
Streaming stochastic variational Bayes; An improved
approach for Bayesian inference with data streams
Nadheesh Jihan Corresp., 1 , Malith Jayasinghe 1 , Srinath Perera 1

1 CTO Office, WSO2, Colombo 03, Sri Lanka

Corresponding Author: Nadheesh Jihan
Email address: nadheesh@wso2.com

Online learning is an essential tool for predictive analysis based on continuous, endless
data streams. Adopting Bayesian inference for online settings allows hierarchical modeling
while representing the uncertainty of model parameters. Existing online inference
techniques are motivated by either the traditional Bayesian updating or the stochastic
optimizations. However, traditional Bayesian updating suffers from overconfidence
posteriors, where posterior variance becomes too inadequate to adapt to new changes to
the posterior. On the other hand, stochastic optimization of variational objective demands
exhausting additional analysis to optimize a hyperparameter that controls the posterior
variance. In this paper, we present ''Streaming Stochastic Variational Bayes" (SSVB)—a
novel online approximation inference framework for data streaming to address the
aforementioned shortcomings of the current state-of-the-art. SSVB adjusts its posterior
variance duly without any user-specified hyperparameters while efficiently accommodating
the drifting patterns to the posteriors. Moreover, SSVB can be easily adopted by
practitioners for a wide range of models (i.e. simple regression models to complex
hierarchical models) with little additional analysis. We appraised the performance of SSVB
against Population Variational Inference (PVI), Stochastic Variational Inference (SVI) and
Black-box Streaming Variational Bayes (BB-SVB) using two non-conjugate probabilistic
models; multinomial logistic regression and linear mixed effect model. Furthermore, we
also discuss the significant accuracy gain with SSVB based inference against conventional
online learning models for each task.
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ABSTRACT9

Online learning is an essential tool for predictive analysis based on continuous, endless data streams.

Adopting Bayesian inference for online settings allows hierarchical modeling while representing the

uncertainty of model parameters. Existing online inference techniques are motivated by either the

traditional Bayesian updating or the stochastic optimizations. However, traditional Bayesian updating

suffers from overconfidence posteriors, where posterior variance becomes too inadequate to adapt to

new changes to the posterior. On the other hand, stochastic optimization of variational objective demands

exhausting additional analysis to optimize a hyperparameter that controls the posterior variance. In this

paper, we present “Streaming Stochastic Variational Bayes” (SSVB) —a novel online approximation

inference framework for data streaming to address the aforementioned shortcomings of the current state-

of-the-art. SSVB adjusts its posterior variance duly without any user-specified hyperparameters while

efficiently accommodating the drifting patterns to the posteriors. Moreover, SSVB can be easily adopted

by practitioners for a wide range of models (i.e. simple regression models to complex hierarchical models)

with little additional analysis. We appraised the performance of SSVB against Population Variational

Inference (PVI), Stochastic Variational Inference (SVI) and Black-box Streaming Variational Bayes (BB-

SVB) using two non-conjugate probabilistic models; multinomial logistic regression and linear mixed

effect model. Furthermore, we also discuss the significant accuracy gain with SSVB based inference

against conventional online learning models for each task.
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INTRODUCTION27

More and more applications are required to respond to data as soon as possible. Among real-world28

applications are sensor networks, stock market systems, market trend analysis, and online recommendation29

systems. To address such use cases, applications need to source data directly from their sources. Data30

streams are a useful abstraction for such use cases. We can apply machine learning to such data streams31

using both online or offline models. The offline models are easier, yet get outdated when new data32

becomes available, which may affect the accuracy of the predictions. Moreover, offline learning requires33

storing these large data streams in memory, which is infeasible for some cases. When these limitations34

are critical, online learning has become an essential tool in such occasions, which updates the model35

continuously with each data point or mini-batch observed by the model.36

On the other hand, Bayesian learning is recognized as an essential workhorse in Machine learning and37

statistical analysis due to its desirable properties. Those properties include; incremental learning with38

recursive Bayesian updates to the posterior, flexible feature modeling with hierarchical models, ability to39

incorporate beliefs and past experience through the prior, and most importantly the ability to estimate the40

uncertainty of predictions. Hence, extending Bayesian learning for streaming setting enables the online41

inference of a wide range of models (i.e. simple regression models to complex hierarchical models).42

Furthermore, adopting Bayesian learning techniques to online learning enables the ability to express43

the uncertainty of prediction, which leads to reliable decision making and analytic in most of the domains.44

Even-though uncertainty was an underappreciated concept in machine learning up until recently, many45
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real-world applications now shift towards the use of Bayesian uncertainty (Gal, 2016). Especially with46

endless and non-stationary data streams, the uncertainty of the model parameters can be useful to model47

the uncertainty from real-world data in predictions.48

Even though Bayesian learning is recognized to be useful in online settings, the exact posterior49

inference is rarely tractable for both offline and online learning. Thus, sampling techniques such as50

Markov Chain Monte Carlo (MCMC) sampling or approximation inference techniques such as Variational51

Inference (VI) (Wainwright and Jordan, 2008) are commonly adopted in practice as an alternative.52

Especially, VI is shown to be useful with large-scale, finite data streams by Hoffman et al. (2013,53

2010); Wang et al. (2011). In these techniques, they have applied “Stochastic Variational Inference” (SVI)54

(Hoffman et al., 2013), which optimizes the typical variational objective—Evidence Lower Bound (ELBO)55

based on mini-batches. Usually, SVI demands tedious model specific derivations and implementations56

(Blei et al., 2017). The black-box inference techniques (Kucukelbir et al., 2017; Ranganath et al., 2014;57

Kingma and Welling, 2013) extend SVI avoiding such exhausting model specific analysis, allowing58

practitioners to explore a wide range of models with little additional derivations. However, any of the59

above approaches are not tailored to use with endless streaming data. Their intended use is to approximate60

the posteriors for model parameters given a finite dataset with N data-points, where N governs the impact61

of prior and likelihood to the estimated posterior. Thus, SVI cannot estimate the intermediate posteriors62

in streaming settings (Broderick et al., 2013).63

To solve this problem, Broderick et al. (2013) proposed “Streaming Variational Bayes” (SVB)64

for online Bayesian inference, which incrementally updates the posterior recursively using incoming65

data-points from an endless data-stream. Nevertheless, this technique requires tedious model specific66

derivations and has not been extended to efficient black-box inference. Moreover, as pointed out by67

McInerney et al. (2015), Bayesian updates on never-ending data lead to point mass posterior densities in68

almost all cases. Such overconfidence posteriors can be problematic due to two reasons. Firstly, such69

posteriors are contrary to our motivations to adopt Bayesian inference for online learning; to exploit70

the uncertainty of the models in online predictive analysis. Secondly, as evident by our analyzes in the71

Experiments section, overconfidence posteriors result in less responsive Bayesian updates to the changes72

in data. Therefore, the incremental updates to the posterior that is suggested by the traditional Bayesian73

framework cannot efficiently handle endless data streams with altering patterns.74

McInerney et al. (2015) introduced “Population VI” (PVI) to avoid the overconfidence posteriors with75

infinite data streams. Their approach can be considered as a reformulation of the SVI to the streaming76

settings —introducing a new hyperparameter α the number of data points in the population posterior.77

PVI requires determining a suitable value for α following an appropriate hyperparameter optimization,78

whereas the original SVI is recovered by setting α = N. Unlike with SVI, α from PVI has no clear79

relationship with the dataset (McInerney et al., 2015), thus determining α introduces significant additional80

analyzes compared to rest of the techniques. Moreover, even for the same data stream, the optimal α can81

vary with the time. Conceptually, the α estimated during parameter optimization can expire after several82

drift points due to the changes to the population posterior eventually degrading the performance of PVI.83

Consequently, existing approaches for online Bayesian inference are rather complex to be of any use84

to practitioners for real-world applications involving endless streaming data. The expertise and tedious85

effort required for model specific analysis, inability tackle concept drift due to overconfidence posteriors,86

and exhausting effort required to understanding and tuning additional hyperparameters have prevented the87

practitioners from adopting the existing online Bayesian inference approaches to the streaming settings.88

We, therefore, propose a novel online variational inference framework —“Streaming Stochastic89

Variational Bayes” (SSVB) for never-ending streaming data with the following properties.90

• SSVB is optimized as stochastic gradient descent, thus enabling online black-box inference for a91

wide array of models with little additional derivations.92

• SSVB does not suffer from overconfidence posteriors, thus the posterior estimated through SSVB93

reflects the altering patterns in data.94

• SSVB can adequately accommodate concepts drift in real-world streaming data without compro-95

mising the accuracy.96

• SSVB controls the posterior variances considering both the amount of information observed at a97

given point and the changes to the posterior means.98
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• SSVB does not enforce any additional hyperparameters in contrast to its offline counterparts. SSVB99

eliminates the need for user-defined parameters to control the posterior variance.100

The proposed technique can be directly applied by practitioners or researchers with endless streaming101

data in fabricating a wide range of online inference models. Moreover, SSVB provides an online inference102

framework that is as simple as its offline inference counterparts.103

In this paper, we first introduce two modifications to the traditional Bayesian updating framework104

deriving a streaming Bayesian updating approach that is capable of handling data streams with concept105

drift. Following the proposed Bayesian updating approach, we then derive a novel black-box inference106

technique for online settings; “Streaming and Stochastic Variational Bayes” (SSVB).We evaluate the107

proposed approach against the black-box inference of SVI and PVI objectives, and BB-SVB for two108

essential models to the online learning; multinomial logistic regression and linear mixed effects models.109

We conduct an extensive analysis appraising the performance of SSVB against PVI, SVI, and BB-SVB110

for multinomial logistic regression using three multiclass classification datasets and two real-world data111

streams. SSVB achieves superior or comparable performance for online classification against the existing112

state-of-the-art; PVI. In addition, we outline an implementation of a linear mixed effects model with113

streaming data. In our experiments with a generated mixed-effect data stream, SSVB achieves comparable114

performance against PVI, avoiding the tedious effort demanded by PVI to tune additional parameters.115

Furthermore, we evaluate the accuracy gain of SSVB based multiclass classification against the widely116

adopted conventional online classification techniques such as AROW (Crammer et al., 2009), Passive-117

Aggressive (PA) classifiers (Crammer et al., 2006) and Stochastic Gradient Descent (SGD) classifier. We118

observe a significant accuracy gain for SSVB against the above conventional online classifiers.119

The rest of the paper is organized as follows. In the later sections, we outline the streaming Bayesian120

updating and construct SSVB following the black-box inference of typical variational objective, respec-121

tively. The experiment results are discussed in the next section. Related work section elaborates the122

existing literature and the final section concludes this paper.123

BAYESIAN UPDATING WITH STREAMING DATA124

We now formulate concept drift in an online inference problem while emphasizing the inability of classical125

Bayesian updating to accommodate such drifts in streaming data. We then propose two modifications to126

the traditional Bayesian updating framework eliminating its drawbacks with streaming data that evolves127

over time.128

Let us consider an independent and identically distributed (i.i.d.) dataset x = {xi}
N
i=1 generated using129

unobserved D random variables z = {zi}
D
i=1 following a conditional distribution p(x|z). The traditional130

inference tackles the problem of computing the conditional probability p(z|x) given a batch of data.131

Traditional Bayesian Updating132

In online settings, data is continuously arriving from various sources in batches or one-by-one. Assuming133

that data is generated i.i.d., the inference task can be extended to streaming data as estimating the134

conditional probability p(z|cb . . .c1) given the first b batches of data c1 . . .cb each having M data-points.135

Since we are dealing with i.i.d. data, this task is equivalent to incrementally learning randomly sampled136

mini-batches from a large dataset. Therefore, we can adopt traditional Bayesian updating to estimate the137

probability of p(z|cb . . .c1) as below.138

p(z|cb . . .c1) ∝
b

∏
i=1

[

p(ci|z)
]

p(z) (1)

Real-world streams sometimes evolve over time due to various external factors that dynamically139

change the underlying probability distributions of the random variables that generate the data. We call140

this phenomenon as concept drift. The occurrences of such drifts are unpredictable for most of the cases.141

Gama et al. (2014); Webb et al. (2015) provide a formal definition of concept drift between time t0 and142

time t1 as,143

∃ xi : pt0(xi,z) 6= pt1(xi,z) (2)

3/25PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27790v1 | CC BY 4.0 Open Access | rec: 10 Jun 2019, publ: 10 Jun 2019



where pt0 and pt1 represent the probability distributions at time t0 and time t1, respectively. Therefore,144

data-points from such streams may not be identically distributed or exchangeable. However, the traditional145

Bayesian updating framework illustrated in equation 1 is ill-suited for data that does not hold i.i.d146

assumptions.147

Therefore, Bayesian updating lacks a built-in mechanism to handle concept drift (McInerney et al.,148

2015); it is intended for incrementally updating the posteriors of the random variables that generate data149

continuously, assuming that the underlying distributions of those random variables are fixed. Consequently,150

the posteriors tend to shrink with constantly arriving data, eventually resulting in overconfidence posteriors.151

Such posteriors undermine the ability to adapt to changes forcing themselves to remain unaffected152

disregarding any changes to the new data. Therefore, the Bayesian updating fails to recover from drifting153

patterns found with real-world data streams.154

Streaming Bayesian Updating155

Conventional Bayesian updating suggests that the uncertainty of the priors after each update should be the156

exact uncertainty of preceding posterior. However, such premises do not hold if the underlying probability157

distributions of the random variables are susceptible to changes over time due to various factors; then158

we cannot be as confident as the previous posteriors regarding the current state of the random variables.159

Therefore, we can employ a fixed uncertainty to our priors for each update if each batch has an equal160

probability of being subjected to concept drift.161

Moreover, the uncertainty of the posteriors and priors are strongly correlated to their variances.162

Especially with unimodal priors, we can maintain the uncertainty unchanged by fixing the variance of163

the priors. However, we can expect the current posteriors to be around the preceding posterior unless a164

sudden drift has occurred. Furthermore, embedding the location of the previous posterior to the priors is165

important to detect and accommodate the changes to the current batch. Therefore, we only restrict the166

modifications to the variance of the priors, we still decide the expectation of the priors as prescribed by167

classical Bayesian updating.168

On the contrary, by having a fixed uncertainty for the priors, the posteriors are unable to assess the169

amount of data used during the updates. Hence, the posteriors will fail to improve their confidence with170

continuously arriving data. Analogous to McInerney et al. (2015), we can control the posterior variance171

by scaling the likelihood of each batch. Therefore, we can embed the amount of information observed172

during the updates by scaling the likelihood of each batch with a suitable measure.173

Consider a stream c1 . . .cb after generating b batches for the case where underlying distributions of174

the random variables are susceptible to changes. Nevertheless, assume that no concept drift arises within175

the batches, thus preserving i.i.d. assumptions internally; all the changes to the underlying distributions176

are occurred in-between the batches. Since it is difficult to accurately anticipate the occurrence of such177

changes, we assume that each batch has an equal probability of being subjected to concept drift. Moreover,178

suppose that the underlying distributions drift slowly without any rapid changes. Let us denote such179

sequence of b batches using the notation < c1 . . .cb >. Under the online inference tasks, we are interested180

in estimating the conditional probability of unobserved random variables p(z|< c1 . . .cb >).181

Therefore, we introduce two modifications to the conventional Bayesian updating presented in equation182

1 to enable its ability to approximate p(z|< c1 . . .cb >). First, we maintain a fixed variance for the priors183

during Bayesian updating permitting posteriors to adapt to the drifting patterns; we only transmit the184

information concerning the posterior expectations through the priors during the incremental updates.185

Secondly, we scale the likelihood of each batch as it is estimated using the total number of data-points186

employed during all the posterior updates including the current update.187

Accordingly, we propose a streaming Bayesian updating framework that is capable of approximating188

the posterior p(z|< c1 . . .cb >) after b batches as shown below.189

p(z|< c1 . . .cb >) ∝
b

∏
i=1

[

p(cb|z)
]

p(z)∗ (3)

The priors p(z)∗ are resolved for bth batch s.t.,190
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E[z] =

{

E[z|< c1 . . .cb−1 >], if b > 1

µ0, otherwise

Var[z] = σ2
0 , ∀ b > 0 (4)

where µ0 and σ2
0 are user-specified parameters typically based on their initial belief.191

In equation 3, we have deliberately omitted the normalization term. Understating the normalization192

term is needless; because we derive the variational objectives independent of the intractable normalization193

term. The bth update performed following the proposed Bayesian updating is equivalent to a Bayesian194

inference using b×M data-points similar to the current batch cb whilst expecting posteriors to be closer195

to the expectation of posterior approximated using the previous batch cb. Therefore, if no change has196

occurred in-between two adjacent batches, then the estimated posterior will be identical to a posterior197

estimated using traditional Bayesian framework presented in equation 1. Nevertheless, in the case of198

drifting patterns, the likelihood may suggest posteriors shifted from our beliefs that are embedded via199

priors p(z)∗. Such a disagreement between likelihood and priors will result in higher posterior variance,200

especially if we have assigned considerable variance σ2
0 to the priors p(z)∗.201

The specifications that are followed (in equation 4) to form the priors during Bayesian updating202

with streaming data may constrain the type of distributions that can be approximated as posteriors or203

employed as priors. The streaming Bayesian updating may require additional derivations to identify204

suitable priors, especially when encountered multimodal posterior densities. However, we consider such205

complex scenarios are beyond the scope of this work; we are mostly interested in understanding the206

behaviour of the streaming Bayesian updating as an approximation inference in online settings. Most207

of the distributions that we consider with approximation inference are unimodal distributions that allow208

modifying expectation and variance, individually. We will further discuss this concern after deriving the209

streaming variational objectives.210

Accordingly, in stream settings we cannot assume identically distributed or exchangeable data due to211

dynamically evolving data; therefore traditional Bayesian updating framework fails to handle real-world212

data streams with concept drift. We tailor-made the proposed Bayesian updating framework to handle213

such streaming data while adapting drifting patterns more efficiently.214

STREAMING STOCHASTIC VARIATIONAL BAYES215

We now derive an online inference objective fusing Bayesian updating with the traditional variational216

objective. Such objective still lacks the ability to efficiently accommodate the changes with conventional217

Bayesian updating. Thus, we extend our initial objective with two amendments enabling the ability218

to adopt drifting patterns in data as suggested by the streaming Bayesian updating framework. Then219

we outline black-box inference for both streaming variation objective based on stochastic gradient220

updates formulating BB-SVB and SSVB frameworks for online inference. Furthermore, to conduct a fair221

comparison, we outline the black-box inference of both SVI and PVI objectives following an identical222

approach to the black-box inference of SSVB.223

Variational Lower Bound224

In variational inference, a family of distribution qθ (.) that is parameterized by θ is specified over each225

unobserved random variable z. Then the exact posteriors densities p(z|x) for unobserved random variables226

are approximated to a distribution qθ (z) from the selected family of distribution by determining θ that227

minimize the Kullback-Leibler (KL) divergence to the exact posterior p(z|x). The KL divergence between228

the approximated posterior qθ (z) and the exact posterior p(z|x) can be expressed as;229

DKL[qθ (z)||p(z|x)] = log p(x)−L(θ ;x) (5)

The L(θ ;x) term denotes the evidence lower bound (ELBO) which we will discuss shortly. The230

objective DKL[qθ (z)||p(z|x)] is non-negative and the log marginal likelihood log p(x) is fixed for a given231

x. Hence, the ELBO acts as a lower bound to the log marginal likelihood. Since the term log p(x) is not232

computable in most of the cases, the ELBO is maximized as a proxy to minimizing the KL divergence.233
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Therefore, the variational parameters θ that maximize the ELBO given data x, minimize the KL divergence234

between qθ (z) and the exact posterior p(z|x). Accordingly, we maximize the ELBO shown below as the235

variational objective.236

L(θ ;x) = E[log p(x|z)]−DKL[qθ (z)||p(z)] (6)

As illustrated in equation 6, maximizing the ELBO maximizes the likelihood of the observed data237

simultaneously forcing qθ (z) to be closer to the prior distribution. In other words, maximizing the238

likelihood fits the model to data, whereas maximizing the negative DKL[qθ (z)|p(z)] regularizes the239

estimated posteriors avoiding the overfitting to the data.240

Streaming Variational Objective241

In streaming settings, ELBO is to be optimized, once each batch cb arrives. Suppose that the underlying242

distributions of the random variables z that generate the data x are fixed for duration being considered;243

therefore continuously generating i.i.d. data. Based the traditional Bayesian updates (and the proof in244

Appendix 1), we can consider approximated posterior qθb−1
(z) after observing b−1 batches as the prior245

when approximating the posterior qθ (z) with the current batch.246

Hence, the ELBO after observing bth batch can be re-written as shown below;247

L(θ ; cb,θb−1) = E[log p(cb|z)]−DKL[qθ (z)||qθb−1
(z)] (7)

It should be emphasized that the above objective is different from SVB (Broderick et al., 2013);248

SVB suggests recursively updating the offline approximation inference primitives that are derived using249

ELBO, whereas we have embedded such Bayesian updating to the ELBO allowing us to construct online250

probabilistic models directly. Therefore, we optimize the streaming variational objective in equation 7 as251

a single inference problem instead of decomposing each update to an offline inference task.252

We will later construct BB-SVB for black-box online inference based on Bayesian updating following253

the objective illustrated in equation 7.254

Streaming Variational Objective with Drift Adaptation255

As discussed earlier, traditional Bayesian updating collapses with drifting patterns in streaming data, thus256

the streaming variational objective illustrated in equation 7 cannot handle data generated using the random257

variables with evolving underlying distributions. We now derive a truly streaming variational objective258

based on the proposed Bayesian updating framework in equation 3.259

Accordingly, considering the proposed Bayesian updating (and the proof in Appendix 1) the improved260

streaming variational objective can be formulated as;261

L(θ ; cb,b) = b×E[log p(cb|z)]−DKL[qθ (z)||p(z)
∗] (8)

We need to express the priors p(z)∗ in terms of an appropriate known family of distribution. The ideal262

selection of priors allows us to scale the posterior distributions to the desired variance without altering263

the shape the posterior (e.g. Gaussian distributions are an ideal candidate to represent the priors p(z)∗264

regarding Gaussian posteriors). Let us consider a family of distribution q̂(µ,σ2)(.) that is parameterized265

by the expected value µ and the variance σ2. Suppose q̂(µb−1,σ
2
0 )
(z) as the priors p(z)∗ for streaming266

Bayesian updating after observing (b-1)th batch, where µb−1 and σ2
0 are respectively the expectation of267

the preceding posteriors and the initial variance as suggested by equation 4.268

Additionally, we employ a scaling function Sb instead of the number of batches b to scale the likelihood269

term in the variational objective. We define Sb s.t.,270

Sb =
nb

M×φ
=

b

φ
, s.t. φ > 0 (9)

where the nb is the total number of data-points used during all the updates including the current update271

and φ is a normalization constant, which is useful to adjust regularization to avoid overfitting. Recall that272
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M is the batch size. The purpose of introducing this scaling function is to control the regularization to the273

posteriors accordingly. However, in our experiments, we have always considered φ = 1 unless specified274

otherwise. Therefore, with default settings the Sb = b as recommended by the streaming Bayesian275

updating.276

Accordingly, the improved variational objective can be re-written as;277

L(θ ; cb,Sb,µb−1) = Sb×E[log p(cb|z)]−DKL[qθ (z)||q̂(µb−1,σ
2
0 )
(z)] (10)

Therefore, the proposed streaming variational objective (eq. 10) scales the likelihood proportionally278

to the total number of data-points used to update the model until the bth batch inclusively. McInerney279

et al. (2015) control the posterior variance by scaling the likelihood term relative to the KL-divergence280

term in the variational objective. Their findings further justify our streaming variational objective; scaling281

the likelihood term with Sb controls the variance of the posterior as it is updated using nb data-points.282

However, unlike the scale employed by Hoffman et al. (2013) (SVI) and McInerney et al. (2015) (PVI),283

Sb is not a constant; it is updated with each batch based amount of new data observed by the model. An284

additional benefit of employing such dynamic scaling is that by resetting the Sb (e.g. setting Sb = 1) we285

can refresh the posteriors by forgetting irrelevant information. Such resetting can be also useful for an286

occasional re-calibration of the posterior uncertainty.287

As discussed earlier, one downside of employing the proposed objective compared to tradition288

Bayesian updates is identifying a suitable distribution for the priors that allows modifying the mean289

and std, separately. Even though most of the distributions are not explicitly parameterized as mean and290

std, we can still obtain the distributions having any given mean and std > 0. As an example, we can291

easily obtain the Gamma prior with given mean and std by defining the shape and rate parameters of292

the Gamma distribution in terms of the mean and std. Alternatively, we could handle such constraints293

by using appropriate distributions for the priors that allow explicit parameterization of mean and std.294

We identify Gaussian priors as a suitable candidate for most of the cases irrespective the family of the295

posteriors.296

Accordingly, we have derived an improved streaming variational objective by fusing the streaming297

Bayesian Updating with the variational objective. The proposed objective allows online Bayesian inference298

while accommodating drifting patterns in data more effectively compared the initial streaming variational299

objective. Moreover, the obtained objective can be justified using the existing state-of-the-art variational300

objective adopted to streaming settings. In the next section, we will outline SSVB for black-box online301

inference following the improved streaming variational objective presented in equation 10.302

Black-Box Inference of Streaming Variational Objectives303

The recent approaches to the black-box inference of the variational objective are mostly performed by304

optimizing the variational objectives collectively using Monte-Carlo gradient estimators and stochastic305

gradient descent (Ranganath et al., 2014; Zhang et al., 2018; Rezende et al., 2014). Thus, we adopt those306

strategies to conduct black-box inference of the streaming variational objectives. We will discuss the307

implementation of black-box inference of the proposed objective as a gradient descent optimization.308

Let us first derive a streaming variational gradient estimator by differentiating the streaming variational309

objectives in equations 7 and 10 w.r.t. variational parameters θb. The acquired streaming variational310

gradient estimator after observing bth mini-batch is as follows.311

∇θL(θ ; cb,θb−1) = ∇θ E[log p(cb|z)]−∇θ DKL[qθ (z)||qθb−1
(z)] (11)

∇θL(θ ; cb,Sb,µb−1) = Sb×∇θ E[log p(cb|z)]−∇θ DKL[qθ (z)||q̂(µb−1,σ
2
0 )
(z)] (12)

Since θb−1 and µb−1 are determined based on preceding posterior, only θb is considered as the312

variational parameters to be optimized. Hence, we have further simplified the notation in the equation 12313

by replacing the variational parameter θb with θ .314

Computing the Gradients315

The generic Monte Carlo gradient estimator is typically used to compute the gradients of the variational316

objective (Paisley et al., 2012; Ranganath et al., 2014). Nevertheless, the gradient estimated using Monte317
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Algorithm 1: Black-Box Streaming Variational Bayes - BB-SVB

Inputs : c1 . . .cb, θ0

Initialize : θ
foreach ci ∈ c1 . . .cb do

θ̄ ← θi−1

g← ∇θL(θ ;ci, θ̄) (Eq. 11)

θi← Update parameters using gradients g (Eq. 14 with ADAM)

end

return θ

Algorithm 2: Streaming Stochastic Variational Bayes - SSVB

Inputs : c1 . . .cb, µ0, σ2
0 , M

Initialize : θ
foreach ci ∈ c1 . . .cb do

µ̄ ← µi−1

ni← ni−1 +M

Si← ni/M

g← ∇θL(θ ;ci,Si, µ̄) (Eq. 12)

θi← Update parameters using gradients g (Eq. 14 with ADAM)

end

return θ

Carlo gradient estimator usually exhibits a very high variance (Paisley et al., 2012). The reparameterization318

trick is shown to be useful to obtain a differential estimator of the variational lower bound with less319

variance than the generic estimator by Kingma and Welling (2013). Furthermore, the recent work by320

Figurnov et al. (2018) proposes implicit reparameterization gradients, which extends reparameterization321

trick to most of the commonly used families of distributions such as Gamma and Dirichlet etc. Hence, we322

adopt the “reparameterization gradient VI” (Zhang et al., 2018; Gal, 2016) to optimize each variational323

objective described above.324

We express each random variable z as deterministic variable z = h(θ ,ε), where ε is an auxiliary325

variable with independent marginal ε ∼ p(ε). We compute the gradients for both BB-SVB and SSVB326

by applying the reparameterization trick to the gradient estimators illustrated in equations 11 and 12,327

respectively. Nevertheless, the KL divergence DKL[qθ (z)||p(z)] often can be integrated analytically328

(Kingma and Welling, 2013), such that only the likelihood term requires sampling. In such cases, only the329

first RHS terms of the gradient estimators are computed based on reparameterization trick.330

Gradient Descent Steps331

In the process of stochastic gradient descent, the objective is differentiated w.r.t each variable and the332

gradient of each variable is evaluated at the current point.333

g(θ) = ∇θL(θ ; . . .) (13)

θt = θt−1−F(ρ,g(θt−1)) (14)

Equation 13 represents the gradients computed using bth batch for a given variational objective. Hence,334

g(θt−1) in equation 13 denotes the gradient of the objective evaluated at the current point θt−1. Equations335

13 and 14 are followed during each pass t to take a single gradient step. Each update may consist of336

several passes (or iterations). The stochastic gradient optimizer decides the operations that are performed337

by F(.), here ρ is known as the step size or the learning rate. Since we transform all the random variables338

to deterministic variables via reparameterization trick, the optimization shown in equation 14 can be339

performed in conjunction with any stochastic gradient optimizer such as Adagrad (Duchi et al., 2011) or340

ADAM (Kingma and Ba, 2014).341

Algorithms 1 and 2 respectively illustrate BB-SVB and SSVB that is obtained by performing black-box342

inference on the initial and improved variational objectives.343
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Algorithm 3: Black-Box Variational Inference - VI

Inputs : x, p(z)

Initialize : θ
repeat

g← ∇θL(θ ;x) (VGE Eq. 15)

θ ← Update parameters using gradients g (Eq. 14 with ADAM)

until θ converges;

return θ

Algorithm 4: Black-Box Stochastic Variational Inference - SVI

Inputs : c1 . . .cb, p(z), N, M

Initialize : θ
foreach ci ∈ c1 . . .cb do

g← ∇θL(θ ; ci,N,M) (SVGE Eq. 16)

θ ← Update parameters using gradients g (Eq. 14 with ADAM))

end

return θ

Single Pass Updates344

A typical online learning algorithm learns from each data point exactly once, which is known as single345

pass online learning. Assuming that the parameters are updated strictly once per each mini-batch based346

on equation 14, we can expect any variational parameters θb−1 to be equivalent θt−1 for b≥ 2. For b = 1347

the variational parameters θ0 should be initialized through the hyperparameters to the model.348

When such a relationship holds, the objective of BB-SVB exhibits some special characteristics. The349

KL divergence term DKL[qθ (z)||qθb−1
(z)] from equation 7 becomes zero once evaluated at current point.350

As a result, the KL divergence of most of the commonly adopted families of distributions (e.g. Normal351

and Gamma etc) has zero gradients during single pass updates with BB-SVB.352

One can assume that using BB-SVB with single pass updates completely eliminates the effect of the353

priors on the model for b ≤ 2. However, such behaviour is not an intentional elimination of the effect354

of the prior instead it is exactly the effect of the prior on the model as a result of the streaming and355

stochastic nature of the BB-SVB. Alternatively, we could consider that single-pass updates with BB-SVB356

to be equivalent to maximizing the likelihood of some model variables that are defined using a mean and357

variance.358

Black-Box Inference of VI, SVI and PVI359

To conduct a fair evaluation, we derive black-box inference for VI, SVI (Hoffman et al., 2013) and PVI360

(McInerney et al., 2015) objectives following same approach employed by SSVB and BB-SVB.361

A variational gradient estimator (VGE) can be constructed by differentiating the ELBO w.r.t. to362

the variational parameters θ (Hoffman et al., 2013; Ranganath et al., 2014; Kingma and Welling, 2013;363

Paisley et al., 2012) as shown below.364

∇θL(θ ;x) = ∇θ E[log p(x|z)]−∇θ DKL[qθ (z)||p(z)] (15)

The VGE in equation 15 uses the full dataset to evaluate the gradient in a single iteration. The365

usual approach to construct a stochastic variational gradient estimator (SVGE) for randomly sampled366

mini-batches from a dataset with N data-points requires scaling the likelihood term by N
M

(Hoffman et al.,367

2013; Kucukelbir et al., 2017). Thus, the likelihood is scaled to as it is computed using the full dataset368

suppressing the overwhelming priors or in this case the overwhelming KL divergence term. We obtain369

SVGE for mini-batches randomly sampled from the full dataset as follows.370

∇θL(θ ;x)≃ ∇θL(θ ; cb,N,M) =
N

M
∇θ E[log p(cb|z)]−∇θ DKL[qθ (z)||p(z)] (16)
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We can optimize the VGE and SVGE following reparameterization VI to construct the black-box371

inference for VI and SVI. Accordingly, algorithms 3 and 4 respectively present the black-box VI and372

black-box SVI.373

Conceptually, SVI cannot approximate the intermediate posterior densities, SVI rather estimates the374

posterior for the full dataset with N data points. Nevertheless, McInerney et al. (2015) introduce PVI375

justifying the use of SVI with streaming data by interpreting N as an additional parameter α that controls376

the posterior variance. The α is configured by the practitioners s.t. PVI reaches the optimum. Therefore,377

henceforth PVI denotes the instance that uses optimal α instead of the size of the dataset N with the378

SVGE illustrated by equation 16.379

Recall that KL divergence term serves as the regularization to the posteriors thus, we can interpret380

that the role of α is to control the regularization to the posteriors. Therefore, in addition to controlling the381

posterior variance, α also adjust the regularization to the posterior mean; and estimating the optimal α382

correspond to finding ideal regularization to posteriors.383

We have obtained black-box counterparts of VI, SVI and PVI following their original objectives in384

this section. We will be using them throughout our experiments in contrast with SSVB and BB-SVB.385

DISCUSSION386

In this section, we provide empirical evidence to establish the superiority of SSVB against the existing387

online inference techniques such as PVI (McInerney et al., 2015), SVB (Broderick et al., 2013), SVI388

(Hoffman et al., 2013) and lastly BB-SVB, which we derived. Our analysis includes three experiments.389

First, we will demonstrate the deficiencies in extending the SVB to the black-box VI techniques. Based390

on our observations during the first experiments, we justify omitting SVB from further analysis against391

SSVB. Then we discuss the properties of the SSVB and BB-SVB using two supervised non-conjugate392

probabilistic models; multinomial logistic regression and linear mixed effect model. We select each model393

considering their importance as an online inference approach. As the second experiment, we conduct an394

extensive evaluation of the performance of SSVB compared to PVI, SVI and BB-SVB using multinomial395

logistic regression. The second experiment is consist of four phases. In the first phase, we use three diverse396

multiclass-classification datasets to evaluate the ability to learn non-drifting patterns. We extend these397

experiments to the second phase by adopting two real-world streaming datasets that have drifting patterns.398

Apart from the performance of SSVB, we also analyze the posteriors estimated by each technique to399

understand the behaviour of the posteriors under drifting patterns as the third phase of the experiment.400

Then we analyze the performance of SSVB against conventional online classifiers as the last phase of the401

second experiment. As the final experiment, we further investigate the performance of SSVB against PVI,402

SVI, and BB-SVB based on a different and more complex task; linear mixed effect regression. Using403

a generated data-stream with random drift-points, we attempt to generalize the competitive accuracy404

observed with SSVB with the previous experiment to a wide-range of probabilistic inference tasks.405

Experiment 1 - SVB with Black-box Inference406

We now demonstrate the deficiencies in extending the SVB (Broderick et al., 2013) to the black-box VI407

techniques. As seen in the literature, the black-box inference techniques are mostly motivated by the408

ability to perform gradient descent updates on the variational objective (Kucukelbir et al., 2017; Ranganath409

et al., 2014; Kingma and Welling, 2013; Zhang et al., 2018). Therefore, we use black-box VI presented in410

algorithm 3 as the offline approximation primitive of SVB. We analyze the estimated posteriors using411

SVB against the posterior approximated by SVI (algorithm 4) for a simple logistic regression task. We412

perform single-pass updates on each data points from 1e3 generated data-points with five regressors.413

Figure 1 illustrates the approximated posteriors for the five regression coefficients after each two hundred414

data points.415

The posteriors estimated using SVB are either failing to converge to the true coefficients or suffering416

from a high variance when using BB-VI as the approximation inference primitive. This is mainly due to417

the properties of the steepest descent; for each mini-batch, it initiates the stochastic search from a new418

random point, which results in a much slower and poor convergence for SVB framework. Since SVB419

is not extendable as an efficient black-box inference alternative, we do not consider SVB in our future420

analysis. We consider PVI and SVI as the existing state-of-the-art to perform black-box inference with421

data streams. Moreover, we consider the BB-SVB as the black-box inference equivalent of SVB in the422

following experiments.423
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Figure 1. Convergence of posteriors estimated using traditional SVB with black-box inference

primitives and SVI

Dataset #samples #features #classes

20News 11314 100000 20

MNIST 60000 785 10

Otto Products 61878 95 9

Airline 5810462 13 2

Poker 829201 11 10

Table 1. Summery of datasets

Experiment 2 - Linear Classification424

Classification is a necessary tool in stream analytic. Especially, multinomial logistic regression one425

of the simplest yet need approximate inference. Therefore, we investigate the applicability of the426

proposed objectives for online classification. First, we define the multinomial logistic regression using the427

probabilistic notations as shown in Appendix 2. Once we construct the probabilistic model we optimize428

each objective following reparameterization VI while sampling only once to compute the gradients. We429

employ standard Gaussian distribution as the priors to the models (these will be initial priors to the SSVB430

and BB-SVB).431

Phase 1 - Classification with Standard Multiclass Datasets432

First, we analyze the performance of the classification models using three standard multiclass datasets.433

One of which (20News1) is a text classification task with high dimensional sparse features and the other434

two (MNIST2 and Otto product3) are respectively image and general classification tasks. These datasets435

are selected considering their diversity in the properties such as number of dimensions, type of features436

(spares vs dense, continues vs discrete) and the performed task. We have tabulated the properties of each437

dataset in table 1.438

All the objectives are updated using sequential data that are arriving one-by-one (M = 1) in order to439

simulate the standard streaming settings. We use ADAM optimizer with the learning rate ρ of 0.01 for all440

the datasets except for 20News dataset, where we set ρ to 0.05. PVI demands to configure an additional441

1http://qwone.com/ jason/20Newsgroups/
2http://yann.lecun.com/exdb/mnist/
3https://www.kaggle.com/c/otto-group-product-classification-challenge
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Figure 2. Error rate and average log-predictive density for multiclass classification

20News MNIST Otto Products

SSVB 0.1509+−0.0019‡ 0.1202+−0.0011† 0.1998+−0.0012‡

BB-SVB 0.1502+−0.0018† 0.1234+−0.0006# 0.2002+−0.0010#

PVI 0.1750+−0.0008# 0.1231+−0.0012‡ 0.1987+−0.0006†

SVI 0.2308+−0.0010 0.1249+−0.0012 0.2098+−0.0012

AROW - 0.1383+−0.0034 0.2102+−0.0023

PA 0.2741+−0.0027 0.1506+−0.0007 0.2040+−0.0013

SGD 0.3106+−0.0010 0.1480+−0.0008 0.2057+−0.0009

Table 2. Means and stds of classification error rates for multiclass classification4

parameter α , we used the first 10% of full dataset to find a suitable value for α minimizing the error442

rate. The optimal values found for α are 1e-5, 1e-6 and 1e-6 for 20News, MNIST and Otto Products,443

respectively. We use both the average log-predictive density (lpd) aka average log-likelihood and error444

rate to evaluate the fit of the models. For both 20News and MNIST, we compute the lpd considering the445

standard test split as the holdout set, whereas a random split with 25% of the dataset is treated as the446

holdout dataset for Otto Products. Moreover, the error rate is computed using equation 17 following the447

standard prequential evaluation, where each observation is first used to test the model and then used to448

train the model. These datasets are not specifically designed for streaming settings, thus the ordering of449

the data may affect the fairness of the experiments. Therefore, we run the experiment 5 times for each450

dataset with different random permutations of the data to conduct a fair comparison. Table 2 presents the451

mean and the standard deviations of the final error rates for those 5 experiments, and figure 2 illustrates452

the convergence of the error rate and average lpd w.r.t the number of samples observed.453

error rate =
number o f incorrect predictions

total number o f predicted instances
(17)

Let us first consider the final error rates for each approach in table 2. SSVB and BB-SVB achieve454

significantly higher accuracy compared to PVI and SVI with 20News dataset. Even though SSVB gains455

the lowest error rate with MNIST surpassing PVI, the PVI marginally outperforms both SSVB and456

BB-SVI with Otto Products dataset. However, when we consider both mean and standard deviation of457

the error rates, the difference between the error rates of SSVB and PVI with Otto Products dataset is not458

statistically significant, Thus, we can establish that SSVB achieves the best overall accuracy with standard459

classification datasets as opposed to BB-SVB, PVI and SVI. On the other hand, SVI exhibits the worst460

4notation †, ‡ and # denote the best three approaches based on mean error out of all the techniques
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Figure 3. Error rate and average-lpd with different normalization factors for Sb

performance for all three datasets. Notice that the final f1 scores presented in Appendix 4 also support our461

conclusions.462

Moreover, according to figure 2, we observe that lpd to be corresponding with the error rates for463

20News and Otto Products datasets. Surprisingly, lpd indicates a poor fit for SSVB with MNIST dataset464

though SSVB has notably outperformed the other techniques in terms of the error rate for the same dataset.465

Moreover, all the approaches undergo frequent fluctuations in log-predictive density with MNIST, which466

may an indication of sudden changes due to noisy labels. SSVB seems to overcompensate its posterior467

uncertainty considering such noisy behaviours as drifting patterns leading to poor log-likelihood. Even468

though such behaviours do not affect the overall accuracy of SSVB if needed, we can mitigate such469

shortcomings of SSVB by fine-tuning the normalization φ of the scaling function Sb.470

To understand the effect of normalizing the scaling function, we analyze SSVB by setting different471

values for the normalization φ with MNIST dataset. Figure 3 presents the final error-rate and the average472

log predictive densities w.r.t the different φ employed by Sb during our analysis. The horizontal lines473

are corresponding to the final average log predictive densities for the rest of the approaches. Since the474

average log-predictive densities exhibit sudden fluctuations with MNIST dataset as already seen with the475

figure 2, we have considered the mean of average log predictive density measure during last 10 updates to476

conduct a much accurate comparison.477

Interestingly, SSVB has outperformed the rest of the techniques for each normalization applied to the478

scaling function in terms of the error rate. Especially, for φ > 1 SSVB achieves significantly lower error479

rate compared to the other inference approaches. However, the average log-predictive density of SSVB480

is considerably poor than that of the PVI, SVI and BB-SVB for those cases. For the rest of the cases,481

SSVB exhibits improved or comparable average log-predictive density against PVI. Hence, φ governs the482

trade-off of optimizing the error rate and the log-predicting density. Since the scaling function Sb controls483

the regularization to the posteriors, using different values for φ to alter the amount of regularization.484

Adequate regularization is important to maintain sufficient robustness to handle sudden changes due to485

noisy labels (Crammer et al., 2009), thus setting φ to greater than 1.0 increases the regularization to486

the posterior means than the usual scaling function Sb resulting in higher accuracy. On the other hand,487

increasing φ also enhances regularization to the posterior variance, thus forcing posteriors to overestimate488

their uncertainty misinterpreting noisy labels as sudden drifts.489

Accordingly, SSVB achieves the overall best performance with data streams that are not subjected to490

concepts drifts. Even though PVI also achieves comparable accuracy against SSVB for most of the cases,491

the additional effort required to tune α has made redundant with SSVB. However, SSVB can be further492

improved by tuning the normalization term φ of the scaling function Sb to better handle the noisy streams493

trading log-predictive density for better accuracy, and vice versa.494

Phase 2 - Classification with Real-World Data Streams495

We extend our experiments with two massive real-world data streams; airline 5 and poker-hand 6 datasets.496

Unlike the three datasets considered in the previous section, airline and poker-hand datasets are extracted497

5https://kt.ijs.si/elena ikonomovska/data.html
6https://archive.ics.uci.edu/ml/datasets/Poker+Hand
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Figure 4. Classification error rate considering PVI as the ground accuracy

#iterations = 1 #iterations = 2

airline poker airline poker

SSVB 0.307257# 0.275782# 0.310322† 0.277216‡

BB-SVB 0.307246† 0.275763‡ 0.413883 0.460659

PVI 0.307251‡ 0.276675 0.310325‡ 0.279263#

SVI 0.307306 0.276221 0.310412# 0.279427

AROW 0.333015 0.429212 0.332917 0.435478

PA 0.376963 0.224140† 0.376963 0.224140†

SGD 0.370204 0.269822 0.370204 0.269822

Table 3. Classification error rates with drifting patterns

from real-world streams with concept drift, thus those datasets present more realistic challenges to the498

model in testing their online classification ability. The properties of these data streams are also included499

in table 1.500

Analogous to the previous analysis, we feed exactly one data point for each update. However, we501

investigate both single-pass and multi-pass updates. For the multi-pass scenarios, we perform exactly two502

passes per each update. We use ADAM optimizer with ρ = 0.01 for both datasets. Similar to the previous503

section, we optimize α using the initial 10% of the complete data stream minimizing the error rate. The504

optimal α found for airline and poker-hand datasets are respectively 1e8 and 1e5 with single-pass updates,505

whereas multi-pass updates required setting α to 1e9 and 1e7 to achieve the optimal settings. We preserve506

the original ordering of the data and conduct prequential evaluations to compute the error rates shown507

in equation 17. Table 3 presents the final error rates observed. The ‘#iterations’ in table 3 indicates the508

number of updates performed using each data-points (i.e. single-pass vs multi-pass updates). Moreover,509

figure 4 illustrates the convergence of the error rates for SSVB, BB-SVB and SVI considering PVI as510

the ground accuracy (i.e. we compute the difference the between error rates for each technique and PVI)511

w.r.t the number of data samples used to update the models. We have excluded BB-SVB from the plots512

corresponding to multi-pass updates because the error rate of BB-SVB drastically increases concealing513

the variations among the rest of the techniques.514

If we consider only the final error rates with single-pass updates illustrated in table 3, we do not observe515

a considerable difference in the accuracies of SSVB and BB-SVB compared to PVI for airlines dataset.516

However, SSVB and BB-SVB have shown a moderate improvement over PVI and SVI with poker-hand517

dataset. We could expect BB-SVB to perform poorly under the concept drift due to the overconfidence518

posteriors nevertheless, BB-SVB has achieved the best overall accuracy. It should be noticed that under519
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Figure 5. Mean and Std estimated by each approach with first 1e6 data samples from airline dataset

under single-pass updates

single-pass updates BB-SVB completely ignores the KL-divergence term in the variational objective, thus520

diminishing the resistance to the changes due to overconfidence posteriors. Therefore, BB-SVB obtains a521

higher accuracy with single-pass updates by acting as likelihood maximization of the random variables.522

One can argue that single-pass updates are insufficient to estimate the intermediate posteriors during523

Bayesian updating with SSVB and BB-SVB, which could ultimately lead to poor convergence. Never-524

theless, the experiment results shown in table 3 prove otherwise. The multi-pass updates have caused a525

considerable reduction in accuracy contrary to single-pass updates for all the tested scenarios. For most526

of the cases, this is due to the overfitting which is a phenomenon that could affect any machine learning527

technique. Furthermore, we observe a substantial drop in the accuracy of SSVB under multi-pass updates528

though BB-SVB has attained the lowest error for both datasets with single-pass updates. Such poor529

performance is mainly due to the overconfidence priors, which restrains BB-SVB from accommodating530

the drifting patterns in the data. On the other hand, SSVB is not affected by overconfidence posteriors531

even with multi-pass updates instead, SSVB outperforms other approaches for both datasets. Moreover,532

SSVB does not require optimizing α or knowing the size of the data stream.533

Figure 3 reveals an interesting behaviour when analyzing the convergence of SSVB relative to that of534

PVI. For most of the cases, initially, PVI outperforms SSVB. However, SSVB gradually recovers this535

accuracy gap with more and more data observed outperforming PVI in the long run. We observe similar536

behaviour in figure 2 when considering both error rate and average log-predictive density. Irrespective of537

the initial accuracy, SSVB demonstrates much faster convergence compared to PVI for most of the cases.538

Moreover, BB-SVB with single-pass updates also resembles the above behaviour when compared with539

PVI. We can explain such conduct using the different scaling mechanisms employed by each technique to540

govern the regularization to the posteriors.541

It should be emphasized that different scaling mechanism influence the regularization of posterior542

mean differently, presumably resulting in considerably diverse posterior means after certain drift points543

for each approach (see Appendix 5). Proper regularization is essential in the online settings to prevent544

overfitting of the model parameters, thus helping them to recover when a change occurs (Kivinen et al.,545

2004). Moreover, amply regularizing the posterior variance is essential to avoid overconfidence posteriors546

(McInerney et al., 2015) with endless data streams. Since PVI uses first 10% of the data stream to find547

the optimal scale α to adjust its regularization, we can expect PVI to yield higher initial performance548
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Figure 6. Mean and Std estimated by each approach with last 1e6 data samples from airline dataset

under multi-pass updates

compared to the technique such as SSVB that does not exploit such optimization. However, the optimal549

α may expire eventually once the α becomes inadequate to scale the likelihood sufficiently moderating550

the excess effect of the KL divergence term. Unlike PVI, SSVB dynamically improves its regularization551

capabilities based on the partially updated priors and the scaling function Sb, thus outperforming the PVI552

in the long-run.553

Therefore, SSVB appears to be more suited with endless data stream due to its comparable performance554

to PVI, even without tuning any additional hyperparameters as with PVI. Although PVI is not sensitive555

to the size of the entire dataset, the α being estimated is sensitive to properties of the data-points (e.g.556

the number of data points, drifting patterns etc) that are used optimize α . Therefore, PVI may require557

re-estimating the α after a while to avoid any accuracy drop due to the outdated α . Since. SSVB adjust its558

scaling function dynamically based on the number of data-points observed, it is highly unlikely to expire.559

Therefore, SSVB is much useful to handle never-ending drifting data streams than PVI.560

Phase 3 - Analyzing the Estimated Posterior Uncertainty561

Posterior uncertainty is crucial in estimating the predictive uncertainty, which ultimately drives effective562

decision making. The standard deviation of Gaussian posterior directly correlates to the posterior563

uncertainty. Therefore, we analyze the posterior means and standard deviations that are estimated by564

each approach to comprehend their ability to adjust posterior uncertainty under drifting patterns in the565

data. Figures 5 and 6 illustrate the estimated means and standard-deviations using airline dataset for566

some selected coefficients (d) under single-pass and multi-pass updates, respectively. Moreover, figure 5567

presents only the first 1e6 data-points, whereas 6 considers the last 1e6 samples, covering both ends of the568

experiment.569

As expected, BB-SVB leads to overconfidence posteriors, resulting in near zero variance for both570

cases considered. Especially in figure 6, BB-SVB does not reflect any changes to the posterior uncertainty571

and is struggling to accommodate the necessary changes to the mean of the posteriors. However, BB-SVB572

seems to estimate the mean as expected under the relaxed constraints with single-pass updates; where it573

is equivalent to likelihood maximization of probability distributions. We still do not recommend using574

BB-SVB as an online inference technique, since it fails to indicate any drifting patterns by adjusting the575

posterior uncertainty. On the other hand, PVI also seems to underestimate the posterior uncertainty in576
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contrast to both SSVB and SVI. Let us consider the d = 6 from figure 5 and d = 3 from 6. PVI seems577

to neglect certain drifts that are evidenced by the posterior means, thus maintaining higher confidence578

compared to SSVB and SVI even under sudden changes to the posterior means.579

Therefore, SSVB seems to reflect the posterior uncertainty under drifting patterns better than the rest580

of the approaches. Even though PVI modulates its posterior variance by fine-tuning α while suppressing581

certain drifts with the motive of optimizing the error rate or average log-predictive density, it may violate582

Bayesian in doing so. Even BB-SVB with single pass updates achieves comparable accuracy against PVI583

and SSVB, notwithstanding BB-SVB is useless according to Bayesian; Bayesian does not recommend584

sacrificing the posterior uncertainty to achieve better accuracy. On the other hand, the variational objective585

of SSVB can be modeled using Bayes’ rule, thus we can assume the posterior estimated using SSVB586

follows Bayesian, providing us with a better sense of posterior uncertainty as evidenced by figures 5 and587

6.588

Phase 4 - Comparison with Other Single Pass Classifiers589

We have already established that SSVB to give better accuracy in comparison to existing inference590

techniques such as PVI and SVI, eliminating the requirements such as optimizing α . However, such591

claims are useless to the practitioners unless SSVB can achieve similar accuracy compared to conventional592

online learning techniques. Hence, we compare SSVB and BB-SVI against three non-Bayesian online593

classifiers; most popular first order linear algorithm Passive Aggressive (PA) (Crammer et al., 2006), one594

of the state-of-the-art of second-order linear methods AROW (Crammer et al., 2009) and a traditional595

SGD classifier. It should be stressed that we do not consider non-linear classifiers in our analysis because596

we can not expect our linear classification model to exceed state-of-the-art non-linear classifiers. We597

follows the implementation proposed with LIBOL (Hoi et al., 2014) to extend AROW for multiclass598

classification. However, our implementation of AROW fails to scale with the number of features due to599

the large memory necessary to store the covariance matrices, thus we were unable to report the accuracy of600

AROW with 20News dataset (which requires performing operations on top of 100000 × 100000 matrices).601

Considering table 2, all the four inference approaches significantly outperforms three conventional602

classifiers, except with Otto Product dataset. For Otto Product dataset, SVI has slightly lower accuracy603

relative to PA and SGD. Moreover, we observe remarkable improvement in accuracy with all four inference604

techniques with airline dataset. We can consider the multinomial logistic regression based on SSVB605

and BB-SVI as a second-order classification since the underlying implementation of those algorithms606

updates the regression coefficient based on the gradients evaluated using the mean and the variance of607

those coefficients. This is similar to the concept of confident weighted linear classification (Dredze et al.,608

2008; Crammer et al., 2009), which is proven to be effective with online classifiers. Moreover, the online609

inference approaches estimate the full posterior densities not just confident weighed coefficients, therefore610

we can expect them to have superior performance even compared to the conventional second-order611

classifiers such as AROW etc.612

Interestingly, PA and SGD have considerably outperformed the online inference approaches with613

poker-hand dataset. Moreover, AROW has approximately twice the error rate of PA with poker-hand614

dataset. It seems that poker-hand may have certain properties that lead to inconsistent uncertainties, which615

ultimately affect the accuracy of the second-order classifiers. However, we may require further analysis to616

express the exact cause for this behaviour.617

Accordingly, SSVB demonstrates superior accuracy even against the conventional classifiers. There-618

fore, adopting SSVB benefits practitioners in two aspects; SSVB improves the accuracy of the model and619

SSVB provides predictive uncertainty to support decision making.620

Experiment 3 - Linear Mixed Effects Regression621

Linear Mixed Effect (LME) models are used to analyze data with both fixed and random effects. LME622

models have shown great potential with longitudinal data from different domains, where the same623

information is gathered on several subjects (e.g. multiple sensors or different users etc) at multiple points624

in the time. Even though there are many applications to LME model with data streams, we have not seen625

such technique that can tackle data streams with mixed effects. The existing techniques are rather focused626

on offline learning. Therefore, we introduce an LME model for online learning based on both SSVB and627

BB-SVI (see Appendix 3).628

We use an artificially generated data stream to appraise the performance of LME model updated based629

on each objective. We generate a standard mixed effect stream with 100 dimensions (D) and 1000 subjects630
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Figure 7. RMSE and lpd for LME models

#iter SSVB BB-SVB PVI SVI

rmse 1 7.5552+−0.204 7.5439+−0.204 7.5441+−0.204 7.5648+−0.201

2 7.8475+−0.195 16.9170+−1.494 7.8400+−0.193 7.9585+−0.190

3 8.1600+−0.206 14.7463+−1.153 8.1844+−0.205 8.3896+−0.204

mae 1 5.8092+−0.150 5.7994+−0.150 5.7995+−0.150 5.8171+−0.149

2 6.0638+−0.141 13.4496+−1.168 6.0565+−0.140 6.1561+−0.141

3 6.3313+−0.153 11.6953+−0.921 6.3518+−0.153 6.5189+−0.157

lpd 1 −29.8617+−4.205 −29.7711+−4.190 −29.7807+−4.196 −29.9355+−4.198

2 −31.6086+−1.755 −102.8580+−52.927 −31.5454+−1.745 −32.4117+−1.696

3 −33.9901+−1.783 −83.3946+−36.280 −34.1499+−1.772 −35.7295+−1.774

Table 4. Average RMSE, average MAE and average Log-predictive density for mixed-effect regression

(C) following the equation 22 in Appendix 3. Moreover, we introduce random drifts to both fixed and631

random effects to simulate more realistic conditions. Typically, it is difficult to identify a single holdout632

set for a data stream with drifts. A holdout set selected at a particular instance may expire after next633

drift-point. Therefore, in our experiment, we generate a new holdout set after each drift-point reflecting634

the changes to the training data. Analogous to the previous experiments, we update the LME model635

using data arriving one-by-one (M = 1). We use the standard Gaussian distribution as the priors to fixed636

effects β and for random effects u we assume standard Multivariate Gaussian priors. ADAM optimizer637

is employed to update the model by setting ρ to 0.01. We determine the optimal α following the same638

criteria performed during the previous analysis. Moreover, we analyze each inference technique changing639

the number of passes from 1 to 3 during each update. We measure the average log-predictive density, root640

mean squared error (RMSE) and the mean absolute error (MAE) after each update using the hold-out641

set. Figure 7 illustrates the RMSE and log predictive density after each update to the models. Moreover,642

for each error metric, we consider the mean and the standard deviation of all the updates as the overall643

performance metrics capturing the accuracy of all the updates. The overall performance metrics for each644

approach is tabulated in the table 4. In the figure 7 and table 4, the number of passes carried out during645

each update is denoted as ‘#iter’.646

All the three performance metrics reported in table 4 are consistent with each other, henceforth we647

collectively refer to them as the accuracy, bearing in mind that a decrement in error or higher log-predictive648

density indicates an improvement in the accuracy. SSVB, PVI and SVI show comparable accuracy for649

all the case. However, SVI possesses the worst accuracy out of those approaches having slightly less650

accuracy as against the other two techniques. PVI has gain marginally superior accuracy compared to651
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SSVB except for the case where three passes were performed during each update. Nevertheless, such652

negligible gain in accuracy for PVI compared to SSVB does not justify the exhausting analysis requires to653

determine a suitable value for α .654

Analogous to our previous observations during experiment 2, each inference technique suffers from655

moderate decrement in accuracy when increasing the number of iterations, which we believe due to the656

overfitting of the posterior densities. Moreover, BB-SVB is failing to converge with multi-pass updates657

although BB-SVB reports the lowest error with single-pass updates. Figure 7 illustrates the RMSE and658

log predictive density after each update to the models. In figure 7 we observe significant deviations in659

accuracy after each drift-point due to the inability to adapt with changes to the data.660

Since we were unable to find conventional mixed effect regression techniques that are capable of661

performing online updates, we choose two standard online regression techniques to understand the value662

of the proposed LME to the practitioners. We appraise the average RMSE and average MAE for PA663

regressor and SGD regressor. However, we do not report the error values for SGD as SGD fails to converge664

even to a local optimal. Nonetheless, PA regressor reports an RMSE and an MAE of 28.8775+−50.0463665

and 24.2292+−43.4287, which is also substantially larger error relative to the observed error values with666

LME optimized using four inference objectives. Even though PA and SGD regressors are capable of667

modeling linear fixed effects in the generated data their inability to capture the random effects has lead to668

the observed poor convergence. Therefore, the discussed online LME is much effective and convenient in669

handling such random effects in streaming data.670

RELATED WORK671

As discussed in the introduction, VI was introduced by Jordan et al. (1999) as an efficient inference672

technique in order to handle complex Bayesian models. Coordinate ascent variational inference (CAVI)673

was widely adopted to solve the objective of VI as an optimization problem. However, CAVI fails to scale674

with the modern applications of probabilistic models, which often demands analyzing massive data (Blei675

et al., 2017; Hoffman et al., 2013). Thus, Hoffman et al. (2010); Wang et al. (2011); Hoffman et al. (2013)676

extend VI to handle large-scale data based on SVI, where they use mini-batches from a massive dataset677

to iteratively update the approximated posterior based on steepest descent. Nevertheless, the posterior678

being estimated using mini-batches is targeted for the full dataset with N data points (Hoffman et al.,679

2013), thus SVI requires knowing N beforehand. Due to the sensitivity of SVI to the N, it is often difficult680

for the practitioners to decide a suitable value for N (Broderick et al., 2013). Since SVI needs tedious681

model specific analyses under both offline and online settings, the black-box inference techniques such682

as Automatic Differentiation VI (ADVI) (Kucukelbir et al., 2017), Black-Box VI (BBVI) (Ranganath683

et al., 2014) and Reparameterization VI (Kingma and Welling, 2013; Zhang et al., 2018) was introduced684

to enable the inference of a wide range of models with little additional derivations. Conceptually, these685

techniques are not intended to estimate the intermediate posteriors given endless data streams and have686

not been empirically studied with regards to their effectiveness in online learning.687

To apply variational approximation to the streaming data, Broderick et al. (2013); Ghahramani and688

Attias (2000); Honkela and Valpola (2003) proposed performing recursive Bayesian updating using offline689

approximation inference primitives such as CAVI. They incrementally update the approximated posterior690

for each mini-batch by considering most recent posterior as the prior to the Bayes rule, thus allowing to691

estimate the intermediate posterior densities irrespective of the size of the dataset. However, as pointed692

out by McInerney et al. (2015), Bayesian updating leads to point mass posterior with never-ending data693

streams, is thus ineffective in accommodating how the stream might change over time. Later, Nguyen694

et al. (2017) proposed Variational Continual Learning (VCL) framework dissolving Monte Carlo VI695

with the online variational inference. Their work suggests using a corset (i.e. a set of samples selected696

from previously observed data following particular criteria) with each Bayesian update to mitigate the697

phenomenon of catastrophic forgetting. Nevertheless, VCL is also vulnerable to the shortcomings of698

Bayesian updating when provided with drifting data. Moreover, the corsets may contain data-points699

generated prior to the recent drift-point, which will force the models to retain the information that should700

be forgotten to learn new patterns in data.701

McInerney et al. (2015) introduced PVI where they approximate population posterior by considering702

each batch as a randomly sampled points from a population posterior. Their results justify using a different703

value for N instead of the size of the dataset, which they conceive as the number of data-points in the704

population posterior α . They use α to control the variance of the population posterior avoiding the705
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overconfidence posteriors.706

Our proposed technique adopts recursive Bayesian updating to derive a black-box inference technique707

for streaming data similar to Broderick et al. (2013); Ghahramani and Attias (2000); Honkela and Valpola708

(2003); Nguyen et al. (2017). Our initial objective is more similar to the continual learning objective709

(Nguyen et al., 2017) without corsets. However, the improved objective is significantly different from710

VCL with the additional modifications to be more suited for concepts drifts. However, our approach does711

not enforce new hyperparameters to the traditional Bayesian methods as in Population VI. Instead, it712

controls the posterior variance based on the amount of data that have been observed at a given point.713

CONCLUSION714

In this paper, we first introduce two modifications to the traditional Bayesian updating framework deriving715

a novel streaming Bayesian updating approach that is capable of handling data streams with concept716

drift. Fusing the proposed Bayesian updating approach with reparameterization VI, we then derive a717

black-box inference technique for online settings; “Streaming and Stochastic Variational Bayes” (SSVB).718

Unlike existing online inference techniques, SSVB does not suffer from overconfidence posteriors and719

capable of adequately accommodating drifting patterns in data streams without tuning any additional720

hyperparameters. We evaluated the performance of SSVB against BB-SVB, and two existing online721

inference approaches PVI and SVI for two essential models to the online learning; multinomial logistic722

regression and linear-mixed effects model. SSVB achieves either superior or comparable performance723

without any additional hyperparameter tuning as against current state-of-the; PVI. In addition, SSVB724

demonstrates a significant accuracy gain for online classification against the conventional online classifiers725

such as AROW, PA and SGD classifiers.726

Therefore, SSVB can be considered as a more efficient online inference technique in contrast to the727

current online inferences techniques such as PVI, SVI and SVB. Practitioners can easily adopt SSVB728

easily to derive wide-range of online inference tasks with real-world streaming data avoiding the discussed729

drawbacks with existing state-of-the-art techniques. Nevertheless, SSVB demands its prior distributions730

to follow a specific parameterization allowing embedding only the mean of preceding posterior leaving731

the variance of the prior unaltered. Regardless of such limitations, SSVB is yet useful with a wide range732

of models to handle endless data streams with drifting patterns.733
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APPENDIX 1 - PROOF OF STREAMING VARIATIONAL OBJECTIVES794

We will outline the derivations of streaming variational objectives presented with equations 7 and 10795

respectively starting from the Bayesian updating frameworks in equations 1 and 3, respectively.796

Streaming Variational Objective with Traditional Bayesian Updating797

Let us first rewrite Bayesian updating (eq. 1) in terms of likelihood, prior and marginal probability of data.798

p(z|cb . . .c1) =
b

∏
i=1

[

p(ci|z)
]

p(z)/p(cb . . .c1)

= p(cb|z)
b−1

∏
i=1

[

p(ci|z)
]

p(z)/p(cb)p(cb−1 . . .c1)

= p(cb|z)p(z|cb−1 . . .c1)/p(cb) (18)

Consider the KL-divergence between an appropriate family of distribution qθ (.) and posterior799

p(z|cb . . .c1) estimated using Bayesian updating. Recall that qθ (.) is parameterized by θ .800

DKL[qθ (z)||p(z|cb . . .c1)] =
∫ +∞

−∞
qθ (z) ln

qθ (z)

p(z|cb . . .c1)
dz

=
∫ +∞

−∞
qθ (z)

[

ln
qθ (z)

p(cb|z)p(z|cb−1 . . .c1)
+ ln p(cb)

]

dz, eq. 18

=
∫ +∞

−∞
qθ (z) ln

qθ (z)

p(cb|z)p(z|cb−1 . . .c1)
dz+ ln p(cb)

=−L(θ ; cb . . .c1)+ ln p(cb)

We will consider the variational lower bound L(θ ; cb . . .c1) for traditional Bayesian updating, sepa-801

rately.802

L(θ ; cb . . .c1) =−
∫ +∞

−∞
qθ (z) ln

qθ (z)

p(cb|z)p(z|cb−1 . . .c1)
dz

=
∫ +∞

−∞
qθ (z) ln p(cb|z)dz−

∫ +∞

−∞
qθ (z) ln

qθ (z)

p(z|cb−1 . . .c1)
dz

= E[ln p(cb|z)]−DKL[qθ (z)||p(z|cb−1 . . .c1)]

qθb
(z)≃ p(z|cb−1 . . .c1)

∴ L(θ ; cb,θb−1) = E[ln p(cb|z)]−DKL[qθ (z)||qθb
(z)],

The derived objective is identical to streaming variational objective illustrated in equation 7.803

Streaming Variational Objective with Proposed Bayesian Updating804

Let us first rewrite the proposed Bayesian updating (eq. 1) with the scaling function Sb to scale the805

likelihood of batch cb instead of simply using the number of batches. Since Sb ∈R
+, we substitute the806

product of likelihoods term with a likelihood raised to the power of Sb.807

p(z|< c1 . . .cb >)≃
Sb

∏
i=1

[

p(cb|z)
]

p(z)∗/p(< c1 . . .cb >)

= p(cb|z)
Sb p(z)∗/p(< c1 . . .cb >) (19)

Analogous to the previous proof, consider the KL-divergence between an appropriate family of808

distribution qθ (.) and posterior p(< z|cb . . .c1 >) estimated using Bayesian updating.809
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DKL[qθ (z)||p(z|< cb . . .c1 >)] =
∫ +∞

−∞
qθ (z) ln

qθ (z)

p(z|< cb . . .c1 >)
dz

=
∫ +∞

−∞
qθ (z)

[

ln
qθ (z)

p(cb|z)Sb p(z)∗
+ ln p(< c1 . . .cb >)

]

dz, eq.19

=
∫ +∞

−∞
qθ (z) ln

qθ (z)

p(cb|z)Sb p(z)∗
dz+ ln p(< cb . . .c1 >)

=−L(θ ;cb,Sb)+ ln p(< cb . . .c1 >)

Let us consider the variational lower bound L(θ ;cb,Sb) of proposed Bayesian updating.810

L(θ ;cb,Sb) =−
∫ +∞

−∞
qθ (z) ln

qθ (z)

p(cb|z)Sb p(z)∗
dz

= Sb

∫ +∞

−∞
qθ (z) ln p(cb|z)dz−

∫ +∞

−∞
qθ (z) ln

qθ (z)

p(z)∗
dz

= Sb×E[ln p(cb|z)]−DKL[qθ (z)||p(z)
∗]

We have derived the proposed streaming variational objective from considering the KL-divergence811

between an suitable family of distribution q(.) and the proposed posterior p(z|< c1 . . .cb >).812

APPENDIX 2 - MULTINOMIAL LOGISTIC REGRESSION813

Let us consider M data-points x = {xi}
M
i=1 where each sample xi is D-dimensional. The targets y = {yi}

M
i=1814

consist K-dimensional vectors representing probability of each class given the respective xi. Then815

likelihood presented in equation 20 describes the data generated i.i.d., where h(.) denotes the Softmax816

function.817

p(y|x,w) =
M

∏
i=1

Cat(yi|h(xi.w)) (20)

The inference process is expected to approximate the posterior of the coefficient matrix w that is818

parameterized by µ and σ2. Therefore, the prior p(wi j) and posterior q(wi j) corresponding to the ith819

predictor and the jth class can be defined as follows.820

p(wi j) =N (µ̄i j, σ̄
2
i j)

q(wi j) =N (µi j,σ
2
i j) (21)

This concludes the probabilistic model for multinomial logistic regression. We optimize the proba-821

bilistic model based on two derived techniques SSVB and BB-SVB, and the existing state-of-the-art; PVI822

and SVI.823

APPENDIX 3 - LINEAR MIXED EFFECT MODEL824

Consider the set of M observations y = {yi}
M
i=1 corresponding to D-dimensional fixed-effect predictors825

X = {Xi}
M
i=1 collected sequentially from C subjects that is described by the random effects vector u.826

Assuming that the fixed effect predictors and the observations follow a linear relationship we can denote827

the ith observation yi as follows.828

yi = Xiβ +Ziu+ εi (22)
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In equation 22 the observations yi are described as a combination of the fixed effects β with random829

effects u. Fixed effect β is a D dimensional vector that consists of regression coefficient for the D830

predictors Xi, whereas random effect u is C dimensional vector corresponding to the random effects for831

C subjects. Random effects design vector Zi is typically a one-hot encoded vector indicating the source832

of the observation yi out of C subjects to assign the corresponding random effect from u. Error term εi833

represents the noise in the each observation yi.834

The likelihood of the observations y can be express as the conditional probability shown in 23 which835

is assumed to be corrupted by i.i.d. Gaussian noise with unknown variance σ2.836

p(y|x,β ,b) =
M

∏
i=1

N (yi|Xiβ +Ziu,σ
2) (23)

In our implementations of LME, we consider both β and u as random variables, thus coefficients837

of fixed effect predators and random effects are respectively given Gaussian and Multivariate Gaussian838

priors as illustrated in equation 24. The respective posteriors are approximated to the same distributions839

as their priors.840

p(βd) =N (µd ,σ
2
d )

p(u) =NC(µ,Σ) (24)

Figure 8 illustrates the inference network implemented for LME model.841

Figure 8. Forward Propagation of the Inference Network Implemented for LME Model

APPENDIX 4 - CLASSIFICATION FINAL F1 SCORES842

20News MNIST Otto Products

SSVB 0.8236+−0.0014 0.8932+−0.0014 0.8226+−0.0034

BB-SVB 0.8235+−0.0027 0.8874+−0.0148 0.8226+−0.0034

PVI 0.7749+−0.0110 0.8906+−0.0066 0.8222+−0.0007

SVI 0.7123+−0.0148 0.8845+−0.0097 0.8041+−0.0049

AROW - 0.8970+−0.0014 0.8004+−0.0018

PA 0.7965+−0.0237 0.8792+−0.0084 0.8241+−0.0325

SGD 0.7659+−0.0278 0.8722+−0.0082 0.8268+−0.0197

Table 5. Final F1 scores using with-hold set for multi-class classification
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Table 5 presents the f1 scores computed using the with-hold set for each multiclass classification dataset.843

These values are computed once the model is updated using all the datasets in the training set. We have844

followed the same experiment settings that are used to estimate the values in 2.845

APPENDIX 5 - MEANS AND STDS WITH POKER DATASET846

Figure 9. Mean and Std estimated by each approach for poker dataset under single-pass updates

In figure 9, the posterior means of the PVI and SVI are significantly vary from the posterior means of847

estimated by the SSVB and BB-SVB.848
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