllner & 

Zlotnikov 2018). This equation suggests that the area of cells with more than six edges increase, while 

cells with fewer than six edges shrink and cells with six edges are stable. The geometric formula of the 

von Neumann-Mullins’s law could be derived from the Aboav-Weaire’s law: d𝐴d𝑡 = 𝑛 − 𝑚 = (𝑛 − 6) (1 + 𝑎𝑛𝑏) − 𝜇2𝑛 .                                                        (9) 

Briefly, the Eq. (8) and (9) are the same when come to predict the relationship between cell growth rate 

and edge number. A recent study suggested that the simulated values of 𝜋𝑘/3 were ranged from 1.0036 

to 1.0290, which matched very well with the theoretical value of 𝜋/3 (Zöllner & Zlotnikov 2018). The 
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average 𝑎/𝑏 of shells and soap was about 1.1 (Xu 2019), then the average value of 1 + 𝑎/(𝑛𝑏) agreed 

well with the 𝜋𝑘/3. Based on Eq. (9), for six-edged cells, the cell growth rate equals to 0 when 𝜇2 = 0; 

while cell area will slowly decrease when 𝜇2 > 0. That is because the 𝑚 of six-edged cells is just 

slightly higher than six, according to the improved formula (Eq. (2)) of Aboav-Weaire’s law. The Eq. (9) 

describes the effects of local neighbor relationship and global edge distribution on cell growth rate. 

Further study is needed to test the Eq. (9). Besides, to date, no such kind of equation is established for 

Type II 2D material, especially for the biological 2D structures.  

 

Conclusion 

This study generated a series of Voronoi diagrams by randomly disordered a regular hexagonal Voronoi 

diagram and derived new geometric formulas for Lewis’s law and Aboav-Weaire’s law based on the cell 

topological parameters. This study also derived a geometric formula for the von Neumann-Mullins’s law on 

the basis of the new formula of the Aboav-Weaire’s law. The present study suggested that the cell area, local 

neighbor relationship, and cell growth rate could be calculated using the edge number, semi-axes of fitted 

ellipse, and the second moment of edge distribution. Furthermore, the cell area, local neighbor relationship, 

and cell growth rate are mainly determined by the deformation effects of circle and less influenced by the 

global edge distribution. Based on Lewis’s law, this study found that the upper limit of the second moment 

of edge distribution is 3.  
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