
Streaming stochastic variational Bayes: An improved
approach for inference with concept drifting data streams

Online learning is an essential tool for predictive analysis based on continuous, endless
data streams. Adopting Bayesian inference for online settings allows hierarchical modeling
while representing the uncertainty of model parameters. Existing online inference
techniques are motivated by either the traditional Bayesian updating or the stochastic
optimizations. However, traditional Bayesian updating suffers from overconfident
posteriors, where posterior variance becomes too inadequate to adapt to new changes to
the posterior with concept drifting data streams. On the other hand, stochastic
optimization of variational objective demands exhausting additional analysis to optimize a
hyperparameter that controls the posterior variance. In this paper, we present "Streaming
Stochastic Variational Bayes" (SSVB) — a novel online approximation inference framework
for data streaming to address the aforementioned shortcomings of the current state-of-
the-art. SSVB adjusts its posterior variance duly without any user-specified
hyperparameters to control the posterior variance while efficiently accommodating the
drifting patterns to the posteriors. Moreover, SSVB can be easily adopted by practitioners
for a wide range of models (i.e. simple regression models to complex hierarchical models)
with little additional analysis. We demonstrate the superior performance of SSVB against
Population Variational Inference (PVI), Stochastic Variational Inference (SVI) and Black-box
Streaming Variational Bayes (BB-SVB) using two non-conjugate probabilistic models:
multinomial logistic regression and linear mixed effect model. Furthermore, we also
emphasize the significant accuracy gain with SSVB based inference against conventional
online learning models for each task.
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ABSTRACT

Online learning is an essential tool for predictive analysis based on continuous, endless data streams.

Adopting Bayesian inference for online settings allows hierarchical modeling while representing the

uncertainty of model parameters. Existing online inference techniques are motivated by either the

traditional Bayesian updating or the stochastic optimizations. However, traditional Bayesian updating

suffers from overconfident posteriors, where posterior variance becomes too inadequate to adapt to new

changes to the posterior with concept drifting data streams. On the other hand, stochastic optimization of

variational objective demands exhausting additional analysis to optimize a hyperparameter that controls

the posterior variance. In this paper, we present “Streaming Stochastic Variational Bayes” (SSVB)

—a novel online approximation inference framework for data streaming to address the aforementioned

shortcomings of the current state-of-the-art. SSVB adjusts its posterior variance duly without any user-

specified hyperparameters to control the posterior variance while efficiently accommodating the drifting

patterns to the posteriors. Moreover, SSVB can be easily adopted by practitioners for a wide range of

models (i.e. simple regression models to complex hierarchical models) with little additional analysis. We

demonstrate the superior performance of SSVB against Population Variational Inference (PVI), Stochastic

Variational Inference (SVI) and Black-box Streaming Variational Bayes (BB-SVB) using two non-conjugate

probabilistic models: multinomial logistic regression and linear mixed effect model. Furthermore, we also

emphasize the significant accuracy gain with SSVB based inference against conventional online learning

models for each task.

INTRODUCTION

More and more applications are required to respond to data as soon as possible. Among real-world

applications are sensor networks, stock market systems, market trend analysis, and online recommendation

systems. To address such use cases, applications need to source data directly from their sources. Data

streams are a useful abstraction for such use cases. We can apply machine learning to such data streams

using both online or offline models. The offline models are easier, yet get outdated when new data

becomes available, which may affect the accuracy of the predictions. Moreover, offline learning requires

storing such massive data streams in memory, which is infeasible for some cases. With these critical

limitations, online learning has become an essential tool, which updates the model continuously with each

data point or mini-batch observed by the model.

On the other hand, Bayesian learning is recognized as an essential workhorse in Machine learning

and statistical analysis due to its desirable properties. Those properties include incremental learning with

recursive Bayesian updates to the posterior, flexible feature modeling with hierarchical models, ability to

incorporate beliefs and past experience through the prior, and most importantly the ability to estimate the

uncertainty of predictions. Hence, extending Bayesian learning for streaming setting enables the online

inference of a wide range of models (i.e. simple regression models to complex hierarchical models).

Furthermore, adopting Bayesian learning techniques to online learning enables the ability to express

the uncertainty of prediction, which leads to reliable decision making and analytic in most of the domains.
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Even-though uncertainty was an underappreciated concept in machine learning up until recently, many

real-world applications now shift towards the use of Bayesian uncertainty (Gal, 2016). Especially with

endless and non-stationary data streams, the uncertainty of the model parameters can be useful to model

the uncertainty from real-world data in predictions.

Even though Bayesian learning is recognized to be useful in online settings, the exact posterior

inference is rarely tractable for both offline and online learning. Thus, sampling techniques such as

Markov Chain Monte Carlo (MCMC) sampling or approximation inference techniques such as Variational

Inference (VI) (Wainwright and Jordan, 2008) are commonly adopted in practice as an alternative.

Especially, VI is shown to be useful with large-scale, finite data streams by Hoffman et al. (2013,

2010); Wang et al. (2011). In these techniques, they have applied “Stochastic Variational Inference” (SVI)

(Hoffman et al., 2013), which optimizes the typical variational objective—Evidence Lower Bound (ELBO)

based on mini-batches. Usually, SVI demands tedious model-specific derivations and implementations

(Blei et al., 2017). The black-box inference techniques (Kucukelbir et al., 2017; Ranganath et al., 2014;

Kingma and Welling, 2013) extend SVI avoiding such exhausting model-specific analysis, allowing

practitioners to explore a wide range of models with little additional derivations. However, any of the

above approaches are not tailored to use with endless streaming data. Their intended use is to approximate

the posteriors for model parameters given a finite dataset with N data-points, where N governs the impact

of prior and likelihood to the estimated posterior. Thus, SVI cannot estimate the intermediate posteriors

in streaming settings (Broderick et al., 2013).

To solve this problem, Broderick et al. (2013) proposed “Streaming Variational Bayes” (SVB)

for online Bayesian inference, which incrementally updates the posterior recursively using incoming

data-points from an endless data-stream. Nevertheless, this technique requires tedious model-specific

derivations and has not been extended to efficient black-box inference. Moreover, as pointed out by

McInerney et al. (2015), Bayesian updates on never-ending data lead to point mass posterior densities

in almost all cases. Such overconfident posteriors can be problematic due to two reasons. Firstly, such

posteriors are contrary to our motivations to adopt Bayesian inference for online learning to exploit

the uncertainty of the models in online predictive analysis. Secondly, as evident by our analyzes in the

Evaluation section, overconfident posteriors result in less responsive Bayesian updates to the changes

in data. Therefore, the incremental updates to the posterior that is suggested by the traditional Bayesian

framework cannot efficiently handle endless data streams with altering patterns.

McInerney et al. (2015) introduced “Population VI” (PVI) to avoid the overconfident posteriors with

infinite data streams. Their approach can be considered as a reformulation of the SVI to the streaming

settings —introducing a new hyperparameter α the number of data points in the population posterior.

PVI requires determining a suitable value for α following an appropriate hyperparameter optimization,

whereas the original SVI is recovered by setting α = N. Unlike with SVI, α from PVI has no clear

relationship with the dataset (McInerney et al., 2015), thus determining α introduces significant additional

analyzes compared to rest of the techniques. Moreover, even for the same data stream, the optimal α can

vary with the time. Conceptually, α estimated during parameter optimization can expire after several drift

points due to the changes to the population posterior eventually degrading the performance of PVI.

Consequently, existing approaches for online Bayesian inference are rather complex to be of any use

to practitioners for real-world applications involving endless streaming data. The expertise and tedious

effort required for model-specific analysis, inability tackle concept drift due to overconfident posteriors,

and exhausting effort required to understanding and tuning additional hyperparameters have prevented the

practitioners from adopting the existing online Bayesian inference approaches to the streaming settings.

We, therefore, propose a novel online variational inference framework —“Streaming Stochastic

Variational Bayes” (SSVB) for never-ending streaming data. SSVB effectively fuses stochastic gradient

descent and Bayesian updating framework avoiding any additional hyperparameters to control the posterior

variance in streaming settings as opposed to Hoffman et al. (2013, 2010); Wang et al. (2011); McInerney

et al. (2015). On the other hand, SSVB modifies traditional Bayesian updating framework preventing

overconfident posteriors encountered with Broderick et al. (2013); Nguyen et al. (2017) under concept

drifts. Therefore, SSVB can successfully accommodate concept drifting data streams without undermining

the accuracy of the posteriors. Moreover, SSVB enables black-box inference for a wide range of models

by replacing manually derived gradient estimators in Hoffman et al. (2013, 2010); Wang et al. (2011);

McInerney et al. (2015) with stochastic backpropagation. Accordingly, SSVB is easily adoptable by

practitioners or researchers with endless data streams that change over time, to fabricate a wide array of
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models avoiding tedious model-specific derivations demanded by existing state-of-the-art online inference

techniques.

In this paper, we first introduce two modifications to the traditional Bayesian updating framework

obtaining a streaming updating rule that is useful to implement black-box inference for handling concept

drifting data streams. We discuss the properties of the proposed streaming Bayesian updating using two

simple conjugate models while demonstrating the drawbacks of traditional Bayesian updating framework.

Following the proposed Bayesian updating approach, we then derive the novel black-box inference

technique SSVB for online settings. We evaluate the proposed approach against the black-box inference

of SVI and PVI objectives, and BB-SVB for two essential models to the online learning: multinomial

logistic regression and linear mixed-effects models. We conduct an extensive analysis appraising the

performance of SSVB against PVI, SVI, and BB-SVB for multinomial logistic regression using three

multiclass classification datasets and two real-world data streams. SSVB achieves superior or comparable

performance for online classification against the existing state-of-the-art, PVI. In addition, we outline an

implementation of a linear mixed-effects model with streaming data. In our experiments with a generated

mixed-effect data stream, SSVB achieves comparable performance against PVI, avoiding the tedious

effort demanded by PVI to tune additional parameter α . Furthermore, we evaluate the accuracy gain

of SSVB based multiclass classification against the widely adopted conventional online classification

techniques such as AROW (Crammer et al., 2009), Passive-Aggressive (PA) classifiers (Crammer et al.,

2006) and Stochastic Gradient Descent (SGD) classifier. We observe a significant accuracy gain for SSVB

against the above conventional online classifiers.

The rest of the paper is organized as follows. In the later sections, we outline the streaming Bayesian

updating and construct SSVB following the black-box inference of typical variational objective, respec-

tively. The evaluation results are discussed in the next section. Related work section elaborates the

existing literature and the final section concludes this paper.

BAYESIAN UPDATING WITH STREAMING DATA

We now formulate concept drift in an online inference problem while emphasizing the inability of classical

Bayesian updating to accommodate such drifts in streaming data. We then propose two modifications to

the traditional Bayesian updating framework eliminating its drawbacks with streaming data that evolves

over time.

Let us consider an independent and identically distributed (i.i.d.) dataset x = {xi}
N
i=1 generated using

unobserved D random variables z = {zi}
D
i=1 following a conditional distribution p(x|z). The traditional

inference tackles the problem of computing the conditional probability p(z|x) given a batch of data.

Traditional Bayesian Updating
In online settings, data is ceaselessly arriving from various sources in batches or one-by-one. Assuming

that data is generated i.i.d., the inference task can be extended to streaming data as estimating the

conditional probability p(z|cb . . .c1) given the first b batches of data c1 . . .cb each having M data-points.

Since we are dealing with i.i.d. data, this task is equivalent to incrementally learning randomly sampled

mini-batches from a large dataset. Therefore, we can adopt traditional Bayesian updating to estimate the

probability of p(z|cb . . .c1) as below.

p(z|cb . . .c1) ∝
b

∏
i=1

[

p(ci|z)
]

p(z) (1)

Real-world streams sometimes evolve over time due to various external factors that dynamically

change the underlying probability distributions of the random variables that generate the data. We call

this phenomenon as concept drift. The occurrences of such drifts are unpredictable for most of the cases.

Gama et al. (2014); Webb et al. (2015) provide a formal definition of concept drift between time t0 and

time t1 as,

∃ xi : pt0(xi,z) 6= pt1(xi,z) (2)

where pt0 and pt1 represent the probability distributions at time t0 and time t1, respectively. Therefore,

data-points from such streams may not be identically distributed or exchangeable. However, the traditional
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Bayesian updating framework illustrated in equation 1 is ill-suited for data that does not hold i.i.d

assumptions.

Overconfident Posterior Overconfident posterior is the phenomenon of underestimating the posterior

uncertainty when applying traditional Bayesian updating with the data streams that change over time

(McInerney et al., 2015). With traditional Bayesian updating, the posteriors continuously shrink with

incoming data even after each drift-point assuming that the data are identically distributed. Such posteriors

undermine the ability to accommodate changes to the posteriors due to the overestimated posterior

confidence, thus resulting in extremely poor accuracies after each drift point.

Streaming Bayesian Updating

This section elucidates the modifications to the traditional Bayesian updating framework to improve

its ability to accommodate changes in streaming settings. Consider a stream c1 . . .cb after generating b

batches for the case where underlying distributions of the random variables are susceptible to changes.

Nevertheless, assume that no concept drift arises within the batches, thus preserving i.i.d. assumptions,

internally. Any change to the underlying distributions is occurred in-between the batches. Since it is

difficult to accurately anticipate the occurrence of such changes, we assume that each batch has an equal

probability of being subjected to concept drift. Moreover, suppose that the underlying distributions

drift slowly without any rapid changes. Let us denote such sequence of b batches using the notation

< c1 . . .cb >. Under the online inference tasks, we are interested in estimating the conditional probability

of unobserved random variables p(z|< c1 . . .cb >).
We introduce two modifications to the conventional Bayesian updating presented in equation 1 to

enable its ability to approximate p(z| < c1 . . .cb >). First, we maintain a fixed variance for the priors

during Bayesian updating permitting posteriors to adapt to the drifting patterns; we propagate only the

information concerning the posterior expectations through the priors during the incremental updates.

Secondly, we scale the likelihood of each batch as it is estimated using the total number of data-points

employed during all the posterior updates including the current update.

Accordingly, we propose a streaming Bayesian updating framework that is capable of approximating

the posterior p(z|< c1 . . .cb >) after b batches as shown below.

p(z|< c1 . . .cb >) ∝
b

∏
i=1

[

p(cb|z)
]

p(z)∗ (3)

The priors p(z)∗ are resolved for bth batch s.t.,

E[z] =

{

E[z|< c1 . . .cb−1 >], if b > 1

µ0, otherwise
Var[z] = σ2

0 , ∀ b > 0 (4)

where µ0 and σ2
0 are user-specified parameters typically based on their initial belief.

In equation 3, we have deliberately omitted the normalization term. Understating the normalization

term is needless because we derive the variational objectives independent of the intractable normalization

term. The bth update performed following the proposed Bayesian updating is equivalent to a Bayesian

inference using b×M data-points similar to the current batch cb while expecting posteriors to be closer

to the expectation of posterior approximated using the previous batch cb. Therefore, if no change has

occurred in-between two adjacent batches, then conceptually, the estimated posterior will be identical to a

posterior estimated using traditional Bayesian framework presented in equation 1. Nevertheless, in the

case of drifting patterns, the likelihood will suggest posteriors shifted from our beliefs that are embedded

via priors p(z)∗. Such disagreements between likelihood and priors will result in higher variance in

posteriors allowing them to shift towards posteriors. Accordingly, the proposed Bayesian updating is

capable of accommodating new concepts forgetting outdated observations, whereas traditional Bayesian

updating simply encodes each observation to the estimated posteriors irrespective of their order.

The specifications that are followed (in equation 4) to form the priors during Bayesian updating

with streaming data may constrain the type of distributions that can be approximated as posteriors or

employed as priors. The streaming Bayesian updating may require additional derivations to identify
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suitable priors, especially when encountered multimodal posterior densities. However, we consider such

complex scenarios are beyond the scope of this work; we are mostly interested in understanding the

behaviour of the streaming Bayesian updating as an approximation inference in online settings. Most

of the distributions that we consider with approximation inference are unimodal distributions that allow

modifying expectation and variance, individually. We will further discuss this concern after deriving the

streaming variational objectives.

Accordingly, in stream settings, we cannot assume identically distributed or exchangeable data due

to dynamically evolving data. Therefore, the traditional Bayesian updating framework fails to handle

real-world data streams with concept drifts diminishing its utility to implement black-box online inference.

We have tailor-made the proposed Bayesian updating framework to handle such streaming data while

adapting drifting patterns more efficiently when optimized via stochastic gradient descent framework.

STREAMING STOCHASTIC VARIATIONAL BAYES

We now derive an online inference objective fusing Bayesian updating with the traditional variational

objective. Such an objective cannot still efficiently accommodate the changes with conventional Bayesian

updating. Therefore, we then extend our initial objective with two amendments enabling the ability to

adopt drifting patterns in data streams as suggested by the streaming Bayesian updating framework. Lastly,

we outline the black-box inference for both streaming variation objectives based on stochastic gradient

updates formulating BB-SVB and SSVB frameworks for online inference.

Variational Lower Bound

In variational inference, a family of distribution qθ (.) that is parameterized by θ is specified over each

unobserved random variable z. Then the exact posteriors densities p(z|x) for unobserved random variables

are approximated to a distribution qθ (z) from the selected family of distribution by determining θ that

minimize the Kullback-Leibler (KL) divergence to the exact posterior p(z|x). The KL divergence between

the approximated posterior qθ (z) and the exact posterior p(z|x) can be expressed as,

DKL[qθ (z)||p(z|x)] = log p(x)−L(θ ;x) (5)

The L(θ ;x) term denotes the evidence lower bound (ELBO) which we will discuss shortly. The

objective DKL[qθ (z)||p(z|x)] is non-negative and the log marginal likelihood log p(x) is fixed for a given

x. Hence, the ELBO acts as a lower bound to the log marginal likelihood. Since the term log p(x) is not

computable in most of the cases, the ELBO is maximized as a proxy to minimizing the KL divergence.

Therefore, the variational parameters θ that maximize the ELBO given data x, minimize the KL divergence

between qθ (z) and the exact posterior p(z|x). Accordingly, we maximize the ELBO shown below as the

variational objective.

L(θ ;x) = E[log p(x|z)]−DKL[qθ (z)||p(z)] (6)

As illustrated in equation 6, maximizing the ELBO maximizes the likelihood of the observed data

simultaneously forcing qθ (z) to be closer to the prior distribution. In other words, maximizing the

likelihood fits the model to data, whereas maximizing the negative DKL[qθ (z)|p(z)] regularizes the

estimated posteriors avoiding the overfitting to the data.

Streaming Variational Objective

In streaming settings, ELBO is to be optimized, once each batch cb arrives. Suppose that the underlying

distributions of the random variables z that generate the data x are fixed for duration being considered, thus

continuously generating i.i.d. data. Based the traditional Bayesian updates, we can consider approximated

posterior qθb−1
(z) after observing b−1 batches as the prior when approximating the posterior qθ (z) with

the current batch.

Hence, the ELBO after observing bth batch can be re-written as shown below 12.

1proof in Appendix 1
2appendices can be found with supplemental files
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L(θ ; cb,θb−1) = E[log p(cb|z)]−DKL[qθ (z)||qθb−1
(z)] (7)

It should be emphasized that the above objective is different from SVB (Broderick et al., 2013);

SVB suggests recursively updating the offline approximation inference primitives that are derived using

ELBO, whereas we have embedded such Bayesian updating to the ELBO allowing us to construct online

probabilistic models directly. Therefore, we optimize the streaming variational objective in equation 7 as

a single inference problem instead of decomposing each update to an offline inference task.

We will later construct BB-SVB for black-box online inference based on Bayesian updating following

the objective illustrated in equation 7.

Streaming Variational Objective with Drift Adaptation

As discussed earlier, traditional Bayesian updating collapses with drifting patterns in streaming data, thus

the streaming variational objective illustrated in equation 7 cannot handle data generated using the random

variables with evolving underlying distributions. We now derive a truly streaming variational objective

based on the proposed Bayesian updating framework in equation 3.

Accordingly, considering the proposed Bayesian updating the improved streaming variational objective

can be formulated as 3,

L(θ ; cb,b) = b×E[log p(cb|z)]−DKL[qθ (z)||p(z)
∗] (8)

We need to express the priors p(z)∗ in terms of an appropriate known family of distribution. The ideal

selection of priors allows us to scale the posterior distributions to the desired variance without altering

the location of the posterior . Let us consider a family of distribution q̂(µ,σ2)(.) that is parameterized

by the expected value µ and the variance σ2. Suppose q̂(µb−1,σ
2
0 )
(z) as the priors p(z)∗ for streaming

Bayesian updating after observing (b-1)th batch, where µb−1 and σ2
0 are respectively the expectation of

the preceding posteriors and the initial variance as suggested by equation 4.

Additionally, we employ a scaling function Sb instead of the number of batches b to scale the

likelihood term in the variational objective in order to introduce additional parameters to the scale the

likelihood of data. We define Sb as,

Sb =
nb

M×φ
=

b

φ
, s.t. φ > 0 (9)

where nb is the total number of data-points used during all the updates including the current update and

M is the size of a mini-batch. As an additional parameter, we have introduced a normalization constant

φ to adjust the regularization to the proposed objective to avoid overfitting. Typically, the variational

objective achieves the desired regularization by adjusting the priors. Given that we are now utilizing

expectations and the variances of the priors respectively to propagate formerly learned information and to

embed the fixed initial uncertainty, the normalization constant φ is essential to tweak the regularization of

the proposed variational objective. We could also consider normalization constant as a refinement of the

net amount of information observed by the model to the control variance of the posteriors. However, in

our experiments, we have considered φ = 1 unless specified otherwise; we achieve the state-of-the-art

performance with SSVB by employing the default settings Sb = b as recommended by the streaming

Bayesian updating.

Accordingly, the improved variational objective can be re-written as,

L(θ ; cb,Sb,µb−1) = Sb×E[log p(cb|z)]−DKL[qθ (z)||q̂(µb−1,σ
2
0 )
(z)] (10)

Therefore, the proposed streaming variational objective (eq. 10) scales the likelihood proportionally

to the total number of data-points used to update the model until the bth batch inclusively. McInerney et al.

3proof in Appendix 1
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(2015) also control the posterior variance by scaling the likelihood term relative to the KL-divergence

term in the variational objective. Their findings further justify our streaming variational objective; scaling

the likelihood term with Sb controls the variance of the posterior as it is updated using nb data-points.

However, unlike the scale employed by Hoffman et al. (2013) (SVI) and McInerney et al. (2015) (PVI),

Sb is not a constant. It is updated with each batch based amount of new data observed by the model. An

additional benefit of employing such dynamic scaling is that by resetting Sb (e.g. setting Sb = 1) we

can refresh the posteriors by forgetting irrelevant information. Such a resetting can be also useful for

an occasional re-calibration of the posterior uncertainty. Therefore, resetting of Sb can be triggered by

monitoring the log predictive densities (lpd) of new data-points estimated before using them to update

the models (i.e. prequential evaluation), because a constantly decreasing lpd can be an indication of

deteriorating posteriors.

As discussed earlier, one downside of employing the proposed objective compared to tradition

Bayesian updates is identifying a suitable distribution for the priors that allows modifying the expectation

and variance, separately. Even though most of the distributions are not explicitly parameterized as

expectation and variance, we can still obtain the distributions having any given expectation and variance

> 0. For example, we can easily obtain the Gamma prior with given expectation and variance by defining

the shape and rate parameters of the Gamma distribution in terms of the expectation and variance.

Alternatively, we could handle such constraints by using appropriate distributions for the priors that allow

explicit parameterization of expectation and variance. We identify Gaussian priors as a suitable candidate

for most of the cases irrespective the family of the posteriors.

Accordingly, we have derived an improved streaming variational objective by fusing the streaming

Bayesian Updating with the variational objective. The proposed objective allows online Bayesian inference

while accommodating drifting patterns in data more effectively compared the initial streaming variational

objective. Moreover, the obtained objective can be justified using the existing state-of-the-art variational

objectives adopted to streaming settings. In the next section, we will outline the implementation of

SSVB for black-box online inference following the improved streaming variational objective presented in

equation 10.

Black-Box Inference of Streaming Variational Objectives

The recent approaches to the black-box inference of the variational objective are mostly performed by

optimizing the variational objectives collectively using Monte-Carlo gradient estimators and stochastic

gradient descent (Ranganath et al., 2014; Zhang et al., 2018; Rezende et al., 2014). Thus, we adopt those

strategies to conduct black-box inference of the streaming variational objectives. We will discuss the

implementation of black-box inference of the proposed objective as a gradient descent optimization.

Let us first derive a streaming variational gradient estimator by differentiating the streaming variational

objectives in equations 7 and 10 w.r.t. variational parameters θb. The acquired streaming variational

gradient estimator after observing bth mini-batch is as follows.

∇θL(θ ; cb,θb−1) = ∇θ E[log p(cb|z)]−∇θ DKL[qθ (z)||qθb−1
(z)] (11)

∇θL(θ ; cb,Sb,µb−1) = Sb×∇θ E[log p(cb|z)]−∇θ DKL[qθ (z)||q̂(µb−1,σ
2
0 )
(z)] (12)

Since θb−1 and µb−1 are determined based on preceding posterior, only θb is considered as the

variational parameters to be optimized. Hence, we have further simplified the notation in equation 12 by

replacing the variational parameter θb with θ .

Computing the Gradients

The generic Monte Carlo gradient estimator is typically used to compute the gradients of the variational

objective during stochastic backpropagation (Paisley et al., 2012; Ranganath et al., 2014). Nevertheless,

the gradient estimated using Monte Carlo gradient estimator usually exhibits a very high variance (Paisley

et al., 2012). The reparameterization trick is shown to be useful to obtain a differential estimator of the

variational lower bound with less variance than the generic estimator by Kingma and Welling (2013).

Furthermore, the recent work by Figurnov et al. (2018) proposes implicit reparameterization gradients,

which extends reparameterization trick to most of the commonly used families of distributions such as

Gamma and Dirichlet etc. Hence, we adopt the “reparameterization gradient VI” (Zhang et al., 2018; Gal,

2016) to optimize each variational objective described above.
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Algorithm 1: Black-Box Streaming Variational Bayes - BB-SVB

Inputs : c1 . . .cb, θ0

Initialize : θ

foreach ci ∈ c1 . . .cb do

θ̄ ← θi−1

for t ∈ 1 : T do

g← ∇θL(θ ;ci, θ̄) (Eq. 11)

θi← Update parameters using gradients g (Eq. 14 with ADAM)

end

end

return θ

Algorithm 2: Streaming Stochastic Variational Bayes - SSVB

Inputs : c1 . . .cb, µ0, σ2
0

Initialize : θ

foreach ci ∈ c1 . . .cb do
µ̄ ← µi−1

Si← Si−1 +1

for t ∈ 1 : T do
g← ∇θL(θ ;ci,Si, µ̄) (Eq. 12)

θi← Update parameters using gradients g (Eq. 14 with ADAM)

end

end

return θ

We express each random variable z as deterministic variable z = h(θ ,ε), where ε is an auxiliary

variable with independent marginal ε ∼ p(ε). We compute the gradients for both BB-SVB and SSVB

by applying the reparameterization trick to the gradient estimators illustrated in equations 11 and 12,

respectively. Nevertheless, the KL divergence DKL[qθ (z)||p(z)] often can be integrated analytically

(Kingma and Welling, 2013), such that only the likelihood term requires sampling. In such cases, only the

first RHS terms of the gradient estimators are computed based on reparameterization trick.

Gradient Descent Steps

In the process of stochastic gradient descent, the objective is differentiated w.r.t each variable and the

gradient of each variable is evaluated at the current point.

g(θ) = ∇θL(θ ; . . .) (13)

θt = θt−1−F(ρ,g(θt−1)) (14)

Equation 13 represents the gradients computed using bth batch for a given variational objective. Hence,

g(θt−1) in equation 13 denotes the gradient of the objective evaluated at the current point θt−1. Equations

13 and 14 are followed during each pass to take a single gradient step. Each update repeats T such passes

to approximate the posterior. The stochastic gradient optimizer decides the operations that are performed

by F(.), here ρ is known as the step size or the learning rate. Since we transform all the random variables

to deterministic variables via reparameterization trick, the optimization shown in equation 14 can be

performed in conjunction with any stochastic gradient optimizer such as Adagrad (Duchi et al., 2011) or

ADAM (Kingma and Ba, 2014).

Algorithms 1 and 2 respectively illustrate BB-SVB and SSVB that is obtained by performing black-

box inference on the initial and improved variational objectives. Each algorithm iterates over each batch

of data (c1 . . .cb) in the order they arrive. First, the priors to the streaming variational objectives are

updated using the posteriors estimated with the previous batch following a Bayesian updating framework.

BB-SVB employs traditional Bayesian updating similar to Broderick et al. (2013), whereas SSVB follows

the proposed Bayesian updating framework in equation 3. Once the priors are updated, a sequence of

gradient descent steps is carried out in the direction of the gradient g(θ) computed following equation 13

to approximate the posteriors.

8/22PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27790v2 | CC BY 4.0 Open Access | rec: 19 Nov 2019, publ: 19 Nov 2019



On the other hand, it could be argued that SSVB as optimizing a modified variational objective

analogous to SVI Hoffman et al. (2013) or PVI McInerney et al. (2015). However, unlike SVI and PVI,

SSVB employs a continuously evolving objective by encoding information regarding the previously

observed data by propagating the expectation of the posteriors. As a result, SSVB collectively utilizes

gradient descent and Bayesian updating to incrementally approximate the posteriors, whereas SVI and PVI

entirely depend on stochastic gradient descent to accommodate the changes to the posterior. Moreover,

SSVB scales the likelihood by a factor of the number of data-points observed by the models, whereas

PVI and SVI simply employ a fixed scale. Therefore, the fact that PVI and SVI are able to improve the

posterior variance is merely an effect of gradient descent steps.

Single Pass Updates to BB-SVB A typical online learning algorithm learns from each data point

exactly once, which is known as single-pass online learning. Assuming that the parameters are updated

strictly once per each mini-batch based on equation 14, we can expect any variational parameters θb−1 to

be equivalent θt−1 for b≥ 2. For b = 1, the variational parameters θ0 should be initialized through the

hyperparameters to the model. When such a relationship holds, the objective of BB-SVB exhibits some

special characteristics. The KL divergence term DKL[qθ (z)||qθb−1
(z)] from equation 7 becomes zero once

evaluated at the current point. As a result, the KL divergence of most of the commonly adopted families

of distributions (e.g. Gaussian and Gamma) has zero gradients during single-pass updates with BB-SVB.

Accordingly, single-pass updates with BB-SVB becomes equivalent to likelihood maximization of the

model variables.

EVALUATION

This section presents the evaluation of the proposed streaming Bayesian updating framework and SSVB.

First, we will analyse the properties of the streaming Bayesian updating with two simple conjugate models.

Subsequently, we will conduct an extensive empirical evaluation of SSVB with real-world and generated

data streams in comparison with the state-of-the-art black-box inference techniques.

Streaming Bayesian Updating

In this section, we will analyze two simple conjugate models that are derived using the traditional Bayesian

updating and the proposed streaming Bayesian updating for streaming data.

Gaussian Distribution with Known Variance

Consider a scenario where a Gaussian distribution with an unknown mean µ̂ and a known variance σ̂2 is

used to generate a series of batches c1 . . .cb, each with M data-points. The natural conjugate prior for the

mean µ̂ is another Gaussian distribution with mean µ and variance σ . Following the steps illustrated in

Gelman et al. (2004), it can be shown that the posterior of µ̂ after observing cb is,

µ̂|c1 . . .cb ∼N (µb,σ
2
b ) (15)

µb =

1

σ2
b−1

µb−1 +
M
σ̂2 c̄b

1

σ2
b−1

+ M
σ̂2

=

1

σ2
0

µ0 +
b×M
σ̂2 c1 . . .cb

1

σ2
0

+ b×M
σ̂2

(16)

σ2
b =

1
1

σ2
b−1

+ M
σ̂2

=
1

1

σ2
0

+ b×M
σ̂2

(17)

During incremental updates, we update the posterior parameters µb and σ2
b following equations 16

and 17. Here c1 . . .cb denotes the expected value of the b batches c1 . . .cb. Let us now emphasize the

shortcomings of traditional Bayesian updating using the derived model updates.

Consider the incremental updates to the posterior variance σ2
b as illustrated in equation 17. Notice that

σ2
b < σ2

b−1 thus resulting in an exponential decay of the posterior variance with the number of batches

observed by the model, irrespective of the magnitude of the data values. Therefore, with continuously

arriving indefinite data streams limb→∞ σ2
b = 0. This is supposed because the posterior uncertainty should

eventually disappear with infinite data streams. However, as a result, µb→ µb−1 disregarding the drifts

to the incoming data when b approaches infinity. Accordingly, the posterior estimated following the
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traditional Bayesian updating is independent of the order of the batches and fails adapt to changing data

streams.

Let us now derive the posterior of µ̂ following the proposed streaming Bayesian updating rule

illustrated in equation 3. We approximate the posterior of µ̂ given the sequence < c1 . . .cb−1 > as,

µ̂|< c1 . . .cb >∼N (µb,σ
2
b ) (18)

µb =

1

σ2
0

µb−1 +
b×M
σ̂2 c̄b

1

σ2
0

+ b×M
σ̂2

=
b

∏
i=1

[ 1

σ2
0

1

σ2
0

+ i×M
σ̂2

]

µ0 +
Mσ2

0

σ̂2

b

∑
i=1

(

b

∏
j=i

[ 1

σ2
0

× i

1

σ2
0

+ i×M
σ̂2

]

c̄i

)

(19)

σ2
b =

1
1

σ2
0

+ b×M
σ̂2

(20)

With proposed Bayesian updating, the expectation of each batch c̄i is weighted by an additional factor
(

1/σ2
0 +(i−1)×M/σ̂2

)

/
(

(i−1)/σ2
0

)

> 1 with respect to its preceding batch, preserving the sequential

nature of data. Therefore, the posterior updates with streaming Bayesian updating allow duly updating the

posteriors, while gradually forgetting the already learned concepts with time.

Updates to the posterior variance following the proposed Bayesian updating is identical to the updates

obtained following traditional Bayesian updating. This is mainly due to the fixed and known variance σ̂2

of the likelihood of the Gaussian model. However, since the posterior is adjusted in accordance with the

drifting patterns in data, updates to the posterior variance using equation 20 does not lead to overconfident

posteriors with streaming Bayesian updating.

Poisson Model with Gamma Conjugate Priors

Consider a Poisson distribution with an unknown rate λ and let c1 . . .cb be b batches each with M

observations sampled from the Poisson distribution. The natural conjugate prior for λ is a Gamma

distribution parameterized by mean µ and variance σ2. Then the posterior of λ is given by following

(Gelman et al., 2004),

λ |c1 . . .cb ∼ Γ(µ,σ2) (21)

µb =
µ2

b−1 +σ2
b−1Mc̄b

µb−1 +σ2
b−1M

=
µ2

0 +bσ2
0 Mc1 . . .cb

µ0 +bσ2
0 M

(22)

σ2
b = σ2

b−1

µ2
b−1 +σ2

b−1Mc̄b
(

µb−1 +σ2
b−1M

)2
= σ2

0

µb
(

µ0 +bσ2
0 M
) (23)

It can be shown that limb→∞ σ2
b = 0 and limσ2

b
→0 µb = µb−1. Therefore, analogous to the previous

model, the Poisson model fails to accommodate changes in data to the posteriors due to overconfident

posteriors. Let us now analyse the approximated posterior for λ following the streaming Bayesian

updating.

λ |< c1 . . .cb >∼ Γ(µ,σ2) (24)

µb =
µ2

b−1 +bσ2
0 Mc̄b

µb−1 +bσ2
0 M

(25)

σ2
b = σ2

0

µ2
b−1 +bσ2

0 Mc̄b
(

µb−1 +bσ2
0 M
)2

= σ2
0

µb
(

µb−1 +bσ2
0 M
) (26)

Similar to the previous study, the streaming Bayesian updating continuously updates the posterior

expectation with each batch forgetting previously learned information. Moreover, the posterior variance

is estimated similar to the traditional Bayesian updating, yet substituting the initial expectation µ0 term

in the denominator of equation 23 with the expectation of the previous posterior µb−1 to enforce the

sequential dependencies in the data. By propagating a fixed uncertainty we have able to forget the outdated
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Dataset #samples #features #classes

20News 11314 100000 20

MNIST 60000 785 10

Otto Products 61878 95 9

Airline 5810462 13 2

Poker 829201 11 10

Table 1. Summery of datasets

information while controlling the posterior uncertainty appropriately by scaling the likelihood with the

quantity of the data observed by the models. Accordingly, the proposed Bayesian updating is more

suitable to implement black-box inference for the data streams that undergo concept drifts.

Streaming Stochastic Variational Bayes

In this section, we provide empirical evidence to establish the superiority of SSVB against the existing

online inference techniques such as PVI (McInerney et al., 2015), SVI (Hoffman et al., 2013) and lastly

BB-SVB, which we derived. To conduct a fair comparison, we have derived black-box inference of both

SVI and PVI following an identical approach to the black-box inference of SSVB4. We have deliberately

omitted SVB (Broderick et al., 2013) from our analysis against SSVB due to the deficiencies in extending

the SVB to the black-box inference 5. In our experiments, we consider BB-SVB as the black-box inference

equivalent of SVB.

We conduct two experiments, evaluating the properties of the SSVB and BB-SVB using two supervised

non-conjugate probabilistic models: multinomial logistic regression and linear mixed effect model. Both

of these models require approximation inference and necessary tools in stream analytics. Moreover,

classification models such as multinomial logistic regression can be evaluated extensively in online

settings due to the availability of a rich set of datasets collected from real-world applications. Availability

of a wide range of conventional online classifiers allows directly appraising the usefulness of SSVB to the

practitioners. On the other hand, the linear mixed effect model is a more complex and yet quite useful

model for streaming settings. Linear mixed-effect model allows evaluating ability of each approach to

accommodate concept drift in both latitudinal and longitudinal data. Furthermore, both of the above

models employ Gaussian posteriors, which have a suitable parameterization to easily update the priors

with SSVB.

As the first experiment, we conduct an extensive evaluation of the performance of SSVB compared

to PVI, SVI and BB-SVB using multinomial logistic regression. The first experiment consist of four

phases. In the first phase, we use three diverse multiclass-classification datasets to evaluate the ability to

learn non-drifting patterns. We extend these experiments to the second phase by adopting two real-world

streaming datasets that have drifting patterns. Apart from the performance of SSVB, we also analyze the

posteriors estimated by each technique to understand the behaviour of the posteriors under drifting patterns

as the third phase of the experiment. Then we analyze the performance of SSVB against conventional

online classifiers as the last phase of the first experiment. As the second experiment, we further investigate

the performance of SSVB against PVI, SVI, and BB-SVB based on a different and more complex task,

linear mixed effect regression. Using a generated data-stream with known drift-points, we attempt to

generalize the competitive accuracy observed with SSVB with the previous experiment to a wide-range of

probabilistic inference tasks. Furthermore, we emphasize the shortcomings with PVI, SVI and BB-SVB

with multi-pass updates as opposed to SSVB.

Experiment 1 - Linear Classification

We implement the multinomial logistic regression by simply optimizing the streaming variational objec-

tives that is written considering its standard probabilistic notation 6. We optimize the objectives following

reparameterization VI while sampling only once to compute the gradients of the random variables. We

employ standard Gaussian distribution as the priors to those random variables (these will be initial priors

4derivation in Appendix 2
5as demonstrated in Appendix 3
6see Appendix 4
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Figure 1. Error rate and average log-predictive density for multiclass classification

20News MNIST Otto Products

SSVB 0.1509+−0.0019‡ 0.1202+−0.0011† 0.1998+−0.0012‡

BB-SVB 0.1502+−0.0018† 0.1234+−0.0006# 0.2002+−0.0010#

PVI 0.1750+−0.0008# 0.1231+−0.0012‡ 0.1987+−0.0006†

SVI 0.2308+−0.0010 0.1249+−0.0012 0.2098+−0.0012

AROW - 0.1383+−0.0034 0.2102+−0.0023

PA 0.2741+−0.0027 0.1506+−0.0007 0.2040+−0.0013

SGD 0.3106+−0.0010 0.1480+−0.0008 0.2057+−0.0009

Table 2. Means and stds of classification error rates for multiclass classification7

to the SSVB and BB-SVB).

Phase 1 - Classification with Standard Multiclass Datasets

First, we analyze the performance of the classification models using three standard multiclass datasets.

One of which (20News) is a text classification task with high dimensional sparse features and the other

two (MNIST and Otto product) are respectively image and general classification tasks. These datasets

are selected considering their diversity in the properties such as number of dimensions, type of features

(spares vs dense, continues vs discrete) and the performed task. We have tabulated the properties of each

dataset in table 1.

All the objectives are updated using sequential data that are arriving one-by-one (M = 1) in order to

simulate the standard streaming settings. We use ADAM optimizer with the learning rate ρ of 0.01 for all

the datasets except for 20News dataset, where we set ρ to 0.05. PVI demands to configure an additional

parameter α , which we tuned using the first 10% of the full dataset minimizing the error. The optimal

values found for α are 1e-5, 1e-6 and 1e-6 for 20News, MNIST and Otto Products, respectively. We use

both the average log-predictive density (aka average log-likelihood) and error rate (i.e. ratio between

the number of incorrect predictions and the total predictions) to evaluate the fit of the models. For both

20News and MNIST, we compute the lpd considering the standard test split as the holdout set, whereas

a random split with 25% of the dataset is treated as the holdout dataset for Otto Products. Moreover,

the error rate is computed following the standard prequential evaluation, where each observation is first

used to test the model and then used to train the model. These datasets are not specifically designed for

streaming settings, thus the ordering of the data may affect the fairness of the experiments. Therefore, we

run the experiment 5 times for each dataset with different random permutations of the data to conduct a

fair comparison. Table 2 presents the mean and the standard deviations of the final error rates for the all

permutations 8, and figure 1 illustrates the convergence of the error rate and average lpd w.r.t the number

7notation †, ‡ and # denote the best three approaches based on mean error out of all the techniques
8final f1-scores are presented in appendix 5
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Figure 2. Error rate and average-lpd with different normalization factors for Sb

of samples observed.

Let us first consider the final error rates for each approach in table 2. SSVB and BB-SVB achieve

significantly higher accuracy compared to PVI and SVI with 20News dataset. Even though SSVB gains

the lowest error rate with MNIST surpassing PVI, the PVI marginally outperforms both SSVB and

BB-SVI with Otto Products dataset. However, when we consider both mean and standard deviation of

the error rates, the difference between the error rates of SSVB and PVI with Otto Products dataset is not

statistically significant, Thus, we can establish that SSVB achieves the best overall accuracy with standard

classification datasets as opposed to BB-SVB, PVI and SVI. On the other hand, SVI exhibits the worst

performance for all three datasets.

Moreover, according to figure 1, we observe that lpd to be corresponding with the error rates for

20News and Otto Products datasets. Surprisingly, lpd indicates a poor fit for SSVB with MNIST dataset

though SSVB has notably outperformed the other techniques in terms of the error rate for the same dataset.

Moreover, each approach has undergone frequent fluctuations in log-predictive density with MNIST, which

appears to be an indication of sudden changes due to noisy labels. SSVB seems to overcompensate its

posterior uncertainty considering such noisy behaviours as drifting patterns leading to poor log-likelihood.

Even though such behaviours do not affect the overall accuracy of SSVB if needed, we can mitigate such

shortcomings of SSVB by fine-tuning the normalization φ of the scaling function Sb.

To understand the effect of normalizing the scaling function, we analyze SSVB by setting different

values for the normalization φ with MNIST dataset. Figure 2 presents the final error-rate and the average

lpd w.r.t the different φ employed by Sb during our analysis. The horizontal lines are corresponding to the

final average lpd for the rest of the approaches. Since the average log-predictive densities exhibit sudden

fluctuations with MNIST dataset as already seen with figure 1, we have considered the mean of average

lpd measured during last 10 updates to conduct a much accurate comparison.

Interestingly, SSVB has outperformed the rest of the techniques for each normalization applied to

the scaling function in terms of the error rate. Especially, for φ > 1 SSVB achieves a significantly lower

error rate compared to the other inference approaches. However, the average log-predictive density of

SSVB is considerably lower than that of the PVI, SVI, and BB-SVB for those cases. For the rest of the

cases, SSVB exhibits either improved or comparable average log-predictive density against PVI. Hence,

φ governs the trade-off of optimizing the error rate and the log-predicting density. Since the scaling

function Sb controls the regularization to the posteriors, using different values for φ to alter the amount of

regularization. It is important to maintain adequate regularization to achieve sufficient robustness when

handling sudden changes due to noisy labels (Crammer et al., 2009). Therefore, setting φ to a value

greater than 1.0 result in higher accuracy due to additional regularization employed to the posterior means

as opposed to the usual scaling function Sb. On the other hand, increasing φ also enhances regularization

to the posterior variance, thus forcing posteriors to overestimate their uncertainty misinterpreting noisy

labels as sudden drifts.

Accordingly, SSVB achieves the overall best performance with data streams that are not subjected to

concepts drifts. Even though PVI also achieves comparable accuracy against SSVB for most of the cases,

the additional effort required to tune α has made redundant with SSVB. However, SSVB can be further

improved by tuning the normalization term φ of the scaling function Sb to better handle the noisy streams

trading log-predictive density for better accuracy, and vice versa.
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Figure 3. Classification error rate considering PVI as the ground accuracy

# passes = 1 # passes = 2

airline poker airline poker

SSVB 0.307257# 0.275782# 0.310322† 0.277216‡

BB-SVB 0.307246† 0.275763‡ 0.413883 0.460659

PVI 0.307251‡ 0.276675 0.310325‡ 0.279263#

SVI 0.307306 0.276221 0.310412# 0.279427

AROW 0.333015 0.429212 0.332917 0.435478

PA 0.376963 0.224140† 0.376963 0.224140†

SGD 0.370204 0.269822 0.370204 0.269822

Table 3. Classification error rates with drifting patterns

Phase 2 - Classification with Real-World Data Streams

We extend our experiments with two massive real-world data streams: airline and poker-hand datasets.

Unlike the three datasets considered in the previous section, airline and poker-hand datasets are extracted

from real-world streams with concept drift, thus those datasets present more realistic challenges to the

model in testing their online classification ability. The properties of these data streams are also included

in table 1.

Analogous to the previous analysis, we feed exactly one data point for each update. However, we

investigate both single-pass and multi-pass updates. For the multi-pass scenarios, we perform exactly two

passes per each update. We use ADAM optimizer with ρ = 0.01 for both datasets. Similar to the previous

section, we optimize α using the initial 10% of the complete data stream minimizing the error rate.

The optimal α found for airline and poker-hand datasets are respectively 1e8 and 1e5 with single-pass

updates, whereas multi-pass updates required setting α to 1e9 and 1e7 to achieve the optimal settings. We

preserve the original ordering of the data and conduct prequential evaluations to compute the error rate.

Table 3 presents the final error rates observed. The ‘# passes’ in table 3 indicates the number of updates

performed using each data-points (i.e. single-pass vs multi-pass updates). Moreover, figure 3 illustrates

the convergence of the error rates for SSVB, BB-SVB and SVI considering PVI as the ground accuracy

(i.e. we compute the difference the between error rates for each technique and PVI) w.r.t the number

of data samples used to update the models. We have excluded BB-SVB from the plots corresponding

to multi-pass updates because the error rate of BB-SVB drastically increases concealing the variations

among the rest of the techniques.

If we consider only the final error rates with single-pass updates illustrated in table 3, we do not
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observe a considerable difference in the accuracies of SSVB and BB-SVB compared to PVI for airlines

dataset. However, SSVB and BB-SVB have shown a moderate improvement over PVI and SVI with poker-

hand dataset. We could expect BB-SVB to perform poorly under the concept drift due to the overconfident

posteriors. Nevertheless, BB-SVB has achieved the best overall accuracy. It should be noticed that under

single-pass updates BB-SVB completely ignores the KL-divergence term in the variational objective, thus

diminishing the resistance to the changes due to overconfident posteriors. Therefore, BB-SVB obtains a

higher accuracy with single-pass updates by acting as likelihood maximization of the random variables.

One can argue that single-pass updates are insufficient to estimate the intermediate posteriors during

Bayesian updating with SSVB and BB-SVB, which could ultimately lead to poor convergence. Never-

theless, the experiment results shown in table 3 prove otherwise. The multi-pass updates have caused a

considerable reduction in accuracy contrary to single-pass updates for all the tested scenarios. For most

of the cases, this is due to the overfitting which is a phenomenon that could affect any machine learning

technique. Furthermore, we observe a substantial drop in the accuracy of SSVB under multi-pass updates

though BB-SVB has attained the lowest error for both datasets with single-pass updates. Such poor

performance is mainly due to the overconfident priors, which restrains BB-SVB from accommodating the

drifting patterns in the data. On the other hand, SSVB is not affected by overconfident posteriors even

with multi-pass updates instead, SSVB outperforms other approaches for both datasets. Moreover, SSVB

does not require optimizing α or knowing the size of the data stream.

Figure 3 reveals an interesting behaviour when analyzing the convergence of SSVB relative to that of

PVI. For most of the cases, initially, PVI outperforms SSVB. However, SSVB gradually recovers this

accuracy gap with more and more data observed outperforming PVI in the long run. We observe similar

behaviour in figure 2 when considering both error rate and average log-predictive density. Irrespective of

the initial accuracy, SSVB demonstrates much faster convergence compared to PVI for most of the cases.

Moreover, BB-SVB with single-pass updates also resembles the above behaviour when compared with

PVI. We can explain such conduct using the different scaling mechanisms employed by each technique to

govern the regularization to the posteriors.

It should be emphasized that different scaling mechanism influence the regularization of posterior

mean differently, presumably resulting in considerably diverse posterior means after certain drift points

for each approach. Proper regularization is essential in the online settings to prevent overfitting of the

model parameters, thus helping them to recover when a change occurs (Kivinen et al., 2004). Moreover,

amply regularizing the posterior variance is essential to avoid overconfident posteriors (McInerney et al.,

2015) with endless data streams. Since PVI uses first 10% of the data stream to find the optimal scale α to

adjust its regularization, we can expect PVI to yield higher initial performance compared to the technique

such as SSVB that does not exploit such optimization. However, the optimal α may expire eventually

once α becomes inadequate to scale the likelihood sufficiently moderating the excess effect of the KL

divergence term. Unlike PVI, SSVB dynamically improves its regularization capabilities based on the

partially updated priors and the scaling function Sb, thus outperforming the PVI in the long-run.

Therefore, SSVB appears to be more suited with endless data stream due to its comparable perfor-

mance to PVI, even without tuning any additional hyperparameters as with PVI. Although PVI is not

sensitive to the size of the entire dataset, α being estimated is sensitive to properties of the data-points (e.g.

the number of data points and drifting patterns) that are used optimize α . Therefore, PVI may require

re-estimating α after a while to avoid any accuracy drop due to the outdated α . Since. SSVB adjust its

scaling function dynamically based on the number of data-points observed, it is highly unlikely to expire.

Therefore, SSVB is much useful to handle never-ending drifting data streams than PVI.

Phase 3 - Analyzing the Estimated Posterior Uncertainty

Posterior uncertainty is a crucial factor in estimating the predictive uncertainty, which ultimately drives

effective decision making. The standard deviation of Gaussian posterior directly correlates to the posterior

uncertainty. Therefore, we analyze the posterior means and standard deviations that are estimated by

each approach to comprehend their ability to adjust posterior uncertainty under drifting patterns in the

data. Figures 4 and 5 illustrate the estimated means and standard-deviations using poker dataset for some

selected coefficients under single-pass and multi-pass updates, respectively.

As expected, BB-SVB leads to overconfident posteriors, resulting in near-zero variance for both cases

considered. Especially in figure 5, BB-SVB does not reflect any changes to the posterior uncertainty

and is struggling to accommodate the necessary changes to the mean of the posteriors. As a result,
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Figure 4. Mean and Std estimated by each approach from poker dataset under single-pass updates

BB-SVB appears to demonstrate high resistance against the changes to the posterior means in figure 5.

However, BB-SVB seems to estimate the mean as expected under the relaxed constraints with single-pass

updates, where it is equivalent to maximization the likelihood of the probabilistic model. We still do not

recommend using BB-SVB as an online inference technique even with single-pass updates, since it fails

to indicate the drifting patterns by adjusting the posterior uncertainty.

Moreover, PVI also seems to underestimate the posterior uncertainty in contrast to both SSVB and

SVI under multi-pass updates. In figure 5, PVI neglects certain drifts that are evidenced by the posterior

means, thus maintaining higher confidence compared to SSVB and SVI even under sudden changes to

the posterior means. We believe this is due to the inability of PVI to dynamically control the updates to

the posterior variance, distinguishing multi-pass gradient steps from updates due to new batches. On the

other hand, modulating the posterior variance by fine-tuning α to optimize the error rate or average log-

predictive density violates the Bayesian assumptions. Bayesian does not suggest adjusting the posterior

variance to achieve a better predictive accuracy; variance of the posterior is considered as a measure of

the posterior uncertainty.

SSVB seems to adjust the posterior uncertainty under drifting patterns considerably better than the

rest of the approaches. The posterior variance estimated by SSVB does not shrink with time similar to

BB-SVB, nor shrink due to multiple passes analogous to PVI as evidence by figures 4 and 5. Instead,

SSVB maintains higher posterior uncertainty under multi-pass updates avoiding overfitting. Moreover,

SSVB scales the likelihood term following Bayesian assumptions. Therefore, the estimated posterior

densities by applying SSVB can be interpreted almost Bayesian.

Phase 4 - Comparison with Other Single Pass Classifiers

We have already established the superiority of SSVB in comparison to existing inference techniques

such as PVI and SVI, eliminating the requirements such as optimizing α . However, such claims are

useless to the practitioners unless SSVB can achieve similar accuracy compared to conventional online

learning techniques. Hence, we compare SSVB and BB-SVI against three non-Bayesian online classifiers:

most popular first order linear algorithm Passive Aggressive (PA) (Crammer et al., 2006), one of the

state-of-the-art of second-order linear methods AROW (Crammer et al., 2009) and a traditional SGD

classifier. It should be stressed that we do not consider non-linear classifiers in our analysis because we

can not expect our linear classification model to exceed state-of-the-art non-linear classifiers. We follows

the implementation proposed with LIBOL (Hoi et al., 2014) to extend AROW for multiclass classification.

However, our implementation of AROW fails to scale with the number of features due to the large memory

necessary to store the covariance matrices, thus we were unable to report the accuracy of AROW with
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Figure 5. Mean and Std estimated by each approach from poker dataset under multi-pass updates

20News dataset (which requires performing operations on top of 100000 × 100000 matrices).

Considering table 2, all the four inference approaches significantly outperforms three conventional

classifiers, except with Otto Product dataset. For Otto Product dataset, SVI has slightly lower accuracy

relative to PA and SGD. Moreover, we observe remarkable improvement in accuracy with all four inference

techniques with airline dataset. We can consider the multinomial logistic regression based on SSVB

and BB-SVI as a second-order classification since the underlying implementation of those algorithms

updates the regression coefficient based on the gradients evaluated using the mean and the variance of

those coefficients. This is similar to the concept of confident weighted linear classification (Dredze

et al., 2008; Crammer et al., 2009), which is proven to be effective with online classifiers. Moreover, the

online inference approaches estimate the full posterior densities not just confident weighed coefficients,

thereby we can expect them to have superior performance even compared to the conventional second-order

classifiers such as AROW etc.

Interestingly, PA and SGD have considerably outperformed the online inference approaches with

poker-hand dataset. Moreover, AROW has approximately twice the error rate of PA with poker-hand

dataset. It seems that poker-hand may have certain properties that lead to inconsistent uncertainties, which

ultimately affect the accuracy of the second-order classifiers. However, we may require further analysis to

express the exact cause for this behaviour.

Accordingly, SSVB demonstrates superior accuracy even against the conventional classifiers. There-

fore, adopting SSVB benefits practitioners in two aspects. SSVB improves the accuracy of the model and

SSVB provides predictive uncertainty to support decision making.

Experiment 2 - Linear Mixed Effects Regression

We use an artificially generated data stream to appraise the performance of the LME model updated

based on each objective. We generate a standard mixed effect stream with 100 dimensions (D) and 1000

subjects (C) 9. We introduce random drifts to both fixed and random effects simultaneously simulating a

more realistic data stream. Typically, it is difficult to identify a single holdout set for a data stream that

evolves over time. A holdout set selected at a particular instance will expire after the next drift-point.

Therefore, in our experiment, we generate a new holdout set after each drift-point reflecting the changes to

the training data. Analogous to the previous experiments, we update the LME model using data arriving

one-by-one (M = 1). We use the standard Gaussian distribution as the priors to fixed effects β and for

random effects u we assume standard Multivariate Gaussian priors. ADAM optimizer is employed to

update the model by setting ρ to 0.01. We determine the optimal α following the same criteria performed

9following equation 8 in Appendix 6
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Figure 6. RMSE and lpd for LME models

# passes SSVB BB-SVB PVI SVI

rmse

1 7.5941+−0.4207 7.5823+−0.4196 7.5835+−0.4202 7.6039+−0.4192

2 7.8300+−0.2137 13.4069+−3.7529 7.8219+−0.2126 7.9322+−0.2041

3 8.1289+−0.2122 12.4684+−3.0807 8.1486+−0.2105 8.3401+−0.2069

10 9.8371+−0.3611 15.2848+−4.6595 10.2216+−0.3768 10.6604+−0.3685

mae

1 5.8538+−0.3559 5.8438+−0.3550 5.8447+−0.3557 5.8627+−0.3548

2 6.0604+−0.1749 10.6181+−3.0258 6.0537+−0.1738 6.1473+−0.1664

3 6.3158+−0.1696 9.8638+−2.4874 6.3331+−0.1677 6.4908+−0.1649

10 7.7456+−0.2926 12.1282+−3.7428 8.0592+−0.3030 8.4219+−0.2971

lpd

1 −34.6041+−59.3907 −34.5125+−59.3824 −34.5227+−59.3889 −34.6779+−59.3912

2 −33.9970+−40.2957 −99.6289+−60.0246 −33.9330+−40.2891 −34.7930+−40.2466

3 −35.5450+−31.6466 −84.5065+−46.6077 −35.7020+−31.6277 −37.2687+−31.5594

10 −49.8064+−14.1731 −128.1795+−67.7404 −53.6353+−14.0649 −58.1863+−14.1110

Table 4. Average RMSE, average MAE and average Log-predictive density for mixed-effect regression

during the previous analysis. One could argue that single-pass updates are insufficient to estimate the

intermediate posteriors with SSVB. Therefore, in addition to the single-pass updates, this experiment is

also planned to further investigate the effect of multi-pass updates by conducting 2, 3 and 10 passes per

each data-point. We measure the average log-predictive density, root mean squared error (RMSE) and the

mean absolute error (MAE) after each update using the hold-out set.

Figure 6 illustrates the convergence of RMSE and average lpd of SSVB, BB-SVB, and SVI as against

PVI. We intentionally avoid absolute error values and have omitted the latter error values of BB-SVB in

figure 6 to improve the visibility of the plots. The dotted regions indicate the simulated concept drifts.

The mean and the standard deviation of the absolute error values are presented in table 4, as the overall

performance metrics. In figure 6 and table 4, ‘# passes’ denotes the number of passes carried out during

each update.

All three performance metrics reported in table 4 are consistent with each other, henceforth we

collectively refer to them as the accuracy, bearing in mind that a decrement in error or higher log-

predictive density indicates an improvement in the accuracy. For single-pass updates, SSVB, BB-SVB,

PVI, and SVI show comparable accuracy. Interestingly, BB-SVB has slightly outperformed each approach

avoiding overconfident posteriors because BB-SVB deviates from the traditional Bayesian updating

during single-pass updates. Moreover, PVI has achieved marginally superior accuracy compared to SSVB,

although such negligible gain in accuracy against SSVB does not justify the exhausting analysis carried

out with PVI to determine a suitable value for α .

Similar to the observations from the previous experiment, multi-pass updates have not improved the
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models. In fact, such updates have degraded the accuracy of models due to overfitted posterior densities.

Hence, it is safe to conclude that single-pass updates are sufficient to approximate the intermediate

posteriors at-least for the experimented scenarios. However, the accuracy of SSVB is less affected

compared to the rest of the techniques when increasing the number of passes. Therefore, it seems that PVI

and SVI are more prone to overfitting compared to SSVB. Unlike SSVB, PVI and SVI cannot distinguish

between observing a new data-point and multiple passes using the same data-point with the fixed scale (α
or N) employed to the likelihood. On the other hand, BB-SVB appears to fail drastically at each drift

point (see figure 6) with multi-pass updates. This is solely due to the discussed shortcomings with original

Bayesian updating to the online settings.

Therefore, SSVB is a more suitable candidate for online inference compared to BB-SVB, PVI, and

SVI. SSVB exhibits superior or comparable performance as against the rest of the approaches without any

additional analysis to tune a hyperparameter than controls the posterior variance. Unlike BB-SVB, SSVB

avoids overconfident posteriors and less prone to overfitting even compared to PVI and SVI.

Furthermore, we evaluate the implemented LME model against two conventional online regression

models, PA regressor and SGD regressor. Even though these models are not designed to handle random

effects, we conduct this analysis to emphasize the importance of the proposed LME to practitioners.

With PA regressor, we observe an RMSE and an MAE of respectively 28.8775+−50.0463 and 24.2292+−
43.4287, which is a significantly larger error compared to the error of the LME optimized using any of the

inference approaches. On the other hand, SGD fails to converge even to a local optimum, illustrating the

complexity of the task. Therefore, LME is an essential tool to handle both fixed and random effects with

data stream, and SSVB facilitates black-box inference to efficiently develop and evaluate such predictive

models in online settings.

RELATED WORK

As discussed in the introduction, VI was introduced by Jordan et al. (1999) as an efficient inference

technique in order to handle complex Bayesian models. Coordinate ascent variational inference (CAVI)

was widely adopted to solve the objective of VI as an optimization problem. However, CAVI fails to scale

with the modern applications of probabilistic models, which often demands analyzing massive data (Blei

et al., 2017; Hoffman et al., 2013). Thus, Hoffman et al. (2010); Wang et al. (2011); Hoffman et al. (2013)

extend VI to handle large-scale data based on SVI, where they use mini-batches from a massive dataset

to iteratively update the approximated posterior based on steepest descent. Nevertheless, the posterior

being estimated using mini-batches is targeted for the full dataset with N data points (Hoffman et al.,

2013), thus SVI requires knowing N beforehand. Due to the sensitivity of SVI to the N, it is often difficult

for the practitioners to decide a suitable value for N (Broderick et al., 2013). Since SVI needs tedious

model-specific analyses under both offline and online settings, the black-box inference techniques such

as Automatic Differentiation VI (ADVI) (Kucukelbir et al., 2017), Black-Box VI (BBVI) (Ranganath

et al., 2014) and Reparameterization VI (Kingma and Welling, 2013; Zhang et al., 2018) was introduced

to enable the inference of a wide range of models with little additional derivations. Conceptually, these

techniques are not intended to estimate the intermediate posteriors given endless data streams and have

not been empirically studied with regards to their effectiveness in online learning.

Theis and Hoffman (2015) apply SVI to streaming settings by accumulating incoming data points

into a database then uniformly sampling from this database to optimize the variational objective. Their

approach eliminates the need for knowing N beforehand with SVI at the cost of additional storage capacity.

Nevertheless, this approach is infeasible in true online settings, where a storage complexity of O(1)
is assumed to learn from continuously evolving infinite data streams. Theis and Hoffman (2015) also

proposed trust regions to update parameters mitigating the local optima found with natural gradients. This

innovation can be easily integrated into our approach.

To apply variational approximation to the streaming data, Broderick et al. (2013); Ghahramani and

Attias (2000); Honkela and Valpola (2003) proposed performing recursive Bayesian updating using offline

approximation inference primitives such as CAVI. They incrementally update the approximated posterior

for each mini-batch by considering most recent posterior as the prior to the Bayes rule, thus allowing to

estimate the intermediate posterior densities irrespective of the size of the dataset. However, as pointed

out by McInerney et al. (2015), Bayesian updating leads to point mass posterior with never-ending data

streams, is thus ineffective in accommodating how the stream might change over time. Later, Nguyen

et al. (2017) proposed Variational Continual Learning (VCL) framework dissolving Monte Carlo VI
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with the online variational inference. Their work suggests using a corset (i.e. a set of samples selected

from previously observed data following particular criteria) with each Bayesian update to mitigate the

phenomenon of catastrophic forgetting. Nevertheless, VCL is also vulnerable to the shortcomings of

Bayesian updating when provided with drifting data. Moreover, the corsets may contain data-points

generated prior to the recent drift-point, which will force the models to retain the information that should

be forgotten to learn new patterns in data.

McInerney et al. (2015) introduced PVI where they approximate population posterior by considering

each batch as a randomly sampled points from a population posterior. Their results justify using a different

value for N as opposed to the size of the dataset, which they conceive as the number of data-points in

the population posterior α . They use α to control the variance of the population posterior avoiding the

overconfident posteriors.

Assumed-Density Filtering (ADF) and Expectation Propagate (EP) (Maybeck, 1979; Opper, 1998;

Minka, 2001a,b) have fused Bayesian updating and approximate inference taking a different approach

to Broderick et al. (2013); Ghahramani and Attias (2000); Honkela and Valpola (2003); Nguyen et al.

(2017). These techniques compute the exact posterior considering a single data-point and approximate

the posterior to the same family of distribution as the priors. The approximated distributions will be the

priors to next posterior estimation. However, unlike the variational methods discussed above, ADF and

EP cannot be applied if the true posteriors are intractable. Even though ADF is sensitive to the sequence

of data due to the single-pass updates of approximated posteriors (Minka, 2001a), these approaches are

not guaranteed to handle data streams that change over time. Conceptually, they still employ traditional

Bayesian updating and are susceptible to the phenomenon of overconfident posterior.

The proposed technique extends recursive Bayesian updating to derive a black-box inference technique

for streaming data similar to Broderick et al. (2013); Ghahramani and Attias (2000); Honkela and Valpola

(2003); Nguyen et al. (2017). Our initial objective is more similar to the continual learning objective

(Nguyen et al., 2017) without corsets. However, the improved objective is significantly different from

VCL with the additional modifications to be more suited for concepts drifts. However, our approach does

not enforce additional hyperparameters to the traditional Bayesian methods as in Population VI. Instead,

it controls the posterior variance based on the amount of data that have been observed at a given point.

CONCLUSION

In this paper, we first introduced two modifications to the traditional Bayesian updating framework

deriving a novel streaming Bayesian updating approach that is capable of efficiently handling data streams

with concept drift. We then derived a black-box inference technique for online settings: “Streaming and

Stochastic Variational Bayes” (SSVB), by adopting reparameterization VI to approximate the intermediate

posteriors with proposed Bayesian updating framework. Unlike the existing online inference approach,

SSVB does not suffer from overconfident posterior nor require additional hyperparameters to control the

posterior variance compared to its offline counterparts.

We appraised the performance of SSVB against BB-SVB, and two existing online inference approaches

PVI and SVI with two essential models to the online learning: multinomial logistic regression and linear-

mixed effects model. SSVB demonstrated either superior or comparable performance as opposed to the

current state-of-the-art, PVI. Furthermore, SSVB demonstrated a significant gain in the accuracy for

online classification compared to the conventional state-of-the-art conventional online classifiers such

as AROW, PA and SGD. Accordingly, SSVB can be considered as a much effective online inference

framework in contrast to PVI, SVI, and BB-SVB. Moreover, practitioners and researchers can easily adopt

SSVB to efficiently build a wide range of models to handle endless streaming data with concept drifts.
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