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Background. Sympatric plant species that share pollinators may have similar mating systems because
their ûoral traits are subject to comparable canalization imposed by pollinators. However, if each
sympatric species bears specialized ûoral morphology, each species may attract diûerent pollinators. Our
study aims to describe the pollinator diversity and pollination systems of four taxa of Eriosyce that co-
occur in an endangered coastal Mediterranean ecosystem in Central Chile. We took two approaches in
our study: we assessed the composition and similarity of ûower visitors among taxa, and we
characterized the breeding systems to determine dependence on pollinators and self-compatibility.

Methods. We performed ûeld observations to characterized pollinators during two consecutive years
(2016-2017). Additionally, we performed pollination experiments to elucidate reproductive modes using
three treatments: manual cross-pollination, automatic self-pollination, and control (unmanipulated
individuals).

Results. We observed one bird species (Giant hummingbird Patagona gigas only visiting E. subgibbosa)
and 14 bee species (13 natives plus Apis mellifera) visiting cacti of the genus Eriosyce. We observed
variation in the similarity of intra-speciûc pollinator composition between years and among Eriosyce
species within the same year. Individuals of E. subgibbosa were visited by less number of species (2016
= 4; 2017 = 2), while E. chilensis (2016 = 4; 2017 = 8), E. chilensis var. albidiûora (2016 = 7; 2017 = 4)
and E. curvispina var. mutabilis (2016 = 7; 2017 = 6) were visited by a richest guild of visitors (up to 10
bee species each).Autonomous pollination was unfeasible inE. chilensis, which depend on bees to achieve
their reproductive success. Eriosyce subgibbosa, visited mainly by the Giant hummingbird, depends on
pollinators to achieve reproductive success. Both E. chilensis var. albidiûora and E. curvispina var.
mutabilis were visited by a diverse assemblage of non-social native bees, showing some degree of
autonomous pollination and self-compatibility.

Discussion. Pollinator diversity analyses showed considerable pollinator diûerences between the species
with ornithophilous ûowers (E. subgibbosa) and remain taxa which solely dependent on Apoidea species
for pollen transfer. The high diversity of native bees among sympatric Eriosyce may be a caused by their
microclimatic diûerences at spatial (diûerences among cacti microhabitats) and temporal levels
(diûerences of climatic conditions between August to December when diûerent Eriosyce species bloom).
Our study contributes to unveiling the evolutionary mechanisms for pollinator partitioning of sympatric
close-related plant species. Furthermore, it improves understanding of threatened species reproductive
system and ecological interactions, especially to E. chilensis and E. chilensis var. albidiûora, whose
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studied populations are the only known for these taxa.
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2 Introduction

3 Pollinator assemblages are among the main evolutionary driver of mating systems in plants 

4 (Kalisz, Vogler & Hanley, 2004; Goodwillie, Kalisz & Eckert, 2005). Animal pollination is a 

5 dynamic process that covaries both in spatial and temporal axis with abiotic and biotic factors 

6 (Eckhart, 1992). Indeed, several studies document differential pollinator composition, pollen 

7 flow, and pollination rates along geographical gradients (Herlihy & Eckert, 2005). These 

8 gradients generally covary with climatic factors, which in turn may impact the pollination 

9 process even at small geographical scales (Kay & Sargent, 2009; Chalcoff, Aizen & Ezcurra, 

10 2012). Little attention has been paid to the study of pollination of nearby species that co-occur 

11 sympatrically in specific geographic areas sharing the same bioclimatic variables and pollinator 

12 biota (but see Marques et al., 2007; Ferreira et al., 2018). In general, noticeable floral 

13 divergence (e.g., phenology and morphology among others) may contribute to differences in 

14 pollinator guild among evolutionarily closely related taxa that co-occur, and ultimately mediates 

15 a reduction in pollination niche overlap (Cuautle & Thompson, 2010; Grossenbacher & Whittall, 

16 2012).

17 Plants living in sympatry may largely share floral visitors, increasing the chances of 

18 heterospecific fertilization among co-specific plants, thus reducing reproductive output (van der 

19 Niet, Johnson & Linder, 2006; Schlüter et al., 2009). Under this scenario, when it is not possible 

20 to achieve pollinator partitioning, asexual reproduction strategies such as selfing can be 

21 promoted (Eckert & Herlihy, 2004; Kalisz, Vogler & Hanley, 2004). Selfing reduces seed 

22 production and can be exacerbated by anthropogenic disturbances such as biodiversity loss, 

23 invasive species, and climate change (Kalisz, Vogler & Hanley, 2004; Young et al., 2016). These 

24 drivers may disrupt pollination interactions and contribute to plant pollen limitation and 

25 population reproductive decay which in last term favor selfing strategies (Kearns, Inouye & 
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26 Waser 1998; Knight et al., 2005; Hadley & Betts, 2009). As a consequence, a rapid evolutionary 

27 change towards self-pollination and genetic self-compatibility can be found in plant taxa exposed 

28 to these stressors (Vickery 2008; Roels & Kelly, 2011; Barrett & Harder, 2017).

29 Among angiosperms, the species of the Cactaceae family present one of the most 

30 impressive evolutionarily labile reproductive systems (Schlumpberger & Renner, 2012; 

31 Hernández-Hernández et al., 2014; Guerrero et al., 2019b). Cacti have evolved conspicuous 

32 flowers that attract a wide range of animal pollinators, including vertebrates (e.g., bats, 

33 hummingbirds, passerine birds, lizards) and insects, such as moths and bees (Guerrero et al., 

34 2012). Most cacti species have been characterized as self-incompatible and depend on biotic 

35 pollinators to achieve reproductive success (Valiente-Banuet et al., 1997; McIntosh, 2002; 

36 Walter, 2008). On large time scales, the complex interactions of cacti with their pollinators may 

37 have powered the diversification of the family (Hernández-Hernández et al., 2014). On smaller 

38 scales, studies have shown geographical co-variation between pollinator assemblages and floral 

39 morphology (Schlumpberger et al., 2009; Walter, 2010). Unfortunately, most cacti pollination 

40 studies have mainly focused on a single plant species (Mandujano et al., 2010; Larrea-Alcázar 

41 & López, 2011; Eggli & Giorgetta, 2015), meanwhile the pollination processes of sympatric 

42 cacti have received less attention (but see Fleming, Tuttle & Horner 1996; Eggli & Giorgetta, 

43 2017; Ferreira et al. 2018). Increasing knowledge of pollination in sympatric cacti species 

44 allows us to identify potential pollen limitation and reproductive isolation barriers as well as 

45 mechanisms of seed production, which are relevant issues to identify demographic bottlenecks of 

46 taxa, especially in those with high extinction risk.

47 In this study, we simultaneously focused on four sympatric Eriosyce taxa that overlap 

48 partially or wholly in their distribution inhabiting an endangered ecosystem in coastal central 
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49 Chile: Los Molles-Pichidangui Conservation Priority Zone (Guerrero et al., 2011; Fig. 1). Three 

50 of the studied taxa belong to Eriosyce sect. Neoporteria (Guerrero et al., 2019b): E. chilensis 

51 (Hildm. ex K.Schum.) Katt., E. chilensis var. albidiflora (F. Ritter) Katt. and E. subgibbosa 

52 (Haw.) Katt. The other cactus studied belongs to Eriosyce sect. Horridocactus: Eriosyce 

53 curvispina (Bertero ex Colla) Katt. var. mutabilis (F. Ritter) Katt. Observations on the 

54 reproductive process in some Chilean Eriosyce sect. Neoporteria species have suggested that 

55 they are mainly self-incompatible, although some degree of self-compatibility has been detected, 

56 with ornithophilous floral syndromes being mainly visited by hummingbirds (Ritter, 1980; 

57 Walter, 2008; Guerrero et al., 2012). Two of these taxa are narrow endemics (E. chilensis and E. 

58 chilensis var. albidiflora), which have reduced their distributional range through the effects of 

59 habitat loss in recent decades (Faundez et al., 2013). Eriosyce subgibbosa and E. curvispina var. 

60 mutabilis only overlap their ranges in the studied site (Fig. 1). Our study aims to describe the 

61 diversity of pollinator and reproductive systems of four cacti that co-occur in an endangered 

62 coastal Mediterranean ecosystem in central Chile. We took two approaches to our study. First, 

63 we assessed the composition and similarity of flower visitors during two consecutive years (2016 

64 and 2017). Then, we characterized the breeding system to determine dependence on pollinators 

65 and genetic compatibility after fertilization. Specifically, our study aims to contribute to 

66 understanding the fate of threatened species within an endangered ecosystem. 

67

68 Materials & Methods

69 Study site and species. We carried out our study in a coastal strip of central Chile between 

70 Pichidangui Bay (32°08' S; 71°32' W) and Los Molles Peninsula (32°14' S; 71°30' W) (Fig. 1). 

71 The area is the most important remnant of coastal Mediterranean-type scrubland (ca. 17.5 km2 of 
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72 surface) dominated by sclerophyllous vegetation (Luebert & Pliscoff, 2006; Alaniz, Galleguillos 

73 & Perez-Quezada 2016), which is characterized by its high plant diversity, with 57% of 

74 flowering species endemic to central Chile (Lund & Teillier, 2012). Today, 17 plant taxa are 

75 recognized as having threatened status within this area (Lund & Teillier, 2012) due to 

76 anthropogenic pressures. The study was done in an area of public access (no permit required).

77 We studied all the species of the genus Eriosyce present in this area (4 taxa). The genus is 

78 composed of globular and sub-columnar species (Fig. 1). Eriosyce chilensis is a narrow endemic 

79 species distributed exclusively in this studied site occurring on rocky outcrops near the coast. 

80 The flowers of E. chilensis have tepals deflected outwards, suggesting bee pollination. This 

81 taxon has two taxonomic varieties. The nominal species E. chilensis, with flowers of pink tepals, 

82 occurs in all studied areas except in the northernmost portion (near Pichidangui) (Fig. 1). The 

83 second variety is E. chilensis var. albidiflora, which is a local endemic distributed in the 

84 northernmost distributional range of the species and has flowers with white tepals. E. chilensis is 

85 classified as Critically Endangered (Faundez et al., 2013). Eriosyce subgibbosa is a globular-

86 elongated cactus distributed on the Pacific coastline along ca. 600 km between 31° S to 37° S, 

87 presenting pink to pale pink tepals which form a tubular flower, associated with ornithophilous 

88 pollination by hummingbirds (Walter, 2008). Eriosyce subgibbosa occurs in the northern and 

89 southern ranges of the studied site associated with coastal rocks (Fig. 1). These three taxa are 

90 very similar in their vegetative structures, but display more substantial differences regarding 

91 flower morphology; since E. subgibbosa have a rather tubular-shaped hypanthia in comparison 

92 with the funnelform flowers of E. chilensis and E. chilensis var. albidiflora. These latter species 

93 differ in the pigmentation of their flowers, as E. chilensis can be seen as pink by the human 
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94 vision while E. chilensis var. albidiflora white and yellowish. Details of diagnostic characters for 

95 determination of Chilean Eriosyce are available in Kattermann (1994).

96 Finally, Eriosyce curvispina var. mutabilis is a globular cactus distributed on the coast 

97 and in valleys with oceanic influence, and approximately 32° S latitude that has a hemicryptic 

98 habit, living semi-buried. In the studied site, E. curvispina var. mutabilis inhabits coastal 

99 terraces. This species has showy flowers with yellow to orange outward tepals, suggesting bee 

100 pollination (Fig. 1). This species differs from others because they have wide bodies compare to 

101 the height, bearing less and thicker spines.

102 Flower visitors of Eriosyce. We performed field observations to determine the main pollinators 

103 of each Eriosyce taxon during their flower anthesis peak: August (E. subgibbosa), October (E. 

104 chilensis and E. chilensis var. albidiflora) and November (E. curvispina var. mutabilis). 

105 Observations for each taxon were performed during two consecutive years (2016 and 2017). We 

106 centered observations on individuals of each Eriosyce species which have clumped distribution 

107 forming groups. In the year 2016, we counted the number of individual per group and their 

108 opened flower number. Each group contains between 2 - 17 adult individuals (12.7 individuals ± 

109 1.5, mean ± standard error) with 0.7 - 8 flowers per individual in each group (2.5 ± 0.5 flowers 

110 per individuals). For each species, group of individuals were distanced least 20 m each other 

111 (Fig. 1). In 2017 we centered in the study the same groups. In spite that some species overlap 

112 their distribution (Fig. 1), Eriosyce species showed a marked difference in floral phenology. 

113 Therefore these did not overlap when bloomed. Eriosyce flowers still opened for a period of 4 - 6 

114 days.

115 For each species, we conducted observations between 8:00 and 20:00 on three 

116 consecutive days by four observers, except for E. curvispina var. mutabilis which we counted 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27792v1 | CC BY 4.0 Open Access | rec: 10 Jun 2019, publ: 10 Jun 2019



117 with two observers. Time observation coincides with flower anthesis of each species, which once 

118 opened, still in this state. Previous observations after 20:00 hours led us to rule out the presence 

119 of nocturnal visitors. Specifically, our observations were performed in periods of 30 min for each 

120 group of individuals alternating among groups, covering 540 min of observation each day per 

121 observer. A total of 6,480 min of observation per species were performed (540 min x 4 observers 

122 x 3 consecutive days) except for E. curvispina var. mutabilis which accumulated 3,240 min of 

123 observation. When animals approached flowers, we recorded the time they entered the flowers 

124 and collected the animals when feasible. Since we do not evaluate the effectiveness of visitor 

125 animals as pollinators, we considered all the animals that entered the flowers and contacted 

126 reproductive parts (stigma and anthers) to be pollinators. The collected specimens pin-mounted 

127 and taken to the laboratory for later identification by Apoidea expert Dr. Luisa Ruz Pontificia 

128 Universidad Católica de Valparaiso (PUCV), Valparaiso, Chile. Brochure specimens will be 

129 deposited at Concepción University Entomology Collection (MZUC-UCCC), Chile. 

130 Based on flower visits, we built a plant x visitor matrix for each year. We estimated 

131 pollinator richness using randomization of matrices (N = 9999 randomizations) based on swap 

132 models that find 2 x 2 submatrices that can be swapped holding totals of columns (pollinators) 

133 and rows (plant individuals) (<swap count= algorithm, Gotelli & Entsminger, 2001; Gotelli & 

134 Entsminger, 2003). Additionally, we estimated the similarity of pollinator assemblages among 

135 Eriosyce cacti, both between years within each taxon and among taxa within each year, using the 

136 Bray-Curtis index (Bray & Curtis, 1957), which bounds between 0 (two samples share all the 

137 species) and 1 (two sites do not share any species). Since the Bray-Curtis index (BC) is a 

138 dissimilarity index, we reported similarity as 1 - BC. All these analyses were performed using 

139 library vegan for R (R Core Team, 2018).
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140 Dependence from pollinators and breeding system. We marked and bagged flower buds of 

141 each cacti species during their bloom peak: E. subgibbosa in August 2017 (N = 70 individuals); 

142 E. chilensis var. albidiflora (N = 32 individuals) and E. chilensis var. chilensis (N = 55 

143 individuals) in October 2016; and E. curvispina var. mutabilis (N = 75 individuals) in November 

144 2017. We used a plastic silk fabric (200 x 200 mm) to bag the flowers, which prevented animals 

145 from entering the flowers. We monitored individuals daily, and as anthesis proceeded, we 

146 randomly assigned one of the following treatments to each individual: (i) manual cross-

147 pollination, where flowers were pollinated with the pollen of individuals located at least 5 m 

148 away from focal individuals; (ii) automatic self-pollination, where flowers were kept bagged; 

149 and (iii) the control, a group of plants whose bags were removed on anthesis day and whose 

150 flowers were unmanipulated (following Eckert et al., 2010). For manual cross-pollination, donor 

151 individuals were two-day-old flowers. Only one flower was treated per individual plant. Thus, 

152 because the use of more than one pollinated flower may generate resource limitation to make 

153 offspring (Charnov, 1979), which may alter seed production among individuals with a different 

154 number of treated flowers. Before performing this experiment, we assessed the stigma receptivity 

155 by using the bubble production method, immersing the stigmas in a 3% hydrogen peroxide 

156 solution and observing bubble production within 2-3 min. The solution bubbling indicates the 

157 activity of stigmatic peroxidases and hence, the receptivity of the stigma (Armbruster et al., 

158 2002). The receptivity of stigmas was assayed in 1- to 2-day-old flowers (N = 10 flowers of 

159 different individuals per species), and we observed receptivity in 100% of flowers. All taxa of 

160 Eriosyce included in this study showed stigma receptivity even early to anthesis (we assessed the 

161 receptivity of some stigmas in floral buds). Therefore, Eriosyce species may are considered as 

162 protogynous. At the time of fruit maturation (ca. 4 weeks after the initiation of treatments), we 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27792v1 | CC BY 4.0 Open Access | rec: 10 Jun 2019, publ: 10 Jun 2019



163 collected fruits obtained from tagged individuals and counted the seed production in each. We 

164 reported the proportion of fruits produced per total flowers treated (for each species) and 

165 assessed the differences in seed number among treatments for each plant species using a 

166 Kruskal-Wallis analysis (Sokal & Rohlf, 1995). In cases of significant differences, we performed 

167 a Nemenyi a posteriori test (Zar, 1996).

168

169 Results

170 For the studied Eriosyce species, we observed 16 taxa of floral visitors during two consecutive 

171 years (2016 = 199 visits, 2017 = 303 visits; Table 1; Appendix 1). Pollinators belonged to two 

172 main groups: Insects, represented exclusively by the superfamily Apoidea (Hymenoptera) and 

173 birds; specifically, the giant hummingbird Patagona gigas (Trochilidae: Apodiformes) 

174 (Appendix 1). The composition and total richness of floral visitors varied between consecutive 

175 years (Table 1 and 2). All taxa presented some level of inter-annual variation in composition and 

176 richness, but we detected significant dissimilarity only in the floral visitors of E. curvispina var. 

177 mutabilis (Table 2). Regarding bee species in particular, these corresponded to 15 different taxa, 

178 from the five families found in Chile (Andrenidae, Apidae, Colletidae, Halictidae and 

179 Megachilidae). With the exception of a 0.9% of visit on E. chilensis var. albidiflora due to 

180 introduced Apis mellifera all the remaining bee taxa were native.

181 The composition of pollinator assemblages was unique to each Eriosyce taxon (Table 2), 

182 being more dissimilar in E. subgibbosa in both years (range 2016: 0.000-0.089; 2017: 0.000-

183 0.031) since the giant hummingbird Patagona gigas (Apodiformes: Trochilidae) exclusively 

184 visited its flowers. The contribution of P. gigas to the total visits of the pollinator assemblage in 

185 E. subgibbosa was 29% (2016) and 86% (2017), and the rest of visits were carried out by 
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186 Halictidae bees (Appendix 1). The highest similarity (0.844) among the studied taxa was 

187 between E. chilensis and E. chilensis var. albidiflora in 2016 (Table 2), while in 2017, the 

188 similarity between the two taxa decreased to 0.691 (Table 2).

189

190 With regard to fertilization mode and genetic compatibility in E. chilensis and E. 

191 chilensis var. albidiflora, we detected an important dependence on pollinator presence (Fig. 2A 

192 and 2B) since bagged flowers produced fewer seeds compared to the control treatment (E. 

193 chilensis var. albidiflora: Ç2 = 16.83; P < 0.001; E. chilensis var. chilensis: Ç2 = 9.91; P < 0.001). 

194 However, we detected some degree of genetic self-compatibility and autonomous selfing in E. 

195 chilensis var. albidiflora, since limited seed production was observed in the automatic self-

196 pollination treatment (Fig. 2A). In contrast, no seeds were collected in the automatic self-

197 pollination treatments for E. chilensis. For E. curvispina var. mutabilis, we observed a mixed 

198 reproductive system, with no differences in seed production among the compared treatments (Ç2 

199 = 0.637; P = 0.727; Fig. 2C). For E. subgibbosa, our results showed significant pollen limitation 

200 (Fig. 2D, Kruskal-Wallis Ç2 = 6.987; P < 0.031) since manual cross-pollination produced a more 

201 significant number of seeds than the other treatments, including the control group (Fig. 2D). 

202 Finally, in E. subgibbosa, we detected some levels of genetic self-compatibility and autonomous 

203 selfing as seed production was observed only in one individual under the automatic self-

204 pollination treatment, although this may be the product of pollen contamination (Fig. 2A).

205

206 Discussion

207 Pollinator assemblages 
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208 We found contrasting pollinator assemblages among Eriosyce species which exhibited floral 

209 morphology associated from ornithophilous (E. subgibbosa) to melitophylous syndrome 

210 (remaining taxa). Eriosyce subgibbosa was the only species that interact with the Giant 

211 hummingbird P. gigas and also was visited by relatively small-sized native bees of Halictidae 

212 sub-family. This ample taxonomic diversity of visitor assemblage in E. subgibbosa generated 

213 large inter-annual differences in composition. The pollination syndrome in the Neoporteria 

214 section within Eriosyce sensu lato has long been hypothesized to be ornithophilic (Walter, 2008), 

215 although this has never been formally tested and remains anecdotal. As in other studies in cacti, 

216 plants with ornithophilic syndromes do not necessarily restrict other pollinators from using their 

217 offered resources (Gorostiague & Ortega-Baes, 2016). Inter-annual variation of P. gigas in the 

218 study site may be due to their migration capacity whose residence times in the study site are 

219 unknown. This could impact pollinator availability for specialized species such as E. subgibbosa. 

220 Because E. subgibbosa have tubular-shape flowers, we expected a null contribution of 

221 hymenopterans in the pollinator assemblage of E. subgibbosa. However, native bee determined 

222 as Dialictus sp1 may be critical under the detected pollen limitation scenario (i.e., 2017) in E. 

223 subgibbosa because they may contribute to partially compensating for lower activity of P. gigas. 

224 In addition, the presence of plants with massive nectar production may reduce visits in focal 

225 species (Fleming et al., 2001; Chittka & Schürkens, 2001). For instance, genus Puya 

226 (Bromeliaceae) can produce massive amounts of nectar that attracts P. gigas hummingbird, as 

227 well as other native birds (Reid et al., 2002; Hornung-Leoni, González-Gómez & Troncoso, 

228 2013). Two Puya species co-occur in the studied site: Puya chilensis Mol. and Puya venusta 

229 Phil. ex Baker, this suggest a possible pollination interference against E. subgibbosa, which 

230 produce less nectar per flower (mean + estandar error: 4.93 + 0.87 ¿l; obtained for 14 individuals 
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231 using microcapillary tubes of 75 ¿l) in comparison to P. chilensis (358 ¿l) and P. venusta Phil. 

232 ex Baker (24 ¿l; Hornung-Leoni, González-Gómez & Troncoso 2013). During 2017, a massive 

233 bloom of P. venusta and P. chilensis occurred in the study area (Authors pers. obs.), which may 

234 have modified P. gigas foraging behavior. Peak flowering in E. subgibbosa in Pichidangui 

235 occurs in August, coinciding with the arrival of P. gigas, which migrates from the north portion 

236 of Chile, Bolivia, and Peru (Walter, 2008). Usually, in winter floral resources for hummingbirds 

237 are scarce, and when no massive flowering of Puya spp. occurs, flowers of E. subgibbosa 

238 together with some scarce individuals of the hemi-parasitic mistletoe Tristerix aphyllus 

239 (Loranthaceae) and Fuchsia lycioides (Onagraceae), are almost the only available floral resource 

240 in the area (Authors pers. obs.). Interestingly, another hummingbird species present in the 

241 studied site at the same time, the Green-backed Firecrown Sephanoides sephaniodes, did not 

242 visit E. subgibbosa flowers. This result could be related to a dominant territorial exclusion 

243 exerted by the giant hummingbird, which is several times larger than S. sephaniodes, the latter 

244 possibly being subordinated and displaced to other floral resources more fitted to its small size 

245 (i.e., the tiny flowers of Fuchsia lycioides), which it frequently visits (Authors pers obs.).

246 Remain of the Eriosyce Phil. taxa were strictly bee pollinated, to the best of our 

247 knowledge this is the first time the floral association of these bee species with this cacti genus is 

248 reported. This relationship is consistent with their flower morphology (funnelform) and 

249 flowering peaks that occur in October and November when pollinator activity increases coupled 

250 with the increase in day temperature (Walter, 2008). The high diversity of native bees in the 

251 xeric areas of Chile has long been recognized in the literature (Michener, 1979) which are 

252 important pollinators in central Chile (Montalva & Ruz, 2010; Medel, González-Browne & 

253 Fontúrbel, 2018), some such as Alloscirtetica lanosa Urban, 1971 (Apidae), Diadasia chilensis 
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254 Spinola, 1851 (Apidae), Xenochilicola diminuta Toro and Moldenke, 1979 (Colletidae) and 

255 Caenohalictus cyanopygus Rojas and Toro, 2000 (Halictidae). The observed diversity of native 

256 bee species (include all five families found in Chile) may allow a heterogeneous spatial 

257 distribution of pollinators with local specialization of each Eriosyce taxa in a group of floral 

258 visitors. This condition is essential considering that the observed bee species are variable in body 

259 size, ranging from medium (i.e., Megachilidae) to mostly small (i.e., Halictidae and Colletidae), 

260 and their foraging spectra may range from poly to oligolectic (Montalva & Ruz, 2010; Michener, 

261 2007). Even though the studied Eriosyce taxa co-occur in a narrow coastal strip (Fig. 1), we 

262 detected changes in bee composition (mostly native species) that may be associated with 

263 different microhabitat occupation. This situation could be more critical regarding E. chilensis and 

264 E. curvispina var. mutabilis, whose floral phenology overlaps during November but which 

265 inhabit different micro-sites with different soil compositions: rocky outcrops (E. chilensis) and 

266 coastal terraces (E. curvispina var. mutabilis). In other systems, micro-habitat conditions mold 

267 pollination richness of butterflies (Aguirre-Gutiérrez et al., 2015) and visit rates of 

268 hummingbirds (Fontúrbel, Jordano & Medel 2015). In contrast with distribution information 

269 available for hummingbird, distribution of Chilean bees is ambiguous, covering some latitudinal 

270 strips as the potential distributional range (Montalva & Ruz, 2010). Furthermore, several frequent 

271 Apoidea pollinators observed in this study seem to correspond to new native bee species (i.e., 

272 Anthrenoides sp. 1, Liphanthus sp. 1, M.L. Ruz, per. comm.) whose distributional ranges or 

273 ecological associations have not been described yet. In this sense, knowledge of distribution, 

274 local abundances, and foraging preferences of observed bees is an issue that needs more attention 

275 to understand their dynamic in the studied ecosystem. 
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276 Despite our study duration was limited to two years, we found a wide variation of 

277 pollinator assemblages among sympatric taxa at a local scale, including significant inter-annual 

278 variation. This variation will contribute to further understanding the network of endemic cacti-

279 animal pollinator association and help us to comprehend how close-related taxa are capable of 

280 co-existing in sympatry filling the gap on the scarce number of studies in this field. 

281

282 Fertilization mode and self-compatibility

283 Pollen limitation is a widely represented phenomenon in angiosperms (Bennett et al., 2018), and 

284 it acts as a significant evolutionary driver since it is a selection agent for floral traits (Totland, 

285 2001). We detected significant pollen limitation in E. subgibbosa inferred by the greater number 

286 of seeds obtained from manual cross-pollination treatment compared to the other the control 

287 group. Probably pollinator richness, abundance, and efficiency during the year 2017 were factors 

288 that explained this pollen limitation for E. subgibbosa. On the other hand, automatic self-

289 pollination treatment in E. subgibbosa did not generate seeds except for only one individual, 

290 which may be a problem of the manipulative procedure (e.g., movement of the silk bag) 

291 regarding that individual. We considered that the uniqueness of this result is an exception and 

292 that E. subgibbosa should be considered as an auto-incompatible species that largely depends on 

293 pollinator visits to produce seeds. Future studies based on genetic markers could elucidate 

294 paternity of seeds in Eriosyce and contributes to determining properly reproductive system of E. 

295 subgibbosa. Elucidating reproductive output under different pollen limitation regimes in 

296 Eriosyce could contribute to understanding potential micro-evolutionary changes in floral traits 

297 in this evolutionarily labile group.
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298 Concerning the fertilization mode and genetic compatibility of E. chilensis var. 

299 albidiflora and E. chilensis, we demonstrated their dependence on pollinator visits for 

300 reproductive outcomes (Fig. 2A and 2B) since bagged flowers produced fewer seeds than the 

301 control treatment. However, E. chilensis var. albidiflora showed some degree of genetic self-

302 compatibility and autonomous selfing since seed production was observed in automatic self-

303 pollination treatment. Self-pollination is an expected situation since a previous study has 

304 highlighted that Eriosyce subsection Neoporteria species have some degree of self-compatibility 

305 (Walter, 2008). Indeed, intermediate mixed mating is frequent among angiosperms, with high 

306 interpopulation variation (Whitehead et al., 2018). The reproductive characteristics of E. 

307 chilensis var. albidiflora could favor reproductive assurance in years when pollinators are scarce, 

308 which is possible in a narrow endemic species with a specialized pollinator assemblage such as 

309 this taxon.

310 Concerning E. curvispina var. mutabilis, we observed a mixed reproductive system, with 

311 no differences in seed production among treatments. Eriosyce curvispina var. mutabilis, whose 

312 blooming phenology is close to that of E. chilensis, showed a unique pollinator assemblage 

313 compared to the rest of the studied Eriosyce (Table 2). Different habitats of this taxon (coastal 

314 terraces) compared with the other Eriosyce in the site (rocky outcrops) may explain inter- and 

315 intraspecific pollinator turnover and a potential pollen limitation in E. curvispina var. mutabilis. 

316 Whether erratic pollination is a common scenario for E. curvispina var. mutabilis, a mixed 

317 reproductive system with some degree of autonomous selfing and genetic self-compatibility is an 

318 expected situation to allow their reproduction. Some studies in Cactaceae have shown extant 

319 mixed reproductive systems, such as in Opuntia monacantha, a partially compatible cactus with 

320 animal-mediated fertilization (Lenzi & Orth, 2012).
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321

322 Conclusions

323 We found a stretch relationship between Eriosyce taxa and several small-sized native bee species 

324 as potential pollinator in the Conservation Priority zone of Los Molles-Pichidangui, besides one 

325 of these species (E. subgibbosa) was highlighted as the only one with ornithophilous pollination, 

326 as it flowers were visited by P. gigas, the largest farthest-traveling hummingbird, native to 

327 central and South America. This dissimilar floral association may be linked to the varied ecology 

328 of the different Eriosyce species studied, and open the door for future inquiries on the 

329 evolutionary steps leading from insect to bird pollination in this lineage. Our study contributes to 

330 the understanding of sympatric variation in the reproductive system of related taxa, which 

331 potentially unveils more general evolutionary mechanisms in plants. This is an important issue, 

332 especially in cacti which are severely threatened group at a global scale (Goettsch et al., 2015), 

333 since understanding plant-pollinator interaction and reproductive consequences contribute to the 

334 conservation and propagation of this clade. Specifically, the reproductive system of the four 

335 endemic cacti studied here showed a spatial-temporal variation of pollinator assemblages and the 

336 existence of different reproductive strategies in a close phylogenetically related group, spanning 

337 from self-incompatibility in E. subgibbosa to self-compatibility in E. curvispina var. mutabilis. 

338 Our results highlight the relevance of considering pollinator diversity in conservation planning of 

339 the studied species, since the reduction of pollinator abundance may have negative impacts in 

340 plant reproduction success (Phillips et al., 2015). This is alarming given the limited distribution 

341 of some species (<17.5 km2 of occupation area in E. chilensis and E. chilensis var. albidiflora) 

342 and the severe human-originated disturbances of their habitat. 

343
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Figure 1
Local distribution of Eriosyce species between Pichidangui Bay and Los Molles
Peninsula, Chile.

The color of dots in the map and within insets refer to diûerent taxa: A) E. chilensis var.
albidiûora (white), B) E. chilensis (red), C) E. curvispina var. mutabilis (orange) and, D) E.

subgibbosa (blue).
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Figure 2
Reproductive output of Eriosyce species. A) Production of seeds (mean ± standard
error), B) standardized seed number and C) proportion of fruits produced.

For each panel, bars indicate the result of pollination treatments: unmanipulated plants
(Control), manual cross-pollination (Cross) and automatic self-pollination (Self). Taxa names
were summarized as follow: E. chilensis var. albidiûora (alb), E. chilensis (chi), E. curvispina

var. mutabilis (mut) and E. subgibbosa (sub). For seed production, we reported statistical
signiûcance of Kruskal-Wallis test that compare diûerences among treatment for each
species (*** P < 0.001; ** P < 0.01; * P < 0.05; ns: non-statistical diûerences). Letters above
seed number bars are result of Nemenyi a posteriori test; diûerent letters indicate statistical
diûerences among compared treatments.
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Table 1(on next page)

Pollinator richness and number of visits for four Eriosyce taxa in two consecutive years,
central Chile.

Values in parenthesis in species richness are 95% conûdence intervals estimated after matrix
randomization (N = 9999).
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1 Table 1: 

2

 

Year 2016 Year 2017

Taxon Species 

richness

Number 

of visits

Species richness Number of 

visits

E. chilensis 4 (3 - 8) 32 8 (4 - 10) 74

E. chilensis var. 

albidiflora

7 (3 - 9) 32 4 (4 - 10) 97

E. curvispina var. 

mutabilis

7 (4 - 11) 85 6 (4 - 10) 118

E. subgibbosa 4 (3 - 9) 50 2 (2 - 7) 14

Total 11 (4 - 10)* 199 12 (5 - 11)* 303

3  * P < 0.05

4

5

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27792v1 | CC BY 4.0 Open Access | rec: 10 Jun 2019, publ: 10 Jun 2019



Table 2(on next page)

Similarity of pollinator assemblage (based on Bray-Curtis index) among Eriosyce during
2016 (below diagonal) and 2017 (above diagonal).

Diagonal depict intra-speciûc similarity comparing years 2016 and 2017. Similarity index
were contrasted with null models (see text for details); indices that deviated from null
expectation were marked with asterisks (* P < 0.05).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27792v1 | CC BY 4.0 Open Access | rec: 10 Jun 2019, publ: 10 Jun 2019



1 Table 2: 

E. chilensis 

var. 

albidiflora

E. chilensis E. curvispina 

var. mutabilis

E. subgibbosa

E. chilensis var. 

albidiflora

0.403 (0.050 3 

0.851)

0.690 (0.070 

3 0.837)

0.242 (0.027 3 

0.857)

0.018 (0 3 

0.851)

E. chilensis 0.844 (0.051 3 

0.847)

0.453 (0.073 

3 0.833)

0.104* (0.154 

3 0.860)

0 ( 0 3 0.718)

E. curvispina var. 

mutabilis

0.291 (0.165 3 

0.868)

0.342 (0.049 

3 0.843)

0.187 (0.136 3 

0.872)

0.030 (0 3 

0.776)

E. subgibbosa 0.032* (0.064 

3 0.833)

0 (0 3 0.862) 0.089 (0.050 3 

0.852)

0.438 (0 3 

0.811)

2

3
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Table 3(on next page)

Hummingbird and bees species visiting frequency on ûowers of four Eriosyce during two
consecutive years in coastal central Chile.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27792v1 | CC BY 4.0 Open Access | rec: 10 Jun 2019, publ: 10 Jun 2019



1 Appendix 01

2

Subfamily Species Relative frequency

  Eriosyce subgibbosa
Eriosyce curvispina var. 

mutabilis
Eriosyce chilensis

Eriosyce chilensis var. 

albidiflora

  2016 2017 2016 2017 2016 2017 2016 2017

Trochilinae
Patagonas gigas 

Giant hummingbird
40 (80%) 12 (85%)       

Andrenidae Anthrenoides sp. 1   2 (0.2%) 91 (81%) 14 (41%) 6 (0.8%) 13 (40%) 25 (26%)

Andrenidae Liphanthus sp. 1   30 (35%)  13 (40%) 52 (70%) 12 (37%) 70 (72%)

Apidae
Alloscirtetica lanosa 

Urban, 1971    3 (0.2%)     

Apidae
Apis mellifera 

Linnaeus 1758       3 (0.9%)  

Apidae
Diadasia chilensis 

(Spinola 1851)   1 (0.1%)      

Colleditadae

Chilicola mantagua 

Toro and Moldenke 

1979
  8 (0.9%)      

Colleditadae Chilicola sp. 1   11 (12%) 2 (0.1%) 3 (0.9%) 9 (12%) 1 (0.3%)  
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Colleditadae

Xenochilicola 

diminuta Toro and 

Moldenke, 1979
     1 (0.1%)   

Halictidae

Caenohalictus 

cyanopygus Rojas 

and Toro, 2000

1 (0.2%)        

Halictidae

Caenohalictus 

rostraticeps (Friese, 

1917)

3 (0.6%)     2 (0.2%) 1 (0.3%)  

Halictidae Caenohalictus sp. 1    7 (0.5%)     

Halictidae
Corynura herbsti 

(Alfken, 1913)      1 (0.1%)   

Halictidae Dialictus sp. 1 6 (12%) 2 (14%) 27 (31%) 13 (11%)   1 (0.3%) 1 (0.1%)

Halictidae Dialictus sp. 2      1 (0.1%)   

Megachilidae

Trichothurgus 

dubius (Sichel, 

1867)
  6 (0.7%) 2 (0.1%) 2 (0.6%) 2 (0.2%) 1 (0.3%)  

 Total 50 14 85 118 32 74 32 96

3

4

5
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