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It is assumed that the sequencing of ribosomes better reûects the active microbial
community than the sequencing of the ribosomal RNA encoding genes. Yet, many studies
exploring microbial communities in various environments, ranging from the human gut to
deep oceans, questioned the validity of this paradigm due to the discrepancies between
the DNA and RNA based communities. Here we focus on an often neglected key step in the
analysis, the reverse transcription (RT) reaction. Previous studies showed that RT may
introduce biases when expressed genes and ribosomes are quantiûed, yet its eûect on
microbial diversity and community composition was never tested. High throughput
sequencing of ribosomal RNA is a valuable tool to understand microbial communities as it
better describes the active population than DNA analysis. However, the necessary step of
RT may introduce biases that have so far been poorly described. In this manuscript, we
compare three reverse transcription enzymes, commonly used in soil microbiology, in two
temperature modes to determine a potential source of bias due to non-standardized
reverse transcription conditions. In our comparisons, we have observed up to 6 fold
diûerences in bacterial class abundance. A temperature induced bias can be partially
explained by G-C content of the aûected bacterial groups, thus pointing towards a need for
higher reaction temperatures. However, another source of bias was due to enzyme
processivity diûerences. This bias is potentially hard to overcome and thus mitigating it
might require the use of one enzyme for the sake of cross-study comparison.
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ABSTRACT12

It is assumed that the sequencing of ribosomes better reflects the active microbial community than the

sequencing of the ribosomal RNA encoding genes. Yet, many studies exploring microbial communities

in various environments, ranging from the human gut to deep oceans, questioned the validity of this

paradigm due to the discrepancies between the DNA and RNA based communities. Here we focus on

an often neglected key step in the analysis, the reverse transcription (RT) reaction. Previous studies

showed that RT may introduce biases when expressed genes and ribosomes are quantified, yet its effect

on microbial diversity and community composition was never tested. High throughput sequencing of

ribosomal RNA is a valuable tool to understand microbial communities as it better describes the active

population than DNA analysis. However, the necessary step of RT may introduce biases that have so far

been poorly described. In this manuscript, we compare three reverse transcription enzymes, commonly

used in soil microbiology, in two temperature modes to determine a potential source of bias due to

non-standardized reverse transcription conditions. In our comparisons, we have observed up to 6 fold

differences in bacterial class abundance. A temperature induced bias can be partially explained by G-C

content of the affected bacterial groups, thus pointing towards a need for higher reaction temperatures.

However, another source of bias was due to enzyme processivity differences. This bias is potentially

hard to overcome and thus mitigating it might require the use of one enzyme for the sake of cross-study

comparison.
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INTRODUCTION30

Massively parallel amplicon sequencing revolutionized our view of microbial world: by sequencing a31

taxonomic tag such as 16S rRNA encoding gene, it allows taxonomic description of microbial communities.32

This gives microbiologists a powerful tool to describe our biosphere, that revolutionised our view of the33

microbial world (Quammen, 2018). The arrival of high throughput sequencing allowed for cheap access34

to millions of taxonomic tags that describe the microbial community structure. Most of these tags use35

the ’gold standard’ genetic markers, which are the 16S or 18R rRNA-encoding genes. However, the36

existing approaches introduce caveats: the DNA amplicon sequencing may capture ‘relic DNA’, which is37

a recalcitrant genetic material from dead cells or naked DNA (Carini et al., 2016) in addition, amplicon38

sequencing carries technical biases due to sample preparation, DNA extraction methods (Pan et al., 2010),39

amplification reaction (Pfeiffer et al., 2014) and analysis (Pollock et al., 2018). Moreover, DNA-based40

microbiome information can describe the total community, but it cannot report which members are41

metabolically active (Blazewicz et al., 2013).42

In contrast to DNA based tools, analysis of ribosomes can describe the metabolically active members43

of a given community. The combination of data generated from rRNA encoding genes and ribosomes led44

to a wide range of ecological insights, including the response to climatic changes (Angel et al., 2013), pH45
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and water availability (Romanowicz et al., 2016), and biogeochemical processes (Freedman et al., 2015).46

Ribosomal analysis studies are based on an assumption that ribosomes are more abundant in active cells47

compared to dormant ones (Blazewicz et al., 2013; Lennon and Jones, 2011). However, this assumption48

may not always be correct. Dormant bacteria may be misclassified as active, when ribosomes are present49

in cells and spores that are inactive (Segev et al., 2013; Blagodatskaya and Kuzyakov, 2013). In contrast,50

active bacteria with low metabolic turnover and low ribosomal count could be labeled as dormant when51

sequencing depth is insufficient (Steven et al., 2017; Joergensen and Wichern, 2018). In spite of various52

biases that introduce discrepancies in the community structure (Forney et al., 2004), ribosomal analysis53

can capture the biological variability highlighting large differences between samples. However, if more54

subtle differences are of interest, technical biases could confound biological interpretations (Lever et al.,55

2015; McCarthy et al., 2015). This is due to specific challenges introduced RNA based analysis (Bustin56

and Nolan, 2004, 2017). Therefore, to confidently compare results across ribosome-based amplicon57

sequencing studies, we must determine which component of the analysis: RNA extraction, processing or58

data analysis may influence the outcome and introduce biases.59

Prior studies focused on biases in the steps of RNA extraction, amplification and sequencing, but60

disregard any biases that may occur during reverse transcription (Creer et al., 2016). At the crucial step of61

reverse transcription, most researches simply ’follow the manufacture instructions’(Table 1). However,62

RT kits typically detail a wide range of temperatures, primer, template and reaction options, which may63

lead to different results. The reverse transcriptase (RT) enzyme requires sequence priming to initiate64

a reaction. Primers could be poly-A complementary, random or sequence specific. Poly-A priming is65

limited to eukaryotic mRNA which makes it unsuitable for use with ribosomal taxonomic tags. Opinions66

vary about the usefulness of random and sequence-specific priming for the analysis of microbiomes:67

Random priming may produce higher yield of cDNA and improve the detection limit (Zhang and Byrne,68

2015; Ståhlberg et al., 2004a). However, random priming decrease the reproducibility and introduce69

bias in the outcome (Bustin and Nolan, 2004; Hansen et al., 2010). Sequence specific primes require70

fine tuning of the reaction conditions and higher template concentration than random priming (Ståhlberg71

et al., 2004b). Moreover, the results of the reverse transcription reaction is determined not only by the72

type of the RT enzyme used, but also by the reaction conditions (Curry et al., 2002; Ståhlberg et al.,73

2004a,b; Bustin and Nolan, 2004; Sieber et al., 2010). Ideally RT efficiency is near 100 %, meaning nearly74

100 % of the template is reverse transcribed to cDNA, regardless of its initial concentrations. In practice75

enzyme dependent efficiency of the reverse transcriptase reaction varies dramatically: 90 % efficiency was76

reported for SuperScript III (mutated MMLV RT) (Ståhlberg et al., 2004a), 20 % for Murine Leukemia77

Virus (M-MLV) RT (Curry et al., 2002), and as low as 2 % for Avian Myeloblastosis Virus (AMV)78

RT (Ståhlberg et al., 2004a). Additionally, 5 - 10 fold variations were reported for template-dependent79

efficiencies (Ståhlberg et al., 2004a; Curry et al., 2002; Sieber et al., 2010). Furthermore the RT efficiency80

varies greatly with the type of template, with as much as 91 fold efficiency difference between mutated81

and AMV RT (Ståhlberg et al., 2004a). However, to the best of our knowledge no study has yet compared82

the RT reaction conditions for environmental microbiome profile. We hypothesize that during reverse83

transcription reactions, varying RT enzyme types and temperature conditions will yield different results in84

microbial diversity and community composition. We further predict that variations in communities will85

be G-C dependent. To test our prediction, we present a comparative study of commonly used RT enzymes86

in the field of environmental microbiology as well as a comparison of two different reaction temperatures.87

MATERIALS AND METHODS88

Study site and sample collection scheme89

Soil samples were collected at the central Negev Desert highlands, Israel (Zin Plateau, 30ç862N, 34ç802E)90

at an established ecological research site. The mean annual precipitation at the sampling site is 90 mm91

and the mean annual temperature is 30 çC (LTER data). Samples were collected under the canopy of92

perennial shrub Hammada scoparia in October 2015 at the end of the dry season as previously described93

(Baubin et al., 2019). Briefly, sampling was conducted in 7 duplicate and random blocks. Samples were94

collected from the top 5 cm of the soil, following the removal of crust and debris. The soil samples were95

processed within 24 h of collection. Samples were homogenized using 2 mm sieve and the duplicates96

from each block were composited.97
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Manufacturer RT Enzyme RT origin Temperature [çC] RNA type Primer type Ref
Suggested Used

Promega MMLV MMLV 37 –42 NA rRNA 926R Carson et al. (2010)
NA rRNA & mRNA Random hexamers Pratscher et al. (2011)

ImProm-II AMV 37 –55 42 rRNA & mRNA Random hexamers Angel et al. (2013)
NA rRNA Random hexamers Ke et al. (2015)

Qiagen QuantiTect Quantiscript 42 –50 NA rRNA Unique RT Primer Mix Barnard et al. (2015)
37 rRNA Random hexamers Placella et al. (2012)

Omniscript Quantiscript 37 NA mRNA Random hexamers Paulin et al. (2013)
NA mRNA invA-R Garcı́a et al. (2010)

Takara PrimeScript II AMV 42 –50 NA mRNA Random hexamers Huang et al. (2016)
NA rRNA Random hexamers Che et al. (2018)

Roche Roche reverse
transcription kit

AMV 42 –60 42 & 50 rRNA Random hexamers Nunes et al. (2018)
42 & 50 rRNA Random hexamers Jurburg et al. (2017)

Thermo Fisher MMLV MMLV 37 –42 45 rRNA 900R Lillis et al. (2009)
NA rRNA Random hexamers Baldrian et al. (2012)

SuperScript-II MMLV 42 –55 NA rRMA 1492R Degelmann et al. (2009)
NA mRNA Random hexamers Nacke et al. (2014)

SuperScript-III MMLV 42 –55 NA rRNA Random hexamers Angel and Conrad (2013)
NA rRNA 27F & LR3 Romanowicz et al. (2016)

Table 1. Literature overview of reverse transcription conditions applied in soil microbiological studies.

RNA preparation98

Total RNA was extracted from the samples using a phenol-chlorophorm extraction previously described99

by Angel (2012). The reaction buffer pH was adjusted to 5. The total RNA was subsequently purified with100

the MagListoTMTotal RNA Extraction Kit (Bioneer, Daejeon, Republic of Korea). Contaminant DNA101

was removed using a DNAse I from the MasterPure RNA Purification Kit (Epicenter, Madison, WI, USA)102

with two successive treatments of 30 min according to manufacturer’s instructions. The reaction mixture103

was purified using the MagListoTMTotal RNA Extraction Kit (Bioneer). The absence of contaminant104

DNA was verified using total bacterial primers 341F (5’ CCTACGGGAGGCAGCAG 3’) and 515R (5’105

TTACCGCGGCTGCTGGCAC 3’) (Klindworth et al., 2013) and DreamTaq DNA polymerase (Thermo106

Scientific, Waltham, MA, USA) under the following conditions: 95 çC for 5 min, followed by 26 cycles107

of 95 çC for 15 s, 60 çC for 30 s and 72 çC for 30 s for extension followed by 72 çC for 5 min for final108

extension. If amplification was detected the sample was discarded, re-extracted, purified and tested. Only109

DNA-free samples were used in this study.110

Reverse transcription reaction conditions111

Each reverse transcription kit used in this study originated from a different source: (I.) ImProm-II Reverse112

Transcription System enzyme (Promega, Madison, WI, USA) originates from AMV RT, (II.) SuperScript113

IV Reverse Transcriptase Kit enzyme (ThermoFisher Scientific, Waltham, MA, USA) originates from114

MMLV RT and (III.) TGIRT originates from the mobile group II introns reverse transcriptase (Mohr115

et al., 2013) TGIRTTM-III Enzyme (InGex,St. Louis, MO, USA). Each reaction consisted of 50 ng of total116

RNA template, measured by Quanti-iTTMRNA Assay Kit (ThermoFisher), and random hexamer primers117

(0.5 µg/reaction). Template and primer mix were heated to 70 çC (ImProm-II) or 65 çC (SuperScript118

IV). Each reaction was subsequently cooled to 4 çC for 5 min and incubated at 42 çC (ImProm-II), 55 çC119

(ImProm-II and Superscript) or 57 çC (TGIRT) for 60 min (ImProm-II), 120 min (TGIRT) or 10 min120

(SuperScript IV). All reactions were terminated and DNA was removed by alkaline lysis using 2 µl of121

1 M NaOH, incubating for 12 min at 70 çC. After which the reaction was neutralized using 4 µl of 0.5 M122

acetic acid (Table 2).123

Illumina sequence preparation124

The V3 and V4 regions of the resulting cDNA were amplified using 341F (5’ CCTACGGGAGGCAGCAG125

3’) and 806R (5’ GGTCTGGACTACHVGGGTWTCTAAT 3’) (Klindworth et al., 2013) primers. Each126

reaction was performed in triplicate and consisted of 1 mM bovine serum albumin (Takara, Kusatsu,127

Japan), 2.5 µl of 10x standard buffer, 5 µM primers, 0.8 mM dNTPs, 0.4 µl DreamTaq DNA polymerase128

(Thermo Scientific, Waltham, MA, USA), and 4 µl of template cDNA. The reaction mixtures were129

subsequently amplified using the following PCR conditions: 95 çC for 30 s, 27 cycles of 95 çC for 15 s,130

50 çC for 30 s, 68 çC for 30 s and 68 çC for 5 min. Resulting amplicon presence was verified using 1.5 %131

agarose gel electrophoresis. Resulting technical triplicates were combined, and the sequencing libraries132
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Thermo cycling Reaction mix
Manufacturer RT kit Primers Temperature [çC] Time [min] Reactant Amount

Promega Im-Prom II
Random Hexamers
(500 ng/reaction) 70 5 DTT 10 µM

4 5 Tris-HCl 50 mM
25 5 KCl 75 mM
42 60 MgCl2 2.5 mM
70 15 dNTP 0.5 mM

RNAse inhibitor 0.5 µl/20 µl

Promega Im-Prom II
Random Hexamers
(500 ng/reaction) 70 5 DTT 10 µM

4 5 Tris-HCl 50 mM
25 5 KCl 75 mM
55 60 MgCl2 2.5 mM
70 15 dNTP 0.5 mM

RNAse inhibitor 0.5 µl/20 µl

ThermoFisher SuperScriptIV Random Hexamers (2.5 µM) 65 5 DTT 5 µM
0 1 Tris-HCl 50 mM
23 10 KCl 50 mM
55 10 MgCl2 4 mM
80 10 dNTP 0.5 mM

RNAse inhibitor 0.5 µl/20 µl

TGIRT TGIRT-III
Random Hexamers
(500 ng/reaction) 65 5 DTT 5 µM

0 1 Tris-HCl 10 mM
23 10 EDTA 1 mM
58 120 MgCl2 4 mM
80 10 dNTP 0.5 mM

RNAse inhibitor 0.5 µl/20 µl

Table 2. A summary of conditions applied to the different reaction conditions. .

were constructed using the TruSeq R© DNA Sample Preparation Kit (Illumina, San Diego, CA, USA)133

following the manufacturer’s recommendations. The amplicon libraries were sequenced (250x2 base pairs,134

pair-end) on the Illumina MiSeq System platform at the Research Resources Centre at the University of135

Illinois.136

Sequence analysis137

Resulting paired end sequences were merged using the CASPER program (Kwon et al., 2014), and the138

resulting merged reads were clustered using the UPARSE pipeline according to the recommended settings139

(Edgar, 2013). The resulting OTU representative sequences were taxonomically assigned with the SINA140

incremental aligner using a lowest common ancestor algorithm (Pruesse et al., 2007) and the SILVA141

database version 132 (Quast et al., 2013). All sequences retrieved in this study were uploaded to European142

Nucleotide Archive (https://www.ebi.ac.uk/ena) submission number PRJEB32237.143

Statistical analysis144

All data analysis was performed in R v3.4.3 (R Core Team, 2018). The dataset was sub-sampled (rarified)145

to an even depth of 9000 sequences per sample using python numpy package v1.15.4 (Van Der Walt146

et al., 2011). The subsampling removed 5 samples from the dataset. Additionally, three more samples147

were removed as outliers (“https://gitlab.com/stovicek/rt˙article/blob/master/data˙preparation.ipynb). In148

order to equalize the number of replicates, two random samples were removed from the TGIRT dataset.149

The sample diversity was analyzed using the vegan package v2.5-2 (Oksanen et al., 2018). The data was150

visualized using the R package ggplot2 package v2.2.1 (Wickham, 2016) and python package matplotlib151

(Hunter, 2007).152

RESULTS153

Sample preparation and diversity analysis154

After removing obvious outliers, four samples from each condition were analyzed. The summary of155

the analysis and all the code used to produce each figure is included in the Supplementary File S1156

and S2. The changes in bacterial diversity among the tested conditions were expressed using species157

count, Pielou’s evenness index (Pielou, 1967) and Shannon diversity index (Shannon and Weaver, 1949).158

Despite observed trends in the diversity indices, no statistically significant differences were detected159

(Supplementary Figure S1, “https://gitlab.com/stovicek/rt˙article/blob/master/diversity˙statistics.ipynb).160
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Relative abundance plot161

A relative abundance of major taxonomic classes is depicted in the Figure 1. Each column is an av-162

erage of four biological replicates. OTUs (operational taxonomic units) that were not taxonomically163

assigned at this level are summarized as ”Unclassified” (j 2 %). Various patterns (detailled below)164

were detected among the experimental conditions: some patterns could be attributed to differences in165

reaction temperature (which ranged from 42 çC to 55 çC and 57 çC).Other patterns could be linked to166

enzyme type. RT reactions with SupeScript IV and TGIRT RTs yielded no significant differences in167

class relative abundances. However, transcription with ImProm-II RT at a similar temperature (j 55 çC)168

yielded different abundances: specifically, the abundances of Alphaproteobacteria, Bacteroida, Deltapro-169

teobacteria, Oxyphotobacteria, Rubrobacteria and Verrucomicrobiae decreased. However, Chloflexi,170

Gammaproteobacteria and Thermophilia abundances increased when their ribosomes were transcribed171

with ImProm-II RT (Figure 1, Supplementary Table S1). When transcription occured at lower temperature172

(42 çC), relative abundances of Bacilli, Deltaproteobacteria and Oxyphotobacteria were enriched, while173

Actinobacteria, Chloroflexi and Acidobacteria were depleted under the same conditions (Figure 1 and174

Supplementary Table S1).175
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Figure 1. Relative abundance of main classes across each tested condition. Only top 15 % of the most

abundant classes are represented and the rest is summarized in the ’Low abundance’ category. The x axis

show different enzymes and conditions. The y axis shows an average relative abundance. Each category

is an average of 4 samples.

Class enrichment plot176

To explore whether G-C content contributed to differences in relative abundances of different taxa, we ran177

the following analysis: for each reaction condition we calculated pairwise comparisons at the class level:178

we normalized the proportional enrichment in each respective reaction conditions following Equation 1179

(Figure 2 and Supplementary Figure S2).180

Classnormalized =
ClassA 2ClassB

ClassA +ClassB

For class in reaction conditions A and B. (1)181

5/11PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27780v1 | CC BY 4.0 Open Access | rec: 4 Jun 2019, publ: 4 Jun 2019



The proportional comparison is interpreted as follows: A value of zero in the proportional comparison182

represents a case where the taxonomic class count is exactly equal between the two compared groups183

(Figure 2). A value of 1 or -1 is assigned when a given taxonomic class is only present in one category184

and absent from another, respectively. The figure also depicts the weighted average of the G-C content in185

each class. In general, there was a tendency towards lower G-C content lower temperature of ImProm-II186

(Figure 2,a and Supplementary Figure S2, a and b). No statistically significant differences were detected187

between the profiles resulting from reverse transcription of SuprScript-IV or TGIRT (Supplementary188

Figure S2, d). The taxa Gemmatimonadetes, Fibrobacteria and Thermoanaerobaculia were relatively189

insensitive to the reverse transcription conditions. However the majority of the classes were enriched in190

some conditions. (I.) the rate of reverse transcription was only sensitive to temperature for the classes191

Alphaproteobacteria, Gemmatimonadetes, Fibrobacteria, Thermoanaerobaculia, TK10, and Blastocatellia192

(Figure 2, a). These groups tend to have extreme GC content (both high and low). (II.) Gammaproteobac-193

teria, Planctomycetacia and Phycisphaerae are relatively insensitive to the reaction temperature (Figure 2,194

a), but their abundances vary with different RT enzymes (Figure 2, b, Supplementary figure S2).195
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Figure 2. A proportional comparison of most abundant classes between the ImProm-II at 42 çC and

55 çC (a) and the ImProm-II at 55 çC and SuperScriptIV at 55 çC (b). Enrichment is expressed such that a

class that is equally proportional in both conditions, has a value of 0. If the class shows in one condition
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biological replicates.

Class enrichment statistics196

We calculated a linear regression, where the response variable was the relative proportion of each class197

between two tested categories, and the explanatory variable was the G-C content (the assumptions tests198

and plots can be found in the Supplementary file S2). The linear regression assumptions were tested:199

in case of two condition pairs (ImProm-II at 42 çC & SuperScript-IV as well as ImProm-II at 55 çC &200

SuperScript-IV), the assumption conditions were not met (Supplementary file S2). Since we cannot201

confidently discard the null hypothesis in these cases, we do not consider these two tests significant.202

Therefore, we are considering only the ImProm-II 42 çC & ImProm-II 55 çC as well as ImProm-II 42 çC &203

TGIRT as a significant outcome. Differences in the remaining cases cannot be explained by the weighted204

G-C content alone.205

DISCUSSION206

As high throughput sequencing has become increasingly accessible in recent years, researchers urgently207

call for method standardization to allow for accurate cross-study comparisons (Pan et al., 2010; Blago-208

datskaya and Kuzyakov, 2013). With this motivation, researchers developed new platforms that offer209
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Condition 1 Condition 2 Adjusted R2 t value p value Significance Note

ImProm-II 42 çC ImProm-II 55 çC 0.429 5.366 4.89E-06 ***
ImProm-II 42 çC SuperScript IV 0.1373 2.692 0.0127 * "

ImProm-II 42 çC TGIRT 0.2032 3.231 0.00264 **
ImProm-II 55 çC SuperScript IV 0.0841 -2.097 0.0431 * "

ImProm-II 55 çC TGIRT 0.03624 -1.546 0.131
SuperScript IV TGIRT 0.03634 1.548 0.130

Table 3. The linear regression statistics.

We used a GC content as an explanatory variable of a the class enrichment. The rows marked with a " do

not fulfill all test assumptions (see Supplementary File S2).

protocols and standardized methods for data acquisition from DNA resources, such as the Earth Micro-210

biome Project (http://www.earthmicrobiome.org/) that standardizes DNA amplicon sequencing. Despite211

the success with standardizing methods and protocols for DNA-based analysis, to this date, there is212

RNA-based methods have not been standardized, despite the discrepancies repeatedly reported between213

the RNA and DNA based analyses (Blazewicz et al., 2013; Carini et al., 2016; Dlo, 2015) and the plethora214

of methods used in these studies (Table 1). The analysis of rRNA adds specific biases to high throughput215

sequencing analysis, such as reduced template stability compared to DNA, RT priming bias, and linearity216

of RT reaction (Bustin and Nolan, 2004). These biases need to be either minimized or standardized.217

In this study, we focused on one crucial step in the RNA analysis that was previously overlooked:218

the transcription of RNA to cDNA (Table 1). Several biases connected to the RT reaction have been219

described for RT-qPCR, such as quantification of expressed genes (Bustin and Nolan, 2004, 2017; Zhang220

and Byrne, 2015) in RNA-Seq, i.e., primer related bias of expressed transcripts (Hansen et al., 2010).221

Yet, the role of reverse transcription in diversity patterns was not yet investigated in the context of high222

throughput sequencing of ribosomes. Here, we focus on the role of enzyme and reaction temperature223

in shaping the diversity and composition of ribosome-based communities. We have compared four RT224

enzymes commonly used in soil microbiology (Table 1) at two distinct temperature modes (42 çC and225

55 çC–57 çC). Then we analyzed temperature and RT enzyme-related effects on the resulting community226

profiles (Table 2).227

Under different reaction conditions, we detected differences in the relative abundance of bacterial228

classes portrayed by different reaction conditions (Figure 1). Some observed differences can be attributed229

to the combined effect of reaction temperature and average template G-C content (Figure 2 and Supple-230

mentary Figure S2). As expected, this effect is clearest when we applied the same enzyme (ImProm-II)231

at two reaction temperatures (42 çC and 55 çC), then the G-C content had the highest prediction power232

(t = 5.366, p = 4.8×1025, Table 3). Likewise, in every comparison of RT enzymes at low and high233

temperature, G-C content affected the relative abundance of taxonomic classes with statistical significance.234

Although the reverse transcription reactions are commonly performed at 42 çC (Table 1), our results235

indicate that this reaction temperature is too low to allow successful reverse transcription of some soil236

community taxa, in particular species with higher G-C content.237

When transcription was performed with different enzymes under similar reaction temperatures, relative238

abundances of taxa differed notably (Figure 1 and 2). Although the RTs of SuperScript-IV and TGIRT239

originate from different organisms, they yielded similar taxa abundances. Reactions with ImProm-II240

yielded different profiles. These differences cannot be explained by the G-C content (Table 3), but could241

be attributed to ribosome properties and the efficiency of reverse transcription. The ribosomes extracted242

from the soil environment were diverse and probably differ in their secondary and tertiary structures243

(Yilmaz et al., 2006) post-transcriptional modifications (Schwartz and Motorin, 2017). Thus RTs kinetics244

would differ. The discrepancies reported in this study raise further questions: how would one decide245

which enzymes or temperatures best reflect the active community composition? It has been suggested that246

the total community could be used as a reference to accurately deduce the diversity.247

However, previously we demonstrated that the total and active communities differ in both abundance248

profiles and in community composition during the dry season, while during the wet season, no differences249

between DNA and RNA communities were detected (Baubin et al., 2019). Furthermore, during the dry250

season, a ”phantom taxa” (Klein et al., 2016), Deinococcus-Thermus, comprised j 30 % of the total soil251

community but went undetected in the active community of the dry season by any of the above methods.252

These results suggest that the DNA-based total community may differ from the RNA-based community253

and thus cannot be used as a reliable reference for diversity. These results underline a need to standardize254
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and specify reverse transcription conditions to allow for cross-study comparisons.255

CONCLUSION256

We have tested commonly utilized RT enzymes at assorted temperatures and observed marked differences257

in the output community structure. These differences were attributed to RT type and reaction conditions.258

We suggest that RT reaction conditions may dictate the diversity of a given community and therefore259

the exact conditions should be detailed in full [i.e., the common notation, ”according to manufacturer260

instructions” does not provide sufficient information (Table 1)]. Furthermore, reverse transcription should261

be performed at a sufficiently high temperature to minimize the G-C bias, preferably at 55 çC. Lastly,262

we suggest that the same RT enzyme should be used across comparable studies, since we detected263

discrepancies between RT enzymes performing at equivalent conditions (Figure 2, b). Here, we highlight,264

for the first time, the need for standardisation and careful consideration of RT reaction conditions in265

studies describing ribosome-based diversity and community composition.266
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