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Background. The availability of large databases containing high resolution three-dimensional (3D)

models of proteins in conjunction with functional annotation allows the exploitation of advanced

supervised machine learning techniques for automatic protein function prediction.

Methods. In this work, novel shape features are extracted representing protein structure in the form of

local (per amino acid) distribution of angles and amino acid distances, respectively. Each of the multi-

channel feature maps is introduced into a deep convolutional neural network (CNN) for function

prediction and the outputs are fused through Support Vector Machines (SVM) or a correlation-based k-

nearest neighbor classifier. Two different architectures are investigated employing either one CNN per

multi-channel feature set, or one CNN per image channel.

Results. Cross validation experiments on enzymes (n = 44,661) from the PDB database achieved 90.1%

correct classification demonstrating the effectiveness of the proposed method for automatic function

annotation of protein structures.

Discussion. The automatic prediction of protein function can provide quick annotations on extensive

datasets opening the path for relevant applications, such as pharmacological target identification.
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1 INTRODUCTION21

Research in metagenomics led to a huge increase of protein databases and discovery of new protein22

families (Godzik, 2011). While the number of newly discovered, but possibly redundant, protein sequences23

rapidly increases, experimentally verified functional annotation of whole genomes remains limited. Protein24

structure, i.e. the 3D configuration of the chain of amino acids, is a very good predictor of protein function,25

and in fact a more reliable predictor than protein sequence because it is far more conversed in nature26

(Illergård et al., 2009).27

By now, the number of proteins with functional annotation and experimentally predicted structure28

of their native state (e.g. by NMR spectroscopy or X-ray crystallography) is adequately large to allow29

learning training models that will be able to perform automatic functional annotation of unannotated30

proteins. Also, as the number of protein sequences rapidly grows, the overwhelming majority of proteins31

can only be annotated computationally. In this work enzymatic structures from the Protein Data Bank32

(PDB) are considered and the enzyme commission (EC) number is used as a fairly complete framework33

for annotation. The EC number is a numerical classification scheme based on the chemical reactions the34

enzymes catalyze, proven by experimental evidence (web, 1992).35

There have been plenty machine learning approaches in the literature for automatic enzyme annotation.36

A systematic review on the utility and inference of various computational methods for functional charac-37

terization is presented in (Sharma and Garg, 2014), while a comparison of machine learning approaches38

can be found in (Yadav and Tiwari, 2015). Most methods use features derived from the amino acid39

sequence and apply Support Vector Machines (SVM) (Cai et al., 2003)(Han et al., 2004)(Dobson and40

Doig, 2005)(Chen et al., 2006)(Zhou et al., 2007)(Lu et al., 2007)(Lee et al., 2009)(Qiu et al., 2010)(Wang41

et al., 2010)(Wang et al., 2011)(Amidi et al., 2016), k-Nearest Neighbor (kNN) classifier (Huang et al.,42

2007)(Shen and Chou, 2007a)(Nasibov and Kandemir-Cavas, 2009a), classification trees/forests (Lee43

et al., 2009)(Kumar and Choudhary, 2012a)(Nagao et al., 2014)(Yadav and Tiwari, 2015), and neural44

networks (Volpato et al., 2013). In (Borgwardt et al., 2005) sequential, structural and chemical information45

was combined into one graph model of proteins which was further classified by SVM. There has been little46
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work in the literature on automatic enzyme annotation based only on structural information. A Bayesian47

approach (Borro et al., 2006) for enzyme classification using structure derived properties achieved 45%48

accuracy. Amidi et al. (2016) obtained 73.5% classification accuracy on 39,251 proteins from the PDB49

database when they used only structural information.50

In the past few years, deep learning techniques, and particularly convolutional neural networks,51

have rapidly become the tool of choice for tackling many challenging computer vision tasks, such as52

image classification (Krizhevsky et al., 2012). The main advantage of deep learning techniques is the53

automatic exploitation of features and tuning of performance in a seamless fashion, that simplifies the54

conventional image analysis pipelines. CNNs have recently been used for protein secondary structure55

prediction (Spencer et al., 2015)(Li and Shibuya, 2015). In (Spencer et al., 2015) prediction was based56

on the position-specific scoring matrix profile (generated by PSI-BLAST), whereas in (Li and Shibuya,57

2015) 1D convolution was applied on features related to the amino acid sequence. Also a deep CNN58

architecture was proposed in (Lin et al., 2016) to predict protein properties. This architecture used a59

multilayer shift-and-stitch technique to generate fully dense per-position predictions on protein sequences.60

To the best of authors’s knowledge, deep CNNs have not been used for prediction of protein function so61

far.62

In this work the author exploits experimentally acquired structural information of enzymes and apply63

deep learning techniques in order to produce models that predict enzymatic function based on structure.64

Novel geometrical descriptors are introduced and the efficacy of the approach is illustrated by classifying65

a dataset of 44,661 enzymes from the PDB database into the l = 6 primary categories: oxidoreductases66

(EC1), transferases (EC2), hydrolases (EC3), lyases (EC4), isomerases (EC5), ligases (EC6). The novelty67

of the proposed method lies first in the representation of the 3D structure as a “bag of atoms (amino acids)”68

which are characterized by geometric properties, and secondly in the exploitation of the extracted feature69

maps by deep CNNs. Although assessed for enzymatic function prediction, the method is not based70

on enzyme-specific properties and therefore can be applied (after re-training) for automatic large-scale71

annotation of other 3D molecular structures, thus providing a useful tool for data-driven analysis. In72

the following sections more details on the implemented framework are first provided, including the73

representation of protein structure, the CNN architecture and the fusion process of the network outputs.74

Then the evaluation framework and the obtained results are presented, followed by some discussion and75

conclusions.76

2 METHODS77

Data-driven CNN models tend to be domain agnostic and attempt to learn additional feature bases that78

cannot be represented through any handcrafted features. It is hypothesized that by combining “amino acid79

specific” descriptors with the recent advances in deep learning we can boost model performance. The80

main advantage of the proposed method is that it exploits complementarity in both data representation81

phase and learning phase. Regarding the former, the method uses an enriched geometric descriptor that82

combines local shape features with features characterizing the interaction of amino acids on this 3D83

spatial model. Shape representation is encoded by the local (per amino acid type) distribution of torsion84

angles (Bermejo et al., 2012). Amino acid interactions are encoded by the distribution of pairwise amino85

acid distances. While the torsion angles and distance maps are usually calculated and plotted for the86

whole protein (Bermejo et al., 2012), in the current approach they are extracted for each amino acid87

type separately, therefore characterizing local interactions. Thus, the protein structure is represented as88

a set of multi-channel images which can be introduced into any machine learning scheme designed for89

fusing multiple 2D feature maps. Moreover, it should be noted that the utilized geometric descriptors90

are invariant to global translation and rotation of the protein, therefore previous protein alignment is not91

required.92

Our method constructs an ensemble of deep CNN models that are complementary to each other.93

The deep network outputs are combined and introduced into a correlation-based k-nearest neighbor94

(kNN) classifier for function prediction. For comparison purposes, SVM were also implemented for95

final classification. Two system architectures are investigated in which the multiple image channels are96

considered jointly or independently, as will be described next. Both architectures use the same CNN97

structure (within the highlighted boxes) which is illustrated in Fig.1.98
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Figure 1. The deep CNN ensemble for protein classification. In this framework (Architecture 1) each

multi-channel feature set is introduced to a CNN and results are combined by kNN or SVM classification.

The network includes layers performing convolution (Conv), batch normalization (Bnorm), rectified linear

unit (ReLU) activation, dropout (optionally) and max-pooling (Pool). Details are provided in section 2.2.

2.1 Representation of protein structure99

The building blocks of proteins are amino acids which are linked together by peptide bonds into a chain.100

The polypeptide folds into a specific conformation depending on the interactions between its amino acid101

side chains which have different chemistries. Many conformations of this chain are possible due to the102

rotation of the chain about each carbon (Cα) atom. For structure representation, two sets of feature103

maps were used. They express the shape of the protein backbone and the distances between the protein104

building blocks (amino acids). The use of global rotation and translation invariant features is preferred105

over features based on the Cartesian coordinates of atoms, in order to avoid prior protein alignment, which106

is a bottleneck in the case of large datasets with proteins of several classes (unknown reference template107

space). The feature maps were extracted for every amino acid being present in the dataset including the108

20 standard amino acids, as well as asparagine/aspartic (ASX), glutamine/glutamic (GLX), and all amino109

acids with unidentified/unknown residues (UNK), resulting in m = 23 amino acids in total.110

Torsion angles density. The shape of the protein backbone was expressed by the two torsion angles of111

the polypeptide chain which describe the rotations of the polypeptide backbone around the bonds between112

N-Cα (angle φ ) and Cα-C (angle ψ). All amino acids in the protein were grouped according to their type113

and the density of the torsion angles φ and ψ(* [2180,180]) was estimated for each amino acid type114

based on the 2D sample histogram of the angles (also known as Ramachandran diagram) using equal115

sized bins (number of bins hA = 19). The histograms were not normalized by the number of instances,116

therefore their values indicate the frequency of each amino acid within the polypeptide chain. In the117

obtained feature maps (XA), with dimensionality [hA×hA×m], he number of amino acids (m) corresponds118

to the number of channels. Smoothness in the density function was achieved by moving average filtering,119

i.e. by convoluting the density map with a 2D gaussian kernel (σ = 0.5).120

Density of amino acid distances. For each amino acid ai, i = 1, ..,m, the distances to amino acid121

a j, j = 1, ..,m, in the protein are calculated based on the coordinates of the Cα atoms for the residues122

and stored as an array di j. Since the size of the proteins varies significantly, the length of the array di j123

is different across proteins, thus not directly comparable. In order to standardize measurements, the124

sample histogram of di j is extracted (using equally sized bins) and smoothed by convolution with a 1D125

gaussian kernel (σ = 0.5). The processing of all pairs of amino acids resulted to feature maps (XD) of126

dimensionality [m×m×hD], where hD = 8 is the number of histogram bins (considered as number of127

channels in this case).128

3/11

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2778v1 | CC BY 4.0 Open Access | rec: 5 Feb 2017, publ: 5 Feb 2017



2.2 Classification by deep CNNs129

Feature extraction stage of each CNN. The CNN architecture employs three computational blocks of130

consecutive convolutional, batch normalization, rectified linear unit (ReLU) activation, dropout (option-131

ally) and max-pooling layers, and a fully-connected layer. The convolutional layer computes the output132

of neurons that are connected to local regions in the input in order to extract local features. It applies133

a 2D convolution between each of the input channels and a set of filters. The 2D activation maps are134

calculated by summing the results over all channels and then stacking the output of each filter to produce135

the output 3D volume. Batch normalization normalizes each channel of the feature map by averaging over136

spatial locations and batch instances. The ReLU layer applies an element-wise activation function, such137

as the max(0,x) thresholding at zero. The dropout layer is used to randomly drop units from the CNN138

during training and reduce overfitting. Dropout was used only for the XA feature set. The pooling layer139

performs a downsampling operation along the spatial dimensions in order to capture the most relevant140

global features with fixed length. The max operator was applied within a [2×2] neighborhood. The last141

layer is fully-connected and represents the class scores.142

Training and testing stage of each CNN. The output of each CNN is a vector of probabilities, one for143

each of the l possible enzymatic classes. The CNN performance can be measured by a loss function which144

assigns a penalty to classification errors. The CNN parameters are learned to minimize this loss averaged145

over the annotated (training) samples. The softmaxloss function (i.e. the softmax operator followed by the146

logistic loss) is applied to predict the probability distribution over categories. Optimization was based on147

an implementation of stochastic gradient descent. At the testing stage, the network outputs after softmax148

normalization are used as class probabilities.149

2.3 Fusion of CNN outputs using two different architectures150

Two fusion strategies were implemented. In the first strategy (Architecture 1) the two feature sets, XA151

and XD, are each introduced into a CNN, which performs convolution at all channels, and then the l class152

probabilities produced for each feature set are combined into a feature vector of length l 72. In the second153

strategy (Architecture 2) , each one of the (m = 23 or hD = 8) channels of each feature set is introduced154

independently into a CNN and the obtained class probabilities are concatenated into a vector of l 7m155

features for XA and l 7hD features for XD, respectively. These two feature vectors are further combined156

into a single vector of length l 7 (m+hD) (=186). For both architectures, kNN classification was applied157

for final class prediction using as distance measure between two feature vectors, x1 and x2, the metric158

12 cor(x1,x2), where cor is the sample Spearman’s rank correlation. The value k = 12 was selected for159

all experiments. For comparison, fusion was also performed with linear SVM classification (Chang and160

Lin, 2011). The code was developed in MATLAB environment and the implementation of CNNs was161

based on MatConvNet (Vedaldi and Lenc, 2015).162

3 RESULTS163

The protein structures (n = 44,661) were collected from the PDB. Only enzymes that occur in a single164

class were processed, whereas enzymes that perform multiple reactions and are hence associated with165

multiple enzymatic functions were excluded. Since protein sequence was not examined during feature166

extraction, all enzymes were considered without other exclusion criteria, such as small sequence length or167

homology bias. The dataset was unbalanced in respect to the different classes. The number of samples per168

class is shown in Table 1. The dataset was split into 5 folds. Four folds were used for training and one for169

testing. The training samples were used to learn the parameters of the network (such as the weights of the170

convolution filters), as well as the parameters of the subsequent classifiers used during fusion (SVM or171

kNN model). Once the network was trained, the class probabilities were obtained for the testing samples,172

which were introduced into the trained SVM or kNN classifier for final prediction. The SVM model was173

linear, thus didn’t require any hyper-parameter optimization. Due to lack of hyper-parameters, no extra174

validation set was necessary. On the side, the author examined also non-linear SVM with gaussian radial175

basis function kernel, but didn’t observe any significant improvement, thus the corresponding results are176

not reported.177

A classification result was deemed a true positive if the match with the highest probability was in first178

place in a rank-ordered list. The classification accuracy (percentage of correctly classified samples over179

all samples) was calculated for each fold and then results were averaged across the 5 folds.180
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Table 1. Cross-validation accuracy (in percentage) in predicting main enzymatic function using the deep

CNN ensemble

Architecture 1 Architecture 2

Class Samples linear-SVM kNN linear-SVM kNN

EC1 8,075 86.4 88.8 91.2 90.6

EC2 12,739 84.0 87.5 88.0 91.7

EC3 17,024 88.7 91.3 89.6 94.0

EC4 3,114 79.4 78.4 84.9 80.7

EC5 1,905 69.5 68.6 79.6 77.0

EC6 1,804 61.0 60.6 73.6 70.4

Total 44,661 84.4 86.7 88.0 90.1

Table 2. Confusion matrices for each fusion scheme and classification technique

Classifier prediction by Architecture 1 prediction by Architecture 2

1 2 3 4 5 6 1 2 3 4 5 6

linear- EC1 86.5 4.9 4.8 1.8 1.1 1.0 91.2 2.9 1.9 2.2 1.1 0.7

SVM EC2 3.4 84.0 7.9 1.9 1.2 1.6 3.6 88.0 3.5 2.2 1.2 1.5

EC3 2.4 6.1 88.7 1.0 0.8 1.0 2.3 4.1 89.6 1.6 1.2 1.2

EC4 4.4 7.3 5.7 79.4 1.8 1.3 4.3 4.9 2.7 84.9 1.7 1.4

EC5 7.0 10.1 9.0 2.9 69.4 1.6 4.5 5.4 4.7 4.4 79.5 1.7

EC6 5.9 15.5 13.0 2.3 2.3 61.0 5.5 10.3 5.4 3.3 1.9 73.6

kNN EC1 88.8 5.0 4.5 0.7 0.5 0.5 90.6 4.4 4.6 0.3 0.1 0.0

EC2 2.5 87.5 7.4 1.0 0.6 1.1 1.7 91.7 5.8 0.3 0.2 0.4

EC3 1.8 5.4 91.3 0.5 0.4 0.6 1.2 4.4 94.0 0.2 0.1 0.2

EC4 3.8 9.1 7.2 78.5 1.1 0.4 3.7 8.4 6.9 80.7 0.1 0.1

EC5 6.1 11.5 10.7 2.3 68.5 1.0 3.5 9.7 8.6 0.9 76.9 0.3

EC6 4.9 18.8 13.5 1.0 1.3 60.6 4.2 14.1 10.3 0.7 0.3 70.5

3.1 Classification performance181

Common options for the network were used, except of the size of the filters which was adjusted to the182

dimensionality of the input data. Specifically, the convolutional layer used neurons with receptive field of183

size 5 for the first two layers and 2 for the third layer. The stride (specifying the sliding of the filter) was184

always 1. The number of filters was 20, 50 and 500 for the three layers, respectively, and the learning rate185

0.001. The batch size was selected according to information amount (dimensionality) of input. It was186

assumed (and verified experimentally) that for more complicated the data, a larger number of samples is187

required for learning. One thousand samples per batch were used for Architecture 1, which takes as input188

all channels, and 100 samples per batch for Architecture 2, in which an independent CNN is trained for189

each channel. The dropout rate was 20%. The number of epochs was adjusted to the rate of convergence190

for each architecture (300 for Architecture 1 and 150 for Architecture 2).191

The average classification accuracy over the 5 folds for each enzymatic class is shown in Table 1 for192

both fusion schemes, whereas the analytic distribution of samples in each class is shown in the form of193

confusion matrices in Table 2.194

In order to further assess the performance of the deep networks, receiver operating characteristic195

(ROC) curves and area-under-the-curve (AUC) values were calculated for each class for the selected196

scheme (based on kNN and Architecture 2), as shown in Fig.2). The calculations were performed based197

on the final decision scores in a one-versus-rest classification scheme. The decision scores for the kNN198

classifier reflected the ratio of the within-class neighbors over total number of neighbors. The ROC curve199

represents the true positive rate against the false positive rate and was produced by averaging over the five200

folds of the cross-validation experiments.201
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Figure 2. ROC curves for each enzymatic class based on kNN and Architecture 2

Effect of sequence redundancy and sample size. Analysis of protein datasets is often performed202

after removal of redundancy, such that the remaining entries do not overreach a pre-arranged threshold of203

sequence identity. In this particular work the author chose not to employ data filtering strategies, since204

the pattern analysis method is based on structure similarity and not sequence similarity. Thus, even if205

proteins are present with high sequence identity, the distance metrics during classification do not exploit206

it. Based on the (by now) established opinion that structure is far more conversed than sequence in nature207

(Illergard2009), the aim was not to jeopardize the dataset by losing reliable structural entries over a208

sequence based threshold cutoff. Also, only X-ray crystallography data were used; such data represent209

a ‘snapshot’ of a given protein’s 3D structure. In order not to miss the multiple poses that the same210

protein may adopt in different crystallography experiments, sequence/threshold metrics were not applied211

to remove sequence-redundancy in the presented results.212

Nevertheless, the performance of the method was also investigated on a non-redundant dataset and the213

classification accuracy was compared in respect to the original (redundant) dataset randomly subsampled214

to include equal number of proteins. This experiment allows to assess the effect of redundancy under215

conditions (number of samples). Since inference in deep networks requires the estimation of a very216

large number of parameters, a large amount of training data is required and therefore very strict filtering217

strategies could not be applied. A dataset (the pdbaanr) pre-compiled by PISCES (Wang and Dunbrack,218

2003), was used that includes only non-redundant sequences across all PDB files (n = 23242 proteins, i.e.219

half in size of the original dataset). Representative chains are selected based on the highest resolution220

structure available and then the best R-values. Non-X-ray structures are considered after X-ray structures.221

As a note, the author also explored the Leaf algorithm (Bull et al., 2013) which is especially designed222

to maximize the number of retained proteins and has shown improvement over PISCES. However, the223

computational cost was too high (possibly due to the large number of samples) and the analysis was not224

completed. The classification performance was assessed on Architecture 2 by using 80% of the samples225

for training and 20% of the samples for testing. For the non-redundant dataset the accuracy was 79.3% for226

kNN and 75.5% for linear-SVM, whereas for the sub-sampled dataset it was 85.7% for kNN and 83.2%227

for linear-SVM. The results show that for the selected classifier (kNN), the accuracy drops 4.4% when the228

number of samples are reduced to the half, and it also drops additionally 6.4% if the utilized samples are229

non-redundant. Also the decrease in performance is not inconsiderable, the achieved accuracy indicates230

that structural similarity is an important criterion for the prediction of enzymatic function.231
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Figure 3. Torsion angles density maps (Ramachandran plots) averaged over all samples for each of the

20 standard and 3 non-standard (ASX, GLX, UNK) amino acids. The horizontal and vertical axes at each

plot correspond to φ and ψ angles and vary from 2180ç (top left) to 180ç (right bottom). The color scale

(blue to yellow) is in the range [0,1]. For an amino acid a, yellow means that the number of occurrences

of the specific value (φ ,ψ) in all observations of a (within and across proteins) is at least equal to the

number of proteins. On the opposite, blue indicates a small number of occurrences, and is observed for

rare amino acids or unfavorable conformations.

3.2 Structural representation and complementarity of features232

Next, some examples of the extracted feature maps are illustrated, in order to provide some insight on the233

representation of protein’s 3D structure. The average (over all samples) 2D histogram of torsion angles for234

each amino acid is shown in Fig. 3. The horizontal and vertical axes at each plot represent torsion angles235

(in [2180ç,180ç]). It can be observed that the non-standard (ASX, GLX, UNK) amino acids are very rare,236

thus their density maps have nearly zero values. The same color scale was used in all plots to make feature237

maps comparable, as “seen” by the deep network. Since the histograms are (on purpose) not normalized238

for each sample, rare amino acids will have few visible features and due to the ’max-pooling operator’239

will not be selected as significant features. The potential of these feature maps to differentiate between240

classes is illustrated in Fig. 4 for three randomly selected amino acids (ALA, GLY, TYR). Overall the241

spatial patterns in each class are distinctive and form a multi-dimensional signature for each sample. As a242

note, before training of the CNN ensemble data standardization is performed by subtracting the mean243

density map. The same map is used to standardize the test sample during assessment.244

Examples of features maps representing amino acid distances (XD) are illustrated in figures 1 and 5.245

Fig. 1 illustrates an image slice across the 3rd dimension, i.e. one [m×m] channel, and as introduced in246

the 2D multichannel CNN, i.e. after mean-centering (over all samples). Fig. 5 illustrates image slices (of247

size [m×hD]) across the 1st dimension averaged within each class. Fig. 5 has been produced by selecting248

the same amino acids as in Fig. 4 for easiness of comparison of the different feature representations. It249

can be noticed that for all classes most pairwise distances are concentrated in the last bin, corresponding250

to high distances between amino acids. Also, as expected there are differences in quantity of each amino251

acid, e.g. by focusing on the last bin, it can be seen that ALA and GLY have higher values than TYR in252

most classes. Moreover, the feature maps indicate clear differences between samples of different classes.253
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Figure 4. Ramachandran plots averaged across samples within each class. Rows correspond to amino

acids and columns to functional classes. Three amino acids (ALA, GLY, TYR) are randomly selected for

illustration of class separability. The horizontal and vertical axes at each plot correspond to φ and ψ

angles and vary from 2180ç (top left) to 180ç (right bottom). The color scale (blue to yellow) is in the

range [0,1] as illustrated in Fig. 3.

Figure 5. Histograms of paiwise amino acid distances averaged across samples within each class. The

same three amino acids (ALA, GLY, TYR) selected in Fig. 4 are also shown here. The horizontal axis at

each plot represents the histogram bins (distance values in the range [5,40]). The vertical axis at each plot

corresponds to the 23 amino acids sorted alphabetically from top to bottom (ALA, ARG, ASN, ASP,

ASX, CYS, GLN, MET, GLU, GLX, GLY, HIS, ILE, LEU, LYS, PHE, PRO, SER, THR, TRP, TYR,

UNK, VAL). Thus each row shows the histogram of distances for a specific pair of the amino acids (the

one in the title and the one corresponding to the specific row). The color scale is the same for all plots and

shown at the bottom of the figure.
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Table 3. Cross-validation accuracy (average ± standard deviation over 5 folds) for each feature set

separately and after fusion of CNN outputs based on Architecture 2

Feature sets linear-SVM kNN

XA (angles) 79.6 ± 0.5 82.4 ± 0.4

XD (distances) 88.1 ± 0.4 89.8 ± 0.2

Ensemble 88.0 ± 0.4 90.1 ± 0.2

The discrimination ability and complementary of the extracted features in respect to classification254

performance is shown in Table 3. It can be observed that the relative position of amino acids and their255

arrangement in space (features XD) predict enzymatic function better than the backbone conformation256

(features XA). Also, the fusion of network decisions based on correlation distance outperforms predictions257

from either network alone, but the difference is only marginal in respect to the predictions by XD. In258

all cases the differences in prediction for the performed experiments (during cross validation) was very259

small (usually standard deviation < 0.5%), indicating that the method is robust to variations in training260

examples.261

4 DISCUSSION262

A deep CNN ensemble was presented that performs enzymatic function classification through fusion263

in feature level and decision level. The method has been applied for the prediction of the primary EC264

number and achieved 90.1% accuracy, which is a considerable improvement over the accuracy (73.5%)265

achieved in previous work (Amidi et al., 2016) when only structural information was incorporated.266

Many methods have been proposed in the literature using different features and different classifiers.267

Nasibov and Kandemir-Cavas (2009b) obtained 95%-99% accuracy by applying kNN-based classification268

on 1200 enzymes based on their amino acid composition. Shen and Chou (2007b) fused results derived269

from the functional domain and evolution information and obtained 93.7% average accuracy on 9,832270

enzymes. On the same dataset Wang et al. (2011) improved the accuracy (which ranged from 81% to271

98% when predicting the first three EC digits) by using sequence encoding and SVM for hierarchy labels.272

Kumar and Choudhary (2012b) reported overall accuracy of 87.7% in predicting the main class for 4,731273

enzymes using random forests. Volpato et al. (2013) applied neural networks on the full sequence and274

achieve 96% correct classification on 6,000 non-redundant proteins. Most of these works have been275

applied on a subset of enzymes and have not been tested for large-scale annotation. Also they incorporate276

sequence-based features.277

Assessment of the relationship between function and structure (Todd et al., 2001) revealed 95%278

conservation of the fourth EC digit for proteins with up to 30% sequence identity. Similarity, Devos279

and Valencia (2000) concluded that enzymatic function is mostly conserved for the first digit of EC280

code whereas more detailed functional characteristics are poorly conserved. It is generally believed that281

as sequences diverge, 3D protein structure becomes a more reliable predictor than sequence, and that282

structure is far more conversed than sequence in nature (Illergård et al., 2009). Thus, the focus of this283

study was to explore the predictive ability of 3D structure alone and provide a tool that can generalize in284

cases where sequence information is insufficient. Thus the presented results are not directly comparable285

to the ones of previous methods which incorporate sequence information. If desired, the current approach286

can also be combined with sequence-related features; in such a case it is expected that classification287

accuracy would further increase.288

A possible limitation of the proposed approach is that the extracted features do not capture the289

topological properties of the 3D structure. Due to the statistical nature of the implemented descriptors,290

calculated by considering the amino acids as elements in Euclidean space, connectivity information is not291

strictly retained. The author and colleagues recently started to investigate in parallel the predictive power292

of the original 3D structure, represented as a volumetric image, without the extraction of any statistical293

features. Since the more detailed representation increased the dimensionality considerably, new ways294

are being explored to optimally incorporate the relationship between the structural units (amino-acids) in295

order not to impede the learning process.296
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5 CONCLUSIONS297

A method was presented that extracts shape features from the 3D protein geometry that are introduced298

into a deep CNN ensemble for enzymatic function prediction. The investigation of protein function299

based only on structure reveals relationships hidden at the sequence level and provides the foundation300

to build a better understanding of the molecular basis of biological complexity. Overall, the presented301

approach can provide quick protein function predictions on extensive datasets opening the path for302

relevant applications, such as pharmacological target identification. Future work includes application of303

the method for prediction of the hierarchical relation of function subcategories and annotation of enzymes304

up to the last digit of the enzyme classification system.305

Acknowledgments306

The authors want to thank Prof. N. Paragios from the Center for Visual Computing, CentraleSupélec,307
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