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ABSTRACT

Predictive modeling uses statistics to predict unknown outcomes. In general, there are two categories of

predictive modeling, parametric and non-parametric. There are many applications of predictive modeling,

for example, it can be used to predict the risk score of a credit card transaction, it can also be used in

health care to identify the probability of having certain disease. When it comes to geospatial data, there

are some unique characteristics of the problem. Predictive modeling of geospatial data naturally involves

multiple response variables at various locations. The response variables are not independent with each

other and thus building separate models for each individual response variable is not appropriate. In

addition, many geospatial data has strong spatial auto-correlation such that data from nearby locations

are more similar with each other. A joint modeling takes into account of both the correlation among

response variables and relationship among different locations, and can make predictions for locations

with no training data. In this paper, we review works on joint predictive modeling for multiple response

variables at various locations.

INTRODUCTION

Geospatial analysis enable us to understand the large volume of complex data and improve the decision

making and plannings. For example, researchers uses constrained spectral clustering techniques Yuan et al.

(2015) on a multi-scaled geospatial and temporal database Soranno et al. (2017, 2015) to make region

delineations. This provides the spatial zones used in many disciplines,including economics, landscape

ecology and environmental science Cheruvelil et al. (2017); Yuan et al. (2019). The analysis can also help

us understand the patterns and complex relationship among geospatial ecosystems.

Nowadays, with the development of high-resolution sensing technology, geospatial data grows

exponentially. Such data usually collected at multiple locations with all kinds of features. A geospatial

prediction usually models different responses at different locations. For example, in Figure 1 climate

scientists have data that are sampled at different location, the features can be landscape features, population

information. They are interested in predicting temperature and precipitation for a future time at multiple

sites simultaneously. Similarly, lake ecology researchers are interested in modeling different lake nutrients

for a set of lakes Collins et al. (2019).

Figure 1. Joint modeling of multiple response variables at various locations.
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One way to make the prediction is to fit one local model for each response variable at each location

independent. This strategy is straight forward but suffers the following limitations:

• When the data is insufficient for each location, it is hard to build a robust model;

• This approach does not incorporate the spatial correlation between different local models;

• This model does not consider the correlations between different response variables.

To overcome these limitations, a joint predictive modeling is needed such that one can jointly make

predictions for multiple responses at different locations. In this paper we review the existing works on

jointly modeling of geospatial data.

1 JOINT PREDICTIVE MODELING

There are many works in developing joint predictive modeling methods Król et al. (2017); Zhao and Tang

(2017); Liu et al. (2018); Yuan et al. (2017a). In Lei et al. (2015) the author proposed a method for joint

learning of multiple longitudinal models for various clinical scores at multiple future time points. For

every longitudinal prediction, the author adopted three relationships among training data, features, and

clinical scores. The author also introduced additional relation among different longitudinal prediction

models so as to select a common set of features from the baseline imaging and clinical data. The author

demonstrate the effectiveness of the predictive models on Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database.

Many researches uses Multi-task learning (MTL) Caruana (1997) for joint predictive modeling. Multi-

task learning is a class of machine learning algorithms with the advantage that it can incorporate more

components of the problem into a single optimization. Rather than modeling each location as a separate

learning task, Multi-task learning solves multiple, related learning tasks jointly by exploiting the common

structure of the problem. Over the past decade, MTL has been successfully applied to various learning

problems including regressionXu et al. (2014); Zhou et al. (2011); Yuan et al. (2017b), clustering Evgeniou

et al. (2005) and classificationYu et al. (2005); Xue et al. (2007). MTL has also been applied to a wide

range of applications, such as disease progression prediction Zhou et al. (2011), Web image and video

search Wang et al. (2009) and Web page categorization Chen et al. (2009). The simplest way to integrate

different kinds of task relationship is through a regularization term. This regularized MTL has been widely

used and become a rich family of MTL. There are many MTL algorithms proposed in the literature. These

algorithms vary in terms of how the task relatedness are defined and incorporated into their formulation.

For example, one could assume that the model parameters for closely related tasks should be similar to

each other. Such an assumption has led to the the development of the mean regularized MTL approach

by Evgeniou and Pontil Evgeniou and Pontil (2004). Another common assumption is that the model

parameters share a common low-rank representation. Since minimizing the rank function is an NP-hard

problem, a standard approach is to minimize the trace norm instead of the rank of the model parameter

matrix directly.For example, Chen et al. Chen et al. (2011) proposed a robust MTL algorithm that can

identify irrelevant tasks by imposing low-rank and group-sparse constraints on the model parameters.

Argyriou et al. Argyriou et al. (2008) presented a method to learn a sparse representation shared by the

models for different tasks. Kumar et al.Kumar and Daume III (2012) assumed that each local model is a

linear combination of finite base models.

More recently, there has been considerable interest in applying MTL to spatial, temporal, and spatio-

temporal prediction problems as many of these problems can be naturally cast into a multi-task learning

formulation Gonçalves et al. (2015); Xu et al. (2014, 2016a,b). For example, Xu et al. Xu et al. (2014)

presented an MTL framework for ensemble time series forecasting problems. The application of the MTL

framework to spatio-temporal data has also been studied by Xu et al. in Xu et al. (2016a,b). However,

none of these approaches consider the nested structure of the spatial data. Another related work is the

multi-level lasso approach for multi-task regression proposed by Lozano et al.Lozano and Swirszcz (2012).

However, the approach assumes that the second-level variables are unobserved, unlike the formulation

presented in this study, which assumes that the values of the second-level (regional) variables are observed.

Since the method is not directly applicable to our geospatial predictive modeling problem, we use a

variant of this multi-level lasso formulation, assuming the second-level variables are observed, as one of

the baseline methods for comparing our proposed framework.
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2 CONCLUSION

Geospatial data analysis is of great importance as it helps us to understand the large volume of real world

data. It is common that there exist multiple correlated variables that we are intersted and thus in this paper,

we reviewed techniques of joint predictive modeling for geospatial data. Specifically, we surveyed the

multi-task learning framework applied in the domain of geospatial temporal database. Multi-task learning

has been applied successfully across different areas, from natural language processing and computer

vision to health and illness diagnosis. In this paper we reviewed many multi-tasking learning techniques

on geospatial analysis. In the future, we expect more researches of other types growing in this area.
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