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ABSTRACT12

It is assumed that the sequencing of ribosomes better reflects the active microbial community than the

sequencing of the ribosomal RNA encoding genes. Yet, many studies exploring microbial communities

in various environments, ranging from the human gut to deep oceans, questioned the validity of this

paradigm due to the discrepancies between the DNA and RNA based communities. Here we focus on

an often neglected key step in the analysis, the reverse transcription (RT) reaction. Previous studies

showed that RT may introduce biases when expressed genes and ribosmal rRNA are quantified, yet its

effect on microbial diversity and community composition was never tested. High throughput sequencing

of ribosomal RNA is a valuable tool to understand microbial communities as it better describes the active

population than DNA analysis. However, the necessary step of RT may introduce biases that have so

far been poorly described. In this manuscript, we compare three RT enzymes, commonly used in soil

microbiology, in two temperature modes to determine a potential source of bias due to non-standardized

RT conditions. In our comparisons, we have observed up to 6 fold differences in bacterial class abundance.

A temperature induced bias can be partially explained by G-C content of the affected bacterial groups,

thus pointing towards a need for higher reaction temperatures. However, another source of bias was due

to enzyme processivity differences. This bias is potentially hard to overcome and thus mitigating it might

require the use of one enzyme for the sake of cross-study comparison.
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INTRODUCTION29

Massively parallel amplicon sequencing revolutionized our view of microbial world: by sequencing30

a taxonomic tag such as 16S rRNA encoding gene, it allows taxonomic description of the microbial31

communities (Quammen, 2018). However, the existing approaches introduce caveats: the DNA amplicon32

sequencing may capture ‘relic DNA’, which is a recalcitrant genetic material from dead cells or naked33

DNA (Carini et al., 2016) in addition, amplicon sequencing carries technical biases due to sample34

preparation, DNA extraction methods (Pan et al., 2010), amplification reaction (Pfeiffer et al., 2014) and35

analysis (Pollock et al., 2018). Moreover, DNA-based microbiome information can describe the total36

community, but it cannot report which members are metabolically active (Blazewicz et al., 2013). In37

contrast to DNA based tools, analysis of ribosomes can describe the metabolically active members of a38

given community. The combination of data generated from rRNA encoding genes and ribosomes led to a39

wide range of ecological insights, including the response to climatic changes (Angel et al., 2013), pH and40

water availability (Romanowicz et al., 2016), and biogeochemical processes (Freedman et al., 2015).41

Ribosomal analysis studies are based on an assumption that ribosomes are more abundant in active cells42

compared to dormant ones (Blazewicz et al., 2013; Lennon and Jones, 2011). However, this assumption43

may not always be correct. Dormant bacteria may be misclassified as active, when ribosomes are present44

in cells and spores that are inactive (Segev et al., 2013; Blagodatskaya and Kuzyakov, 2013). In contrast,45
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active bacteria with low metabolic turnover and low ribosomal count could be labeled as dormant when46

sequencing depth is insufficient (Steven et al., 2017; Joergensen and Wichern, 2018). In spite of various47

biases that introduce discrepancies in the community structure (Forney et al., 2004), ribosomal analysis48

can capture the biological variability highlighting large differences between samples. However, if more49

subtle differences are of interest, technical biases could confound biological interpretations (Lever et al.,50

2015; McCarthy et al., 2015). This is due to specific challenges introduced RNA based analysis (Bustin51

and Nolan, 2004, 2017). Therefore, to confidently compare results across ribosome-based amplicon52

sequencing studies, we must determine which component of the analysis: RNA extraction, processing or53

data analysis may influence the outcome and introduce biases.54

Prior studies focused on biases in the steps of RNA extraction, amplification and sequencing, but55

disregard any biases that may occur during RT (Creer et al., 2016). At the crucial step of RT, most56

researches simply ’follow the manufacture instructions’(Table 1). However, RT kits typically detail a57

wide range of temperatures, primer, template and reaction options, which may lead to different results.58

The reverse transcriptase (RT) enzyme requires sequence priming to initiate a reaction. Primers could be59

poly-A complementary, random or sequence specific. Poly-A priming is limited to eukaryotic mRNA60

which makes it unsuitable for use with ribosomal taxonomic tags. Opinions vary about the usefulness of61

random and sequence-specific priming for the analysis of microbiomes: Random priming may produce62

higher yield of cDNA and improve the detection limit (Zhang and Byrne, 2015; Ståhlberg et al., 2004a),63

but may decrease the reproducibility and introduce bias (Bustin and Nolan, 2004; Hansen et al., 2010).64

Sequence specific primes require fine tuning of the reaction conditions and higher template concentration65

than random priming (Ståhlberg et al., 2004b). Moreover, the results of the RT reaction is determined not66

only by the type of the RT enzyme used, but also by the reaction conditions (Curry et al., 2002; Ståhlberg67

et al., 2004a,b; Bustin and Nolan, 2004; Sieber et al., 2010).68

Ideally RT efficiency is near 100 %, but in practice it varies dramatically: 90 % efficiency was reported69

for SuperScript III (mutated MMLV RT) (Ståhlberg et al., 2004a), 20 % for Murine Leukemia Virus70

(M-MLV) RT (Curry et al., 2002), and as low as 2 % for Avian Myeloblastosis Virus (AMV) RT (Ståhlberg71

et al., 2004a). Moreover almost two order of magnitude difference were reported between mutated and72

wild-type AMV RT (Ståhlberg et al., 2004a).73

To the best of our knowledge no study has yet compared the RT reaction conditions for environmental74

microbiome profile. We hypothesize that during RT reactions, varying RT enzyme types and temperature75

conditions will yield different results in microbial diversity and community composition. We further76

predict that variations in communities will be G-C dependent. To test our prediction, we present a77

comparative study of commonly used RT enzymes in the field of environmental microbiology as well as a78

comparison of two different reaction temperatures.79

Manufacturer RT Enzyme RT origin Temperature [çC] RNA type Primer type Ref
Suggested Used

Promega MMLV MMLV 37 –42 NA rRNA 926R Carson et al. (2010)
NA rRNA & mRNA Random hexamers Pratscher et al. (2011)

ImProm-II AMV 37 –55 42 rRNA & mRNA Random hexamers Angel et al. (2013)
NA rRNA Random hexamers Ke et al. (2015)

Qiagen QuantiTect Quantiscript 42 –50 NA rRNA Unique RT Primer Mix Barnard et al. (2015)
37 rRNA Random hexamers Placella et al. (2012)

Omniscript Quantiscript 37 NA mRNA Random hexamers Paulin et al. (2013)
NA mRNA invA-R Garcı́a et al. (2010)

Takara PrimeScript II AMV 42 –50 NA mRNA Random hexamers Huang et al. (2016)
NA rRNA Random hexamers Che et al. (2018)

Roche Roche reverse
transcription kit

AMV 42 –60 42 & 50 rRNA Random hexamers Nunes et al. (2018)
42 & 50 rRNA Random hexamers Jurburg et al. (2017)

Thermo Fisher MMLV MMLV 37 –42 45 rRNA 900R Lillis et al. (2009)
NA rRNA Random hexamers Baldrian et al. (2012)

SuperScript-II MMLV 42 –55 NA rRMA 1492R Degelmann et al. (2009)
NA mRNA Random hexamers Nacke et al. (2014)

SuperScript-III MMLV 42 –55 NA rRNA Random hexamers Angel and Conrad (2013)
NA rRNA 27F & LR3 Romanowicz et al. (2016)

Table 1. Literature overview of RT conditions applied in soil microbiological studies.
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MATERIALS AND METHODS80

Study site and sample collection scheme81

Soil samples were collected at the central Negev Desert highlands, Israel (Zin Plateau, 30ç862N, 34ç802E)82

at an established ecological research site. The mean annual precipitation at the sampling site is 90 mm and83

the mean annual temperature is 30 çC (LTER data). Samples were collected under the canopy of perennial84

shrub Hammada scoparia in October 2015 at the end of the dry season as previously described (Baubin85

et al., 2019). Briefly, sampling was conducted in seven random blocks, each providing two technical86

replicates resulting in 14 samples. Samples were collected from the top 5 cm of the soil, following the87

removal of crust and debris. The soil samples were processed within 24 h of collection. Samples were88

homogenized using 2 mm sieve and the duplicates from each block were composited. This resulted in89

seven final replicates.90

RNA preparation91

Total RNA was extracted from each of the seven samples using a phenol-chlorophorm extraction pre-92

viously described by Angel (2012). The reaction buffer pH was adjusted to 5. The total RNA was93

subsequently purified with the MagListoTMTotal RNA Extraction Kit (Bioneer, Daejeon, Republic of94

Korea). Contaminant DNA was removed using a DNAse I from the MasterPure RNA Purification Kit95

(Epicenter, Madison, WI, USA) with two successive treatments of 30 min according to manufacturer’s96

instructions. The reaction mixture was purified using the MagListoTMTotal RNA Extraction Kit (Bioneer).97

The absence of contaminant DNA was verified using total bacterial primers 341F (5’ CCTACGGGAG-98

GCAGCAG 3’) and 515R (5’ TTACCGCGGCTGCTGGCAC 3’) (Klindworth et al., 2013) and DreamTaq99

DNA polymerase (Thermo Scientific, Waltham, MA, USA) under the following conditions: 95 çC for100

5 min, followed by 26 cycles of 95 çC for 15 s, 60 çC for 30 s and 72 çC for 30 s for extension followed by101

72 çC for 5 min for final extension. If amplification was detected the sample was discarded, re-extracted,102

purified and tested. Only DNA-free samples were used in this study.103

Reverse transcription reaction conditions104

RT kits used in this experiment were chosen to represent the most commonly used enzymes in the105

field (Figure 1). All seven samples were reverse transcribed by the same kit to reduce batch effects.106

Each RT kit used in this study originated from a different source: (I.) ImProm-II Reverse Transcription107

System enzyme (Promega, Madison, WI, USA) originates from AMV RT, (II.) SuperScript IV Reverse108

Transcriptase Kit enzyme (ThermoFisher Scientific, Waltham, MA, USA) originates from MMLV RT109

and (III.) TGIRT originates from the mobile group II introns reverse transcriptase (Mohr et al., 2013)110

TGIRTTM-III Enzyme (InGex,St. Louis, MO, USA). Each reaction consisted of 50 ng of total RNA111

template, measured by Quanti-iTTMRNA Assay Kit (ThermoFisher), and random hexamer primers112

(0.5 µg/reaction). Template and primer mix were heated to 70 çC (ImProm-II) or 65 çC (SuperScript113

IV). Each reaction was subsequently cooled to 4 çC for 5 min and incubated at 42 çC (ImProm-II), 55 çC114

(ImProm-II and Superscript) or 57 çC (TGIRT) for 60 min (ImProm-II), 120 min (TGIRT) or 10 min115

(SuperScript IV). All reactions were terminated and DNA was removed by alkaline lysis using 2 µl of116

1 M NaOH, incubating for 12 min at 70 çC. After which the reaction was neutralized using 4 µl of 0.5 M117

acetic acid (Table 2).118

Illumina sequence preparation119

The V3 and V4 regions of the resulting cDNA were amplified using 341F (5’ CCTACGGGAGGCAGCAG120

3’) and 806R (5’ GGTCTGGACTACHVGGGTWTCTAAT 3’) (Klindworth et al., 2013) primers. Each121

reaction was performed in triplicate and consisted of 1 mM bovine serum albumin (Takara, Kusatsu,122

Japan), 2.5 µl of 10x standard buffer, 5 µM primers, 0.8 mM dNTPs, 0.4 µl DreamTaq DNA polymerase123

(Thermo Scientific, Waltham, MA, USA), and 4 µl of template cDNA. The reaction mixtures were124

subsequently amplified using the following PCR conditions: 95 çC for 30 s, 27 cycles of 95 çC for 15 s,125

50 çC for 30 s, 68 çC for 30 s and 68 çC for 5 min. Resulting amplicon presence was verified using 1.5 %126

agarose gel electrophoresis. Resulting technical triplicates were combined, and the sequencing libraries127

were constructed using the TruSeq R© DNA Sample Preparation Kit (Illumina, San Diego, CA, USA)128

following the manufacturer’s recommendations. The amplicon libraries were sequenced (250x2 base pairs,129

pair-end) on the Illumina MiSeq System platform at the Research Resources Centre at the University of130

Illinois.131
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Thermo cycling Reaction mix
Manufacturer RT kit Primers Temperature [çC] Time [min] Reactant Amount

Promega Im-Prom II
Random Hexamers
(500 ng/reaction) 70 5 DTT 10 µM

4 5 Tris-HCl 50 mM
25 5 KCl 75 mM
42 60 MgCl2 2.5 mM
70 15 dNTP 0.5 mM

RNAse inhibitor 0.5 µl/20 µl

Promega Im-Prom II
Random Hexamers
(500 ng/reaction) 70 5 DTT 10 µM

4 5 Tris-HCl 50 mM
25 5 KCl 75 mM
55 60 MgCl2 2.5 mM
70 15 dNTP 0.5 mM

RNAse inhibitor 0.5 µl/20 µl

ThermoFisher SuperScriptIV Random Hexamers (2.5 µM) 65 5 DTT 5 µM
0 1 Tris-HCl 50 mM
23 10 KCl 50 mM
55 10 MgCl2 4 mM
80 10 dNTP 0.5 mM

RNAse inhibitor 0.5 µl/20 µl

TGIRT TGIRT-III
Random Hexamers
(500 ng/reaction) 65 5 DTT 5 µM

0 1 Tris-HCl 10 mM
23 10 EDTA 1 mM
58 120 MgCl2 4 mM
80 10 dNTP 0.5 mM

RNAse inhibitor 0.5 µl/20 µl

Table 2. A summary of conditions applied to the different reaction conditions. .

Sequence analysis132

Resulting paired end sequences were merged using the CASPER program (Kwon et al., 2014), and the133

resulting merged reads were clustered using the UPARSE pipeline according to the recommended settings134

(Edgar, 2013). The resulting OTU representative sequences were taxonomically assigned with the SINA135

incremental aligner using a lowest common ancestor algorithm (Pruesse et al., 2007) and the SILVA136

database version 132 (Quast et al., 2013). All sequences retrieved in this study were uploaded to European137

Nucleotide Archive (https://www.ebi.ac.uk/ena) submission number PRJEB32237.138

Class enrichment plot data preparation139

To explore whether G-C content contributed to differences in relative abundances of different taxa, we ran140

the following analysis: for each reaction condition we calculated pairwise comparisons at the class level:141

we normalized the proportional enrichment in each respective reaction conditions following Equation 1142

(Figure 2 and Supplementary Figure S2), where the A and B represent a class at the different conditions.143

Classnormalized =
A2B

A+B
(1)144

The error bars represent a standard deviation, which have been calculated as a standard deviation145

of each category and normalized according to the Equation 2. The δA and δB represent the standard146

deviation of class A and B. Details of deriving this equations are specified in Supplementary Equation S1.147

δClassnormalized =
2

(A+B)2

√

B2δA2 +A2δB2 (2)148

Statistical analysis149

All data analysis was performed in R v3.4.3 (R Core Team, 2018). The dataset was sub-sampled (rarified)150

to an even depth of 9000 sequences per sample using python numpy package v1.15.4 (Van Der Walt et al.,151

2011). The subsampling removed five samples from the dataset. Additionally, three more samples were152

removed as outliers (“https://gitlab.com/stovicek/rt˙article/blob/master/data˙preparation.ipynb). In order153

to equalize the number of replicates, two random samples were removed from the TGIRT dataset. This154

reduced the number of replicates to four samples per experimental category. The sample diversity was155

analyzed using the vegan package v2.5-2 (Oksanen et al., 2018). The data was visualized using the R156

package ggplot2 package v2.2.1 (Wickham, 2016) and python package matplotlib (Hunter, 2007).157
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RESULTS158

Sample preparation and diversity analysis159

After removing obvious outliers, four samples from each condition were analyzed. The summary of160

the analysis and all the code used to produce each figure is included in the Supplementary File S1161

and S2. The changes in bacterial diversity among the tested conditions were expressed using species162

count, Pielou’s evenness index (Pielou, 1967) and Shannon diversity index (Shannon and Weaver, 1949).163

Despite observed trends in the diversity indices, no statistically significant differences were detected164

(Supplementary Figure S1, Supplementary diversity statistics.ipynb).165

Relative abundance plot166

A relative abundance of major taxonomic classes is depicted in the Figure 1. Each column is an av-167

erage of four biological replicates. OTUs (operational taxonomic units) that were not taxonomically168

assigned at this level are summarized as ”Unclassified” (j 2 %). Various patterns (detailled below)169

were detected among the experimental conditions: some patterns could be attributed to differences in170

reaction temperature (which ranged from 42 çC to 55 çC and 57 çC).Other patterns could be linked to171

enzyme type. RT reactions with SupeScript IV and TGIRT RTs yielded no significant differences in172

class relative abundances. However, transcription with ImProm-II RT at a similar temperature (j 55 çC)173

yielded different abundances: specifically, the abundances of Alphaproteobacteria, Bacteroidia, Deltapro-174

teobacteria, Oxyphotobacteria, Rubrobacteria and Verrucomicrobidae decreased. However, Chloflexia,175

Gammaproteobacteria and Thermoleophilia abundances increased when their ribosomes were transcribed176

with ImProm-II RT (Figure 1, Supplementary Table S1). When transcription occured at lower temperature177

(42 çC), relative abundances of Bacilli, Deltaproteobacteria and Oxyphotobacteria were enriched, while178

Actinobacteria, Chloroflexia and Acidimicrobia were depleted under the same conditions (Figure 1 and179

Supplementary Table S1).180

Class enrichment plot181

The Figure 2 also depicts the weighted average of the G-C content in each class. The proportional182

comparison is interpreted as follows: A value of zero in the proportional comparison represents the183

taxonomic class count that is exactly equal between the two compared groups (Figure 2). A value of 1184

or -1 is assigned when a given taxonomic class is only present in one category and absent in another,185

respectively. In general, there was a tendency towards lower G-C content lower temperature of ImProm-186

II (Figure 2,a, and Supplementary Figure S2, a and b). No statistically significant differences were187

detected between the profiles resulting from RT of SuprScript-IV or TGIRT (Supplementary Figure S2,188

d). The taxa Gemmatimonadetes, Fibrobacteria and Thermoanaerobaculia were relatively insensitive189

to the RT conditions. However the majority of the classes were enriched in some conditions. (I.) the190

rate of RT was only sensitive to temperature for the classes Alphaproteobacteria, Gemmatimonadetes,191

Fibrobacteria, Thermoanaerobaculia, TK10, and Blastocatellia (Figure 2, a). These groups tend to have192

extreme GC content (both high and low). (II.) Gammaproteobacteria, Planctomycetacia and Phycisphaerae193

are relatively insensitive to the reaction temperature (Figure 2, a), but their abundances vary with different194

RT enzymes (Figure 2, b, Supplementary figure S2).195

Class enrichment statistics196

We calculated a linear regression, where the response variable was the relative proportion of each class197

between two tested categories, and the explanatory variable was the G-C content (the assumptions tests198

and plots can be found in the Supplementary file S2). The linear regression assumptions were tested:199

in case of two condition pairs (ImProm-II at 42 çC & SuperScript-IV as well as ImProm-II at 55 çC &200

SuperScript-IV), the assumption conditions were not met (Supplementary file S2). Since we cannot201

confidently discard the null hypothesis in these cases, we do not consider these two tests significant.202

Therefore, we are considering only the ImProm-II 42 çC & ImProm-II 55 çC as well as ImProm-II 42 çC &203

TGIRT as a significant outcome. Differences in the remaining cases cannot be explained by the weighted204

G-C content alone (Table 3).205

DISCUSSION206

As high throughput sequencing has become increasingly accessible in recent years, researchers urgently207

call for method standardization to allow for accurate cross-study comparisons (Pan et al., 2010; Blago-208
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Treatment conditions

Figure 1. Relative abundance of main classes across each tested condition. Only top 15 % of the most

abundant classes are represented and the rest is summarized in the ’Low abundance’ category. The x axis

show different enzymes and conditions. The y axis shows an average relative abundance. Each category

is an average of 4 samples.

datskaya and Kuzyakov, 2013). With this motivation, researchers developed new platforms that offer209

protocols and standardized methods for data acquisition from DNA resources, such as the Earth Micro-210

biome Project (http://www.earthmicrobiome.org/) that standardizes DNA amplicon sequencing. Despite211

the success with standardizing methods and protocols for DNA-based analysis, to this date, there is212

RNA-based methods have not been standardized, despite the discrepancies repeatedly reported between213

the RNA and DNA based analyses (Blazewicz et al., 2013; Carini et al., 2016; Dlott et al., 2015) and214

the plethora of methods used in these studies (Table 1). The analysis of rRNA adds specific biases to215

high throughput sequencing analysis, such as reduced template stability compared to DNA, RT priming216

bias, and linearity of RT reaction (Bustin and Nolan, 2004). These biases need to be either minimized or217

standardized.218

In this study, we focused on one crucial step in the RNA analysis that was previously overlooked:219

the transcription of RNA to cDNA (Table 1). Several biases connected to the RT reaction have been220

described for RT-qPCR, such as quantification of expressed genes (Bustin and Nolan, 2004, 2017; Zhang221

and Byrne, 2015) in RNA-Seq, i.e., primer related bias of expressed transcripts (Hansen et al., 2010). Yet,222

the role of RT in diversity patterns was not yet investigated in the context of high throughput sequencing223

of ribosomes. Here, we focus on the role of enzyme and reaction temperature in shaping the diversity and224

composition of ribosome-based communities. We have compared four RT enzymes commonly used in soil225
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Figure 2. A proportional comparison of most abundant classes between the ImProm-II at 42 çC and

55 çC (a) and the ImProm-II at 55 çC and SuperScriptIV at 55 çC (b). Enrichment is expressed such that a

class that is equally proportional in both conditions, has a value of 0. If the class shows in one condition

but is absent from another, its value would be equal to 1 or -1 respectively. Furthermore, a weighted

average of the GC content of each class is expressed as the bar color. Each value is an average of 4

biological replicates.

Condition 1 Condition 2 Adjusted R2 t value p value Significance Note

ImProm-II 42 çC ImProm-II 55 çC 0.429 5.366 4.89E-06 ***
ImProm-II 42 çC SuperScript IV 0.1373 2.692 0.0127 * "

ImProm-II 42 çC TGIRT 0.2032 3.231 0.00264 **
ImProm-II 55 çC SuperScript IV 0.0841 -2.097 0.0431 * "

ImProm-II 55 çC TGIRT 0.03624 -1.546 0.131
SuperScript IV TGIRT 0.03634 1.548 0.130

Table 3. The linear regression statistics.

We used a GC content as an explanatory variable of a the class enrichment. The rows marked with a " do

not fulfill all test assumptions (see supplementary diversity statistics.ipynb).

microbiology (Table 1) at two distinct temperature modes (42 çC and 55 çC–57 çC). Then we analyzed226

temperature and RT enzyme-related effects on the resulting community profiles (Table 2).227

Under different reaction conditions, we detected differences in the relative abundance of bacterial228

classes portrayed by different reaction conditions (Figure 1). Some observed differences can be attributed229

to the combined effect of reaction temperature and average template G-C content (Figure 2 and Supple-230

mentary Figure S2). As expected, this effect is clearest when we applied the same enzyme (ImProm-II)231

at two reaction temperatures (42 çC and 55 çC), then the G-C content had the highest prediction power232

(t = 5.366, p = 4.8×1025, Table 3). Likewise, in every comparison of RT enzymes at low and high233

temperature, G-C content affected the relative abundance of taxonomic classes with statistical significance.234

Although the RT reactions are commonly performed at 42 çC (Table 1), our results indicate that this235

reaction temperature is too low to allow successful RT of some soil community taxa, in particular species236

with higher G-C content.237

When transcription was performed with different enzymes under similar reaction temperatures, relative238

abundances of taxa differed notably (Figure 1 and 2). Although the RTs of SuperScript-IV and TGIRT239

originate from different organisms, they yielded similar taxa abundances. Reactions with ImProm-II240

yielded different profiles. These differences cannot be explained by the G-C content (Table 3), but could241

be attributed to ribosome properties and the efficiency of RT. The ribosomes extracted from the soil242

environment were diverse and probably differ in their secondary and tertiary structures (Yilmaz et al.,243

2006) post-transcriptional modifications (Schwartz and Motorin, 2017). Thus RTs kinetics would differ.244

The discrepancies reported in this study raise further questions: how would one decide which enzymes245

or temperatures best reflect the active community composition? It has been suggested that the total246
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community could be used as a reference to accurately deduce the diversity. Furthermore, this study was247

performed on desert soil samples and the effects in other environments remain to be determined.248

We previously demonstrated that the total and active communities in the Negev soil used in this study249

differ in both abundance profiles and community composition during the dry season, while during the250

wet season, no differences were detected (Baubin et al., 2019). During the dry season, a ”phantom taxa”251

(Klein et al., 2016), Deinococcus-Thermus, comprised j 30 % of the total soil community (Baubin et al.,252

2019) but was undetected in the active community of the dry season by any of the methods used here.253

These results suggest that the DNA-based total community may differ from the RNA-based community254

and thus cannot be used as a reliable reference for diversity. Furthermore, our results underline a need to255

standardize and specify the RT conditions that allow cross-study comparisons. The scale of the effect256

of RT conditions on the RNA-based community might vary with a studied biome. Dependending on257

obvious factors such as GC content (discussed above), as well as poorly studied factors such as ribosomal258

post-transcriptional modifications. Therefore, we recommend verifying each case separately before259

attempting a cross-study comparison.260

CONCLUSION261

We have tested commonly utilized RT enzymes at assorted temperatures and observed marked differences262

in the output community structure. These differences were attributed to RT type and reaction conditions.263

We suggest that RT reaction conditions may dictate the diversity of a given community and therefore264

the exact conditions should be detailed in full [i.e., the common notation, ”according to manufacturer265

instructions” does not provide sufficient information (Table 1)]. Furthermore, RT should be performed at266

a sufficiently high temperature to minimize the G-C bias, preferably at 55 çC. Lastly, we suggest that the267

same RT enzyme should be used across comparable studies, since we detected discrepancies between268

RT enzymes performing at equivalent conditions (Figure 2, b). Here, we highlight, for the first time,269

the need for standardisation and careful consideration of RT reaction conditions in studies describing270

ribosome-based diversity and community composition.271
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Ståhlberg, A., Håkansson, J., Xian, X., Semb, H., and Kubista, M. (2004a). Properties of the Reverse414

Transcription Reaction in mRNA Quantification. Clinical Chemistry, 50(3):509–515.415
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