
OpenMS / KNIME

Oliver Alka4, Timo Sachsenberg4, Leon Bichmann4, Julianus Pfeuffer4,10, Hendrik Weisser11,

Samuel Wein9, Eugen Netz5, Marc Rurik4, Oliver Kohlbacher 4,5,6,7,8, Hannes Röst1,2,3

1 Donnelly Centre, University of Toronto, Toronto, Canada

2 Department of Molecular Genetics, University of Toronto, Toronto, Canada

3 Department of Computer Science, University of Toronto, Toronto, Canada

4 Department for Computer Science, Applied Bioinformatics, University of Tübingen, Sand 14,

72076 Tübingen, Germany

5 Biomolecular Interactions, Max Planck Institute for Developmental Biology, Max-Planck-Ring

5, 72076 Tübingen, Germany

6 Institute for Translational Bioinformatics, University Hospital Tübingen, Hoppe-Seyler-Str. 9,

72076 Tübingen, Germany

7 Institute for Biomedical Informatics, University of Tübingen, Sand 14, 72076 Tübingen,

Germany

8 Quantitative Biology Center, University of Tübingen, Auf der Morgenstelle 10, 72076

Tübingen, Germany

9 Epigenetics Institute, Department of Cell and Developmental Biology, University of

Pennsylvania, 9th Floor, Smilow Center for Translational Research 3400 Civic Center Blvd

Philadelphia, PA 19104, USA

10 Department for Computer Science, Algorithmic Bioinformatics, Freie Universität Berlin,

Takustr. 9, 14195 Berlin, Germany

11 STORM Therapeutics Limited, Moneta Building, Babraham Research Campus, Cambridge

CB22 3AT, United Kingdom

*Corresponding contributor. E-mail: hannes.rost@utoronto.ca

Introduction

Computational mass spectrometry has seen exponential growth in recent years in data size and

complexity, straining the existing infrastructure of many labs as they moved towards high-

performance computing (HPC) and embraced big data paradigms. Transparent and

reproducible data analysis has traditionally been challenging in the field due to a highly

heterogeneous software environment, while algorithms and analysis workflows have grown

increasingly complex. A multitude of competing and often incompatible file formats prevented

objective algorithmic comparisons and, in some cases, access to specific software or file

formats relied on a vendor license. Due to the fast technology progress in the field, many novel

algorithms are proposed in the literature every year, but few are implemented with reusability,

robustness, cross-platform compatibility and user-friendliness in mind, creating a highly

challenging software and data storage environment that in some aspects is even opaque to

experts.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27766v1 | CC BY 4.0 Open Access | rec: 29 May 2019, publ: 29 May 2019

The OpenMS software framework addresses these issues through a set of around 175 highly

robust and transparent cross-platform tools with a focus on maximal flexibility (Pfeuffer et al.

2017; Röst et al. 2016; M. Sturm et al. 2008). Modern software engineering techniques ensure

reproducibility between versions and minimize code duplication and putative errors in software.

OpenMS is completely open-source, uses standardized data formats extensively and is

available on all three major computing platforms (macOS, Windows, Linux). Multiple layers of

access to the OpenMS algorithms exist for specialist, intermediate and novice users, providing

low entrance barriers through sophisticated data visualization and graphical workflow managers.

The flexibility of OpenMS allows it to support a multitude of customizable and easily

transmissible workflows in multi-omics data analysis, including metabolomics, lipidomics, and

proteomics setups, supporting different quantitative approaches spanning label-free, isotopic,

isobaric labeling techniques, as well as targeted proteomics. Its highly flexible structure and

layered design allow different scientific groups to take full advantage of the software.

Developers can fully exploit the sophisticated C++ library for tool and data structure

development, while advanced Python bindings (pyOpenMS) wrap most of the classes (Röst,

Schmitt, et al. 2014), providing an excellent solution for fast scripting and prototyping. Users,

can either work on command line tool level or take advantage of industry-grade workflows

system, such as the KoNstanz Information MinEr (KNIME) (Berthold et al. 2007; Fillbrunn et al.

2017), Galaxy (Afgan et al. 2018), Nextflow (Di Tommaso et al. 2017), or Snakemake (Koster

and Rahmann 2012). The framework is highly adaptable, allowing even novice users to

generate complex workflows using the easy-to-learn graphical user interfaces of KNIME. Built-in

support for most common workflow steps (such as popular proteomics search engines) ensures

low entrance barriers while advanced users have high flexibility within the same framework. A

modular and comprehensive codebase allows rapid development of novel methods as

exemplified by the recent additions for metabolomics, SWATH-MS and cross-linking workflows.

In addition, a versatile visualization software (TOPPView) allows exploration of raw data as well

as identification and quantification results (Marc Sturm and Kohlbacher 2009). The permissive

BSD license encourages usage in commercial and academic projects, making the project

especially suited for reference implementations of file formats and algorithms.

OpenMS for developers

The OpenMS framework consists of different abstraction layers. The first layer consists of

external libraries (Qt, Boost, Xerces, Seqan, Eigen, Wildmagic, Coin-Or, libSVM), which add

additional data structures and functionality, simplifying complex tasks such as GUI-programming

or XML parsing. The next layer consists of the OpenMS core library containing algorithms, data

structures and input/output processing. The third layer encloses TOPP tools and utilities (~ 175),

which allow various analysis tasks, such as signal processing, filtering, identification,

quantification and visualization. The core library and the TOPP tools have Python bindings,

which can be used for fast scripting and prototyping (pyOpenMS) (Röst, Schmitt, et al. 2014). In

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27766v1 | CC BY 4.0 Open Access | rec: 29 May 2019, publ: 29 May 2019

the top layer, the tools are accessible from different workflow systems, for the construction of

flexible, tool based workflows.

C++ library

OpenMS has a multi-level architecture with an open source C++ library at its core which

implements all data structures and algorithms required for MS data analyses. Its permissive

license (3-clause BSD) allows using OpenMS both in academic as well as commercial projects

without any licensing fees. Since its beginning, its aim has been to provide efficient data

structures and algorithms for common MS data processing tasks. As such, the library targets

computational biologists and algorithm developers with sound programming skills. Using the

library, developers have direct access to the richest set of functionality and generally profit from

highly-optimized implementations of core data structures and algorithms when developing novel

methods. More than 1,300 classes cover a broad range of functions in computational mass

spectrometry, proteomics and metabolomics. These functionalities include

 file handling (mzXML, mzML, TraML, mzTab, fasta, pepxml, protxml, mzIdentML among

others)

 chemistry (mass calculation, peptide fragmentation, isotopic abundances)

 signal processing and filtering (smoothing, filtering, de-isotoping, mass correction,

retention time correction and peak picking)

 identification analysis (including peptide search, PTM analysis, cross-linked analytes,

FDR control, RNA oligonucleotide search and small molecule search tools)

 quantitative analysis (including label-free, SILAC, iTRAQ, TMT, SWATH/DIA, and

metabolomics analysis tools)

 chromatogram analysis (chromatographic peak picking, smoothing, elution profiles and

peak scoring for targeted (SRM, MRM, PRM, SWATH, DIA) data)

 interaction with common tools in proteomics and metabolomics

 search engines such as Comet, Crux, Mascot, MS-GF+, InsPecT, PepNovo,

MSFragger, Myrimatch, OMSSA, Sequest, SpectraST, XTandem

 post-processing tools such as Percolator, MSstats, Fido, EPIFANY

 metabolomics tools such as SIRIUS

Ideally, newly developed methods, algorithms, or data structures of general interest are

contributed by the community, find their way back to the library to be used by other OpenMS

developers. OpenMS itself builds on other open-source projects like Qt, Xerces, COIN-OR,

libSVM, Eigen, WildMagic, or boost for tasks like GUI programming, XML parsing, non-linear

optimizations, machine learning or fast linear algebra. To leverage the compute power of

modern processors, the OpenMP library is used to parallelize many algorithms in OpenMS.

For a short example how a multi-threaded spectrum processing algorithm can be realized using

the OpenMS library see Code Example 1.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27766v1 | CC BY 4.0 Open Access | rec: 29 May 2019, publ: 29 May 2019

Code Example 1: Multi-threaded spectrum processing algorithm using the OpenMS library

// C++ example (excerpt):
// Load data, retain the 400 most intense peaks in a spectrum

MSExperiment exp;
MzMLFile().load(“file.mzML”, exp);
auto spectra = exp.getSpectra();

// construct a spectrum filter
NLargest nlargest_filter = NLargest (400);

// parallelize loop for concurrent execution using OpenMP

pragma omp parallel for
for (auto it = spectra.begin(); it < spectra.end(); it++)
{
 // sort peaks by mass-to-charge position
 it->sortByPosition();

 // apply filter and keep only the 400 highest intensity peaks
 nlargest_filter.filterPeakSpectrum(*it);
}

Data formats and raw data API

Using open data formats for storing, exchanging, and deposition of primary raw data and final

analysis results in public data repository are prerequisites for reproducible science. OpenMS

builds on open standards for reading and writing MS data (e.g., mzML and mzXML format),

transitions (traML), identifications (mzIdentML), or exporting final results (mzTab). In fact,

members of the OpenMS community have been actively involved in the development of several

HUPO-PSI standard formats in the past. For XML-based formats, OpenMS uses the powerful

Xerces software library from the Apache project which implements both DOM and SAX parsing.

For all data, in-memory data structures exist where data gets parsed from disk into these data

structures, manipulated in memory and then written to disk again after transformation /

manipulation. However, for raw MS data access in mzML files, OpenMS provides an advanced

API that can handle access spectra and chromatograms in different ways, thus optimizing the

tradeoff between memory and CPU requirements of the algorithm (Röst et al. 2015): (1) random

access in memory, (2) random access on disk using indexedmzML, (3) random access on disk

using a cached file format and (4) event-driven processing. While programmatically, it is easiest

to program against interface (1) since all data is in memory and can be accessed very fast, this

is not always possible for very large files that do not fit into the current computer’s memory. For

these cases, it is possible to access spectra from disk using either mechanism (2) or (3) which

allows accessing raw data that is not held in memory. Finally, we have implemented an interface

that uses a call-back mechanism similar to SAX parsing in XML parsing, which works on a per-

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27766v1 | CC BY 4.0 Open Access | rec: 29 May 2019, publ: 29 May 2019

spectra basis: the call-back function gets called as soon as a new spectrum is available from the

reader, allowing a consumer to process spectra as they get read from disk. The processing

function can either keep all results in memory or write them back to disk such that in an ideal

case only a single spectrum is in memory at any given time.

Algorithms

The OpenMS library provides a multitude of algorithms ranging from low-level algorithms, like

the generation of isotope patterns, processing and filtering of raw signals, to more complex

algorithms like peptide database search. In the following we picked two examples to

demonstrate how these algorithms are configured and executed on data. Other algorithms

provide similar interfaces.

Some algorithms with few parameters provide a simple interface and can be directly called. For

isotope pattern calculation see Code Example 2.

Code Example 2: Isotope pattern calculation

// excerpt: generate isotope pattern (max. 10 peaks or
// 99.9% of the isotopic probability) of Glucose

EmpiricalFormula molecule("C6H12O6");
IsotopeDistribution iso;
iso = molecule.getIsotopeDistribution(CoarseIsotopePatternGenerator(10));
iso = molecule.getIsotopeDistribution(FineIsotopePatternGenerator(1e-3));

Note that multiple algorithms may be available through the same interface, here an isotopic

distribution can be calculated using coarse (unit mass) resolution or using fine (hyperfine

isotopic) resolution. A single line of code will switch between the two algorithms, but the rest of

the code will work without change (note that the two algorithms take different parameter sets,

either number of peaks or total isotopic probability covered). This allows OpenMS to implement

new algorithms that improve performance or accuracy “under the hood” while the interface stays

the same for the user and algorithms can be switched to the new interface with ease. In the

above example, this may become important with high resolution instrumentation that can

differentiate between the hyperfine isotopic peaks in an isotopic envelope.

Other algorithms allow to fine-tune many parameters via a so-called Param object. The signal

processing algorithm PeakPickerHiRes for centroiding of profile data is one of those (see Code

Example 3). Internally PeakPickerHiRes uses a spline interpolation of the raw data to determine

the m/z, FWHM, and intensity of peak centroids. Several aspects, e.g, the minimum signal-to-

noise ratio to call a peak, can be configured via the Param object.

Code Example 3: Centroiding of profile spectra using the PeakPichkerHiRes class

// excerpt: centroiding profile spectra

// load profile spectra

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27766v1 | CC BY 4.0 Open Access | rec: 29 May 2019, publ: 29 May 2019

MSExperiment profile_data, centroided_data;
MzMLFile().load("myData.mzML"), profile_data);

// get default parameters, change as desired and store changes
PeakPickerHiRes peak_picker;
Param param = peak_picker.getParam();
param.setValue("signal_to_noise", 1.0);
peak_picker.setParameters(param);

// run algorithm
peak_picker.pickExperiment(profile_data, centroided_data);

Available parameters are listed in the developer documentation of each algorithm and each

parameter comes with information on allowed parameter ranges and a human-readable

description of the parameter.

TOPP tools (developer perspective)

TOPP tools are command line applications developed within the OpenMS framework that utilize

the OpenMS C++ library to implement a specific function. OpenMS follows the UNIX philosophy

which is based on providing individual tools with defined functionality that can be chained

together to powerful workflows, allowing greatest amount of flexibility to the user. Currently there

are around 175 TOPP tools available which range from implementing a spectral noise filter to

adaptors of thirdparty tools (e.g. the Comet search engine) and full implementations of

quantitative analysis of SILAC, label-free or SWATH data. These tools are the preferred way to

expose novel functionality in OpenMS and are available to user directly through the command

line but are also automatically integrated into workflow engines such as KNIME.

OpenMS provides a base class and a template for the creation and integration of new tools. The

base class handles logging, exception handling and command line argument parsing. The

template has well-defined slots for adding tool parameters, input and output as well as

algorithmic functionality which can be added in a straightforward manner. Further, before a tool

can be merged into the OpenMS repository, it is required to provide its own regression tests,

which allow for the automatic validation of its functionality in future releases of the OpenMS

framework. Once added, the tool will become available as a command-line executable as well

as a node in the KNIME workflow engine where users can integrate it into their workflows.

For further instruction on tool development in OpenMS please visit the tool section in the

Developer C++ Quickstart Guide (see Table 1).

Visualization

MS data exhibits a large degree of variability and complex experimental setups may result in

highly heterogeneous raw data. Visual inspection is regularly done in practice to assess data

quality. TOPPView is a graphical application in OpenMS that allows users to inspect spectra,

chromatograms, and identification results (Marc Sturm and Kohlbacher 2009). It uses the Qt 5

framework to implement advanced visualization which includes 1D (spectra, chromatogram), 2D

and 3D (peak maps) plotting. Standard and re-useable Qt classes allow graphical plotting in

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27766v1 | CC BY 4.0 Open Access | rec: 29 May 2019, publ: 29 May 2019

multiple dimensions and OpenGL (Open Graphics Library) is used for high-performance

interactive 3D plotting. Developers can build their own applications using the provided

SpectrumWidget and SpectrumCanvas classes, which allows advanced plotting of mass

spectrometric data without having to re-invent the wheel. Furthermore, TOPPView is tightly

integrated with the available TOPP tools, which can be directly executed on the currently

displayed data and the output of a transformation can then be loaded back into the same

graphical view, providing direct feedback for a particular choice of tool and parameters. Fine-

tuning these parameters sometimes may open the chance to analyze difficult data that fail to

produce acceptable results using the default settings.

Code Quality and Community

OpenMS uses modern software engineering concepts more commonly found in industry

settings than in academic environments. The project places great emphasis on modularity,

reusability and extensive testing (using continuous integration), resulting in high code quality.

The modular architecture of OpenMS tries to build upon existing standard libraries as much as

possible, relying on them for sequence analysis, XML parsing, numerical computations and

statistics. Modern object-oriented C++ is used exclusively throughout the code base,

encapsulating raw data structures and discouraging manual heap-based memory management

(when not provably crucial for efficiency), thus providing robust and error-tolerant code. Coding

conventions are enforced and extensive English documentation is available for several

thousand C++ functions part of the public API. All development is performed in the open, using

the public source code repository and ticketing system GitHub. Stringent code reviews and

continuous integration, running a multitude of functional, unit and black-box tests, ensure

continued support, robustness and correctness of the code. Automated tests verify correctness

of functionality of both individual functions and whole units on all three supported platforms

while also analyzing the code quality using automated tools such as cppcheck and cpplint.

Additionally, the code is reviewed by other developers using the four-eyes principles and

changes can be requested depending on the performance, accuracy, style and code quality.

The OpenMS development team is integrated into an international multi-site effort supported by

leading labs in experimental and computational mass spectrometry across Europe and North

America. It is unique in the field by providing industrial-strength high-performance algorithmic

implementations for a majority of common tasks in computational proteomics as open-source

software. Frequent physical meetings and training sessions educate users and transmit

knowledge of established workflows to practitioners in the field, providing also opportunities for

users and developers to meet and exchange ideas. The project sees high contributor activity

and several downstream tools such as MSstats, aLFQ and Skyline have started to integrate

their tools with OpenMS (Choi et al. 2014; MacLean et al. 2010; Rosenberger et al. 2014)

Getting started with the OpenMS library for developers

For getting started to develop a new tool or use specific classes from the OpenMS library please

follow the steps in Table 1.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27766v1 | CC BY 4.0 Open Access | rec: 29 May 2019, publ: 29 May 2019

Table 1: Developer instructions

OpenMS for users

TOPP tools (user perspective)

TOPP tools are individual tools, which usually perform one specific task. For example, the

FeatureFinderCentroided can be used to detect two-dimensional features in centroided LC-MS

data. A multitude of different tools exists ranging from simple format conversion, data filtering, to

new data analysis, and data reduction algorithms. Additionally, wrapper exist and can be added

upon request, which allow the usage of well-established third-party tools developed by non-

Follow the steps to start programming on the library:

Working with your own fork:

Fork the OpenMS repository (https://github.com/OpenMS/OpenMS)

Clone the respective fork locally (git clone https://github.com/username/OpenMS.git)

Compile OpenMS (build instructions below)

Have fun working with and on the library

Working on OpenMS/OpenMS:

Clone or download the source (https://github.com/OpenMS/OpenMS.git)

Compile OpenMS (build instructions below)

Have fun working with and on the library

Build instructions for Linux:

https://openms.de/documentation /install_linux.html

Build instructions for OS X:

https://openms.de/documentation /install_mac.html

Build instructions for Windows:

https://openms.de/documentation/install_win.html

For further instructions and information about coding conventions, please check out our WIKI:

https://github.com/OpenMS/OpenMS/wiki

OpenMS Developer C++ Guide:

https://openms.de/documentation/OpenMS_tutorial.html

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27766v1 | CC BY 4.0 Open Access | rec: 29 May 2019, publ: 29 May 2019

OpenMS developers, such as MS-GF+ (Kim and Pevzner 2014) or SIRIUS (Dührkop et al.

2019) within the OpenMS Framework. All OpenMS tools provide a detailed choice of

parameters that go beyond what classical software in the field offers and allow to tailor its

function to the specific needs of the user. The tools can be used individually or in an analysis

pipeline either using the command line or a workflow engine. In the following, we would like to

present a few examples of how to tackle common problem settings in mass spectrometry based

multi-omics research with OpenMS tools and workflows.

Getting started with OpenMS for users

Interested in using OpenMS for your application and your research, have a look at the

installation instructions and further tutorials on the usage of OpenMS (Table 2).

Table 2: OpenMS installation instruction

Workflows in MS

A bioinformatics workflow defines a series of computational steps which can be applied to single

or multiple data sets. Therefore, the concept of a workflow clearly separates the computation

from the data on which it operates, describing a reproducible set of steps with a well-defined

input and output. In theory, if the same software is run on the same data in the same order with

the same parameters then the user should obtain the same output. In practice, it is often difficult

to exactly reproduce these conditions on a different computer or at a later date, leading to

challenges with reproducible data analysis. This is the problem which a computational workflow

solves.

The workflow describes the software, the order in which the software operates on the data and

the chosen parameters, which allows the replication of the work with the same data. This will

lead to consistent results after reanalysis, since the workflow contains all information on how to

process the data - information that is often lost if only an input file and an output file is provided.

It is therefore crucial to store and submit workflow files alongside any data output files for other

users to have a machine-readable and reproducible description of how the scientific result was

computed. Working without workflows can lead to irreproducible computational results when

Follow the steps to start using OpenMS TOPP and Command Line Tools:

Current release binary installer for MacOS, Windows and Linux (debian) can be obtained at

https://www.openms.de/download/openms-binaries/

OpenMS Quickstart Guide:

https://openms.de/documentation/Quickstart.html

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27766v1 | CC BY 4.0 Open Access | rec: 29 May 2019, publ: 29 May 2019

other researchers try to re-analyse data and potentially end up with different results because the

computational methods were not well described.

OpenMS in KNIME

The workflow platform KNIME implements such workflows in a graphical user interface by

connecting so called nodes (see Fig. 1). The node is the smallest entity in a workflow, which

represents a single operation. Nodes can be connected in the workflow using input and output

ports. In KNIME different port types exists depending on the action to be performed. It

distinguishes between tables (table ports - black triangle) and whole files (file ports - blue box).

KNIME supports a plugin system which allows the usage of a multitude of analysis software in

synergy with OpenMS. These cover a wide area of applications, such as machine learning,

hypothesis testing, data visualization and chemoinformatics methods. Here, for example RDKit

can be used for the visualization of small molecule structures encoded in SMILES. Additionally,

KNIME supports scripting nodes for R, Python and other languages, which can be used to run

custom scripts within the workflow. Finished workflows can be saved and shared with the

community using the KNIME Community Workflow Hub (https://hub.knime.com/). Further a

large collection of plugins is provided by the user community, which can be integrated into the

workflow.

Getting started with OpenMS in KNIME

Interested in using OpenMS in combination with the workflow engine KNIME have a look at the

installation instructions and further tutorials on the usage of OpenMS with KNIME (Table 3).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27766v1 | CC BY 4.0 Open Access | rec: 29 May 2019, publ: 29 May 2019

Table 3: KNIME with OpenMS plugin installation instructions and tutorials

Other workflow systems with OpenMS integrations

In addition to KNIME, OpenMS can be used in various other workflow systems due to the

common easily wrappable command line interface of its tools. Other popular workflow systems

with graphical user interfaces (GUI) for which wrappers of OpenMS tools exist are the following:

- Galaxy: One of the most commonly used server-based workflow editors and managers

in bioinformatics (Afgan et al. 2018).

- gUSE: A workflow system for high-performance computing clusters.

Another workflow language that also provides software for automatic execution of OpenMS

tools on various hardware backends (local, remote, HPC clusters or clouds) is nextflow (Di

Tommaso et al. 2017). Although nextflow does not provide a GUI yet, users can either script

their own workflows or make use of community-made and well-maintained workflows available

in its public workflow collection nf-core (Ewels et al. 2019). Lastly, OpenMS was successfully

used in Pachyderm (Novella et al. 2019) and snakemake (Koster and Rahmann 2012) pipelines

as well. Easy installation even in restricted HPC environments can be achieved through ready-

made OpenMS containers (see the chapter about Containerization and Reproducibility) or

through the Bioconda (Grüning et al. 2018) package manager.

Peptide identification and protein inference

Follow the steps to start using KNIME with the OpenMS plugin:

Installing KNIME

Download KNIME (https://www.knime.com/downloads)

Follow the installation instructions

Installing the OpenMS plugin in KNIME:

Go to “Help” -> “Install New Software...”

Select “KNIME Community Contributions (3.7) –

http://update.knime.com/community-contributions/trusted/3.7” in “Work with”

Open the “KNIME Community Contributions - Bioinformatics & NGS” field

Select “OpenMS”

Click “Next” and follow the instructions.

In general, KNIME will automatically detect missing plugins upon opening of a workflow and

directs the user to the installation process.

OpenMS / KNIME Tutorial (with handout, example data and workflows):

https;//www.openms.de/tutorials/

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27766v1 | CC BY 4.0 Open Access | rec: 29 May 2019, publ: 29 May 2019

Figure 1: Identification workflow using OpenMS and KNIME can be applied for peptide identification and protein
inference.

Search engine choice

One task that is commonly needed for the analysis of shotgun proteomics data is the

identification of peptides and inference of their proteins of origin. Identification of proteomics

data can be performed in a workflow as depicted in Figure 1. Here, mass spectrometry input

files (.mzML) are loaded in the “Input Files” node. All files are processed iteratively by all tools

between the ZipLoopStart and ZipLoopEnd nodes (see Figure 1A). Here, the search engine

MS-GF+ (Kim and Pevzner 2014) is applied using the MSGFPlusAdapter to identify MS2

spectra. Search parameters, such as mass error, fragmentation method, possible fixed and

variable modifications, as well as charge range and peptide length can be specified. As an

alternative to the MSGFPlusAdapter, OpenMS provides a multitude of different wrappers for

classic proteomic search engines, such as Comet (Jimmy K. Eng, Jahan, and Hoopmann 2013),

Crux (Park et al. 2008), InsPecT (Tanner et al. 2005), Mascot (Perkins et al. 1999), MSFragger

(Kong et al. 2017), MyriMatch (Tabb, Fernando, and Chambers 2007), OMSSA (Geer et al.

2004), Sequest (J K Eng, McCormack, and Yates 1994), PepNovo (Frank and Pevzner 2005),

and XTandem (Craig and Beavis 2004). Hence, the search engine node within the workflow can

be conveniently exchanged for other tools and thus one could test and find out the best

performing method in a concise benchmark.

Sequence database

Database search engines make use of a provided sequence database fasta file (“Input File”

node), which should contain all target proteins of the organism of choice and possible

contaminants. The database and its size highly depend on the research question and the

experimental design. In order to assess a false discovery rate in a later step, the database

should additionally contain decoy proteins - shuffled or reversed sequences - of all provided

targets. The OpenMS tool DecoyDatabase provides an option to concatenate multiple

databases (e.g. Swiss-Prot human, cRAP) and generate decoys using different methods (e.g.

protein- or peptide-based shuffling or pseudo-reversing) that will be appended to the provided

database and tagged with a specified name prefix or suffix (e.g. “DECOY_”).

Identification post-processing

After the database search (see Figure 1A), identified PSMs (peptide spectrum matches)

undergo a series of consecutive post-processing steps to yield the FDR annotated lists of

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27766v1 | CC BY 4.0 Open Access | rec: 29 May 2019, publ: 29 May 2019

peptide and protein identifications. First target and decoy annotations are assigned to the

respective PSM based on the fasta file decoy name tag entries (PeptideIndexer). Next, a

number of descriptive features are computed and annotated in a standardized manner to each

PSM in order to run a multivariate discrimination of target and decoy space at a later stage

(PSMFeatureExtractor). Advanced users can also add specific or customized PSM features in

this step. While each MS run is processed separately, it is commonly recommended to co-

process the runs and compute a false discovery rate globally over the merged set of all

identifications (Serang and Käll 2015). Hence, the ZipLoop ends here and IDMerger performs a

merging of all identifications. Subsequently, the tool Percolator (The et al. 2016) is employed

and computes a global FDR based on target and decoy PSM feature scores annotated

previously. The Percolator version in OpenMS additionally supports basic protein inference

capabilities which we will skip in favor of more advanced methods using ambiguous peptides.

Protein Inference

Carrying out a robust protein inference and probabilistically distributing evidence of shared

peptides in this workflow (see Figure 1B), requires the application of the FidoAdapter tool.

However, as FidoAdapter was designed to work with OpenMS’ own estimation tool for PEPs

(IDPosteriorErrorProbability), it is necessary to pick and rename the right score from the

PercolatorAdapter. Hence, IDScoreSwitcher, FidoAdapter and subsequently the

FalseDiscoveryRate node is applied on protein-level to calculate a protein inference-based

target-decoy FDR. As an alternative to Fido (Serang, MacCoss, and Noble 2010) one could

instead employ the tool EPIFANY, which has recently been added to the OpenMS toolbox or PIA

which is provided in a separate KNIME plugin (Uszkoreit et al. 2015). Ultimately, the resulting

peptide and protein identifications can be filtered by various criteria on both levels, including q-

value, other metavalues or blacklists from fasta/text files (IDFilter) and exported in the

community standard format (mzTab).

Further peptide identification methods

De novo peptide search

Apart from database search, OpenMS also provides tools for de novo peptide identification for

example the CompNovo or CompNovoCID (Bertsch et al. 2009) tool, as well as the

NovorAdapter tool which supports de novo peptide search using Rapid Novor (Ma 2015).

Spectral library search

Additionally, peptides can be identified via a spectral library search. Here, we provide a tool

called SpecLibSearcher, which is able to identify MS2 spectra (.mzML) based on an input

spectral library (.msp). Alternatively, we also support the SpectraST tool from the TPP through

the SpectraSTSearchAdapter, which can be used for spectral library search (Lam et al. 2007).

Additional supported methods

Additional tools are available which are able to use the identification data, for example for

phosphosite localization and spectral clustering.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27766v1 | CC BY 4.0 Open Access | rec: 29 May 2019, publ: 29 May 2019

Phosphosite localization

The LuciphorAdapter uses the thirdparty tool LuciPHOr2 (Fermin et al. 2015) for the

assessment of the phosphosite localization on a phosphopeptide with multiple possible sites,

which can be critical in phosphorylation studies. It estimates a false localization rate based on a

target decoy approach, which can be used for filtering later on.

Spectral clustering

OpenMS also provides an adapter to MaRaCluster (The and Käll 2016) a thirdparty tool to

cluster spectra into groups of similar spectra or to create consensus spectra. Applications range

from yielding better and faster identification rates for database search to unsupervised

clustering to identify spectra.

Peptide and Protein quantification

The identification workflow above can be extended to perform identification and quantification.

Here, depending on the experimental method (e.g. label free, SILAC, TMT) the respective

nodes can be plugged into the workflow.

Figure 2: Workflow using OpenMS and KNIME which can be applied for peptide, protein identification and label free
quantification. The peptide identification (C) and protein inference (E) are described in the workflow in Figure 1.

The workflow in see Figure 2 depicts how identification and label free quantification can be

performed with OpenMS in KNIME.

Feature finding

The tools, which are able to perform label free quantification are named FeatureFinder in

OpenMS. There are several different implementations available such as

FeatureFinderCentroided (Weisser et al. 2013) (see Figure 2A) or the FeatureFinderMultiplex. A

FeatureFinder recognizes features in LC-MS maps, corresponding to peptides, by their

characteristic isotope pattern. Quantification is carried out based on the sum of intensities within

the feature region. Here, the position in m/z and rt as well as the charge of the analyte is

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27766v1 | CC BY 4.0 Open Access | rec: 29 May 2019, publ: 29 May 2019

computed. Resulting features are then represented with scores based on an isotope profile and

retention time model. Data points which do not fit the model are removed from the feature

region.

Combining post-processed identification with quantification data (peptide level)

Afterwards, a score estimation and filtering of peptide identifications found in an individual file is

performed (see Figure 2). For peptide level results, posterior error probability estimation is

performed using Percolator (The et al. 2016) samplewise and a user-defined FDR filter is

applied (e.g. 5% FDR). In order to combine quantitative and identification information per

sample, peptide identifications are generated samplewise and mapped to their respective

feature by the IDMapper.

Retention time alignment, feature linking and generation of peptide level results

The mapped information is further processed by the MapAlignerPoseClustering, which performs

a linear retention time alignment of input maps to correct retention time shifts and distortions.

This is based on a pose clustering algorithm, which uses affine transformation and later

refinement based on feature grouping. The FeatureLinkerUnlabeledQT (Weisser et al. 2013)

uses QT-based clustering and linking to group corresponding features from multiple maps for

label free data (see Figure 2). Additionally, OpenMS provides the FeatureLinkerUnlabeledKD,

which uses a faster KD-tree based approach for linking. The KD-tree based algorithm has a

speed advantage, which becomes apparent for larger datasets (hundreds of samples upwards).

The IDConflictResolver is used to ensure that every feature is associated with one single

identification based on its score. The peptide level results are then exported as MzTab (see

Figure 2F).

Generate protein level results

The peptide level information from the IDConflictResolver can also be used in conjunction with

the protein inference information (see Figure 2C and Figure 2E) to quantify on protein level (see

Figure 1G). In this workflow the ProteinQuantifier (Weisser et al. 2013) accumulates feature

intensities to peptide abundances based on the identification. Afterwards it uses the protein

inference information to average over the abundances the peptides referring to a protein.

Additional supported quantification methods

Label free quantification based on identification data

The quantification and retention time alignment can also be performed based on previous

identifications. The FeatureFinderIdentification (Weisser and Choudhary 2017) can be used for

label free quantification of the MS1 features, based on prior peptide identification. This is based

on the intuition that a high confidence identification on MS2 level from a specific precursor will

produce a corresponding feature at that position in all LC-MS maps of an experiment. Similar,

the MapAlignerIdentification performs retention time alignment based on previous peptide

identification.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27766v1 | CC BY 4.0 Open Access | rec: 29 May 2019, publ: 29 May 2019

Quantification using chemical or isotopic labeling

Further, quantification can be performed for experiments using isotopically or chemically

labelled peptides, such as dimethyl labeling or SILAC, by applying the FeatureFinderMultiplex.

First, the algorithm finds pairs in a MS1 scan by using the mass difference based on the

labeling, the charge and the intensity profile, its correlation and the averagine model. The

assessed features are then filtered, and clusters are formed in the rt and m/z range. These

clusters correspond to the monoisotopic trace referring to the lightest peptide of a pair (for

example SILAC). Afterwards hierarchical clustering is used to assign the peaks to a specific

cluster. Then linear regression is used to determine the relative amount of the peptide based on

their labels.

Quantification using isobaric labeling

In addition, quantification for isobaric labeling can be performed with the IsobaricAnalyzer, which

is able to extract and normalize TMT and iTRAQ quantitative information. It is able to extract the

data from centroided MS2 and MS3 spectra and performs an isotope correction based on the

specified correction matrix (as provided by the manufacturer).

Targeted Analysis

Targeted proteomics is a field of proteomic analysis where accurate and reproducible

quantification is required and is often used in clinical settings or laboratory experiments where

quantification is of utmost importance. Multiple types of targeted proteomics workflows exist,

traditional workflows on a triple quadrupole instrument (SRM or MRM) use a list of Q1

(precursor m/z) and Q3 (fragment m/z) for a set of peptides, through which the instrument will

then cycle deterministically. These Q1-Q3 m/z pairs are called transitions and the instrument will

typically measure 3-6 transitions per peptide over the course of an experiment, producing a

chromatographic measurement for each transition. In more advanced setup, a set of transitions

will not be measured during the whole LC-MS/MS experiment but only during a fixed amount of

time centered around the putative elution of the target peptide. Similarly, PRM measurements

use a list of target peptides, but acquire a high resolution full MS/MS scan for each target

peptide (independent of whether a precursor signal was detected or not), resulting in a set of full

MS/MS scans for a given precursor acquired deterministically over time. Software is then used

to extract a set of N (typically 3-6) transitions from these scans to determine the elution time-

point of a peptide. One of the drawback of both SRM and PRM is that only a limited set of

peptides can be targeted and no quantitative data is acquired for peptides that are not on the

target list.

This limitation is addressed by DIA (or SWATH-MS) approaches, which partition the precursor

m/z space into small windows of ca. 10 to 25 m/z and deterministically fragment all precursors

in that window and record a full high resolution MS/MS scan of the resulting fragment ions.

Similar to PRM, software is used to extract fragment ion traces from these data, but unlike PRM,

no target list of peptides is required since the whole mass range is targeted. In the original

SWATH-MS implementation, 32 windows of 25 m/z width were used to target the mass range of

400 - 1200 Da, which covers most of the human tryptic peptides.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27766v1 | CC BY 4.0 Open Access | rec: 29 May 2019, publ: 29 May 2019

OpenMS supports targeted analysis through the OpenSWATH (Röst, Rosenberger, et al. 2014)

module which allows automated analysis of targeted proteomics (SRM and PRM) as well as DIA

/ SWATH-MS data. For all targeted proteomics experiments, the analysis requires the raw MS

data as well as an assay library that contains information (precursor m/z, fragment ion m/z,

retention time, fragment intensity) about the target peptides. Like the rest of OpenMS,

OpenSWATH works with standard file formats (mzML for raw MS data, TraML for the assay

library) in order to provide interoperability with other software and standard compliance. The

OpenSWATH module performs automatic retention time and m/z calibration using a set of

anchor peptides (e.g. spiked in standards such as iRT peptides (Escher et al. 2012) or

endogenous peptides (Parker et al. 2015) using either a linear or non-linear function.

Next, OpenSWATH will perform chromatographic extraction, where extracted ion

chromatograms are constructed for all peptides in the assay library and then performs

chromatographic peak picking and scoring. For DIA data, it will perform chromatographic

analysis of the data, but it will also consult the full scan data to obtain additional information

such as mass accuracy and isotopic envelope information. Statistical analysis of the data using

the target-decoy approach can then either be performed using Percolator (The et al. 2016) or

the specifically designed pyProphet software (Teleman et al. 2015), which will compute false

discovery rate (FDR) estimates. Each task described above can be performed by individual

TOPP tools, but for convenience we offer an integrated tool OpenSwathWorkflow that performs

all steps at once which speeds up execution.

As mentioned above, each targeted analysis requires an assay library. OpenMS provides

multiple tools to generate such assays including OpenSwathAssayGenerator which can take

spectral library input (e.g. in SpectraST format) and generate an assay library output using

specific transition-level criteria. Similarly, OpenSwathDecoyGenerator offers several methods

('shuffle', 'pseudo-reverse', 'reverse', 'shift') for generating spectral decoys that are required for

target-decoy approaches to FDR estimation.

Extensive documentation is provided at http://www.openswath.org/en/latest/ with detailed

information on parameters, example data and extended tutorials on how to run OpenSWATH.

Metabolomics

OpenMS can be used for label-free LC-MS metabolomics data analysis. It supports

quantification and different identification techniques, such as accurate mass search, de novo

identification and spectral library search. Similar to label-free proteomics, feature detection and

adduct grouping are first performed for each LC-MS map. Retention time alignment and

grouping of features across multiple maps are then performed using MapAlignerPoseClustering

and FeatureLinkerUnlabeledQT (see “Peptide and Protein quantification”).

Metabolite quantification

OpenMS provides several tools with the prefix “FeatureFinder” that are used to perform

quantification on MS1-level. FeatureFinderMetabo (Kenar et al. 2014) was specifically

developed to detect small molecules in LC-MS samples with high sensitivity and specificity. As

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27766v1 | CC BY 4.0 Open Access | rec: 29 May 2019, publ: 29 May 2019

before, a feature contains all signals that are caused by the same metabolite in a certain charge

state.

The algorithm first detects continuous mass traces by starting a new trace at the most intense

peak and extending it in both retention time directions. Since low-intensity peaks are often less

accurate, a heteroscedastic noise model is used to decide if an additional peak is added. Often,

small molecules with the same mass elute at similar retention times and appear on a single

continuous mass trace. FeatureFinderMetabo can detect these cases based on the elution

profile and splits the mass trace at the local minimum of the elution profile. Finally, all mass

traces that are caused by the same metabolite are assembled into a single feature, i.e. the

monoisotopic trace and additional isotopic traces. To decide which mass traces are assembled,

they need to co-elute at the correct m/z distance and exhibit the expected isotope abundance

ratios. Due to the vast diversity of metabolites, it is not possible to use the averagine model.

Instead, a support vector machine was trained to detect isotope abundance ratios that are likely

to be observed for metabolites.

Each feature corresponds to a metabolite with a certain adduct. The same compound can be

observed multiple times at a similar retention time with different adducts or neutral losses (e.g.

sodium adduct or water loss). The OpenMS tool MetaboliteAdductDecharger can be used to

group these features and annotate them with their adduct and charge state, which can be useful

for subsequent analysis steps. For this, a list of potential adducts and their probabilities has to

be provided. The MetaboliteAdductDecharger then builds a connected graph of co-eluting

features, which is resolved using a corresponding Integer Linear Programming approach (ILP).

With this, the solution that maximizes the overall probabilities is chosen in the end.

Metabolite identification

Compound identification remains one of the major challenges in metabolomics. OpenMS

supports commonly used approaches based on compound databases and spectral libraries. In

addition, it integrates SIRIUS (Dührkop et al. 2019) for the de novo identification of metabolites.

Compound databases

The tool AccurateMassSearch is the first step towards compound identification and can be used

to annotate detected features with putative compound identifications using only their accurate

mass. The tool considers arbitrary adducts for positive and negative polarity and a compound

database providing access to the Human Metabolome Database (HMDB) by default (Wishart et

al. 2018).

Spectral library search

Searching the accurate mass of unidentified metabolites against a compound database will

provide insight into which compounds could be present in the sample, but the results are often

ambiguous. To arrive at more confident identifications, MetaboliteSpectralMatcher can be used

to search MS/MS spectra against spectral libraries containing experimentally acquired reference

spectra. Spectrum matches are scored using a modified version of the hyperscore introduced by

Fenyö and Beavis (Fenyö and Beavis 2003). Any spectral library in the mzML file format can be

used, by default MassBank provides access MassBank (Horai et al. 2010).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27766v1 | CC BY 4.0 Open Access | rec: 29 May 2019, publ: 29 May 2019

De novo

De novo identification has the advantage that it does not rely on a spectral library of previously

measured compounds. SIRIUS reported identification rates of more than 70% (Dührkop et al.

2019). De novo approaches are computationally expensive making their application in large

high-throughput studies cumbersome. To this end SIRIUS has been integrated into OpenMS

(SiriusAdapter), which allows the pre-processing and complexity reduction of mass

spectrometry data, by providing feature, charge and adduct information.

Metaproteomics

The field of Metaproteomics studies communities of (micro-) organisms like the gut microbiome

at the proteome level. Besides host-pathogen interaction, central topics are the degradation of

substrates and nutrients - including feeding on other organisms. The characterization of

organisms helps to understand clinical relevant processes in microbiomes and potentially

associated diseases. In OpenMS, we provide the tool MetaProSIP to perform stable isotope

probing of metaproteomic communities. It determines to what extent isotopes from the labeled

substrate were incorporated into newly synthesized proteins and the labeling ratio to

characterize the speed of protein biosynthesis (protein turnover). Carefully designed

experiments and time-series analysis of MetaProSIP results allows reconstructing the elemental

flow between functional groups of organisms in a complex community (Sachsenberg et al.

2015).

Cross-linking MS

Structural proteomics is an emerging field combining different experimental methodologies with

mass spectrometry analysis to gain insights into the structures of biomolecular complexes.

Cross-linking is one of these methods and involves inducing non-native covalent bonds between

different molecules or different moieties within the same molecule using either chemical

reagents, UV light or both. In protein-protein cross-linking usually side chains of protein residues

are bound using a chemical cross-linker. The linker has a specific length that it can span, so the

identification of the two linked residues gives us an upper bound for the distance between these

residues. They can be part of the same protein or two separate proteins interacting with each

other, therefore cross-linking MS yields information about the structures of single proteins as

well as protein complexes of any size (Leitner et al. 2016). In nucleic acid to protein cross-

linking experiments, covalent bonds are induced between proteins and RNA or DNA strands in

close proximity. These bonds are induced while the molecules are as close as possible to their

native state or a specific state of interest. Afterwards the proteins are digested with enzymes

and the linked peptide pairs or peptides linked with nucleotide oligos are analyzed by mass

spectrometry. Because of the increased search space and more complex MS2 fragmentation

patterns, linear peptide search algorithms can not be effectively used to analyze these types of

data.

OpenMS enables the analysis of both of these types of data through the dedicated search

algorithms OpenPepXL for protein-protein cross-linking and RNPXL for protein-RNA cross-

linking.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27766v1 | CC BY 4.0 Open Access | rec: 29 May 2019, publ: 29 May 2019

OpenPepXL requires the centroided MS data from a protein-protein cross-linking experiment

and a fasta database of the targeted proteins and decoys. If an isotopically labeled cross-linking

reagent was used, it is possible to combine the information from two MS2 spectra (the same

peptide pair linked by the light and the heavy linker) to reduce search time and increase the

specificity of the search. In this case an additional consensusXML file produced by the tool

FeatureFinderMultiplex is necessary to link together MS1 features from the light and heavy

cross-linkers. OpenPepXL will then digest the fasta database and preprocess the spectra or

spectra pairs by deisotoping and filtering. For each spectrum a list of candidate peptide pairs is

generated according to its precursor mass and the given precursor tolerance. Theoretical

spectra are generated by considering both peptides and the cross-linker as a single molecule to

accurately model the fragment masses of cross-linked peptides. The experimental spectrum

and the theoretical spectrum are matched and scored against each other using the OpenPepXL

scoring function. The hits for all MS2 spectra in the input mzML file are then written out in idXML

or mzIdentML. These can be further processed by XFDR, the dedicated false discovery rate

estimation tool for protein-protein cross-linking based on xProphet (Walzthoeni et al. 2012).

RNPXL identifies protein-RNA cross-links in UV-induced cross-linking experiments. Input files are

centroided spectra and a fasta database of the targeted proteins and decoys. A detailed

description on data analysis is given in the Supplementary material of Kramer et al. (Kramer et

al. 2014).

RNA (modification) analysis

Besides proteomics and metabolomics, another important application of biological mass

spectrometry is the sequence analysis of nucleic acids. Before the advent of “next generation”

sequencing approaches, mass spectrometry was being pursued as a potential tool for high-

throughput DNA sequencing (Apffel et al. 1997). Recently, the nascent field of

epitranscriptomics (RNA epigenetics) has spurred a growing interest in chemical modifications

on RNA, and an appreciation of their varied biological roles. Mass spectrometric analysis of

intact RNA oligonucleotides has become an important method in this area; it has the unique

advantages of allowing the detection and localization of multiple different modifications at the

same time, with single-nucleotide resolution. The experimental and computational analysis

workflows are largely analogous to shotgun proteomics: Purified RNA samples are

enzymatically digested (typically with RNase T1, which cuts after guanosines), the

oligonucleotides separated by liquid chromatography (typically ion-pair HPLC) and

characterized by tandem mass spectrometry in negative ion mode.

OpenMS now includes tools to analyze data from such experiments. The

NucleicAcidSearchEngine (NASE) provides functionality for the identification of RNA

oligonucleotides based on tandem mass spectra (mzML) and a sequence database (fasta)

(Wein et al. 2018). Analogously to database search engines for shotgun proteomics, NASE has

a variety of options that can be adjusted by users, including support for a plethora of

ribonucleotide modifications and different digestion enzymes. During development NASE has

been tested on tRNA, rRNA, and miRNA samples.

Beyond RNA identification, OpenMS offers basic capabilities for label-free quantification of RNA

analytes. To this end, NASE can produce a file with “target coordinates” for its search results,

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27766v1 | CC BY 4.0 Open Access | rec: 29 May 2019, publ: 29 May 2019

which the FeatureFinderMetaboIdent tool can use to perform targeted quantification of the

identified oligonucleotides.

Visualization capabilities (user perspective)

The graphical application TOPPView provides advanced visualization of mass spectrometric

data. It allows examining raw spectra and chromatograms, the effects of data processing steps

as well as identification and quantification results in a graphical user interface (GUI). TOPPView

offers one dimensional visualization of spectra (m/z vs intensities) and chromatograms (RT vs

intensities). Additionally, whole experimental maps can be visualized in 2D (RT vs m/z) and 3D

(RT vs m/z vs intensity) allowing visual quality inspection of the current experiment. From the 2D

view, projections on either the RT axis (extracted ion chromatograms, XIC) or projections on the

m/z axis (integrated spectra) can be computed (see Figure 3).

Furthermore, chromatographic data as acquired in SRM or extracted ion chromatograms (from

PRM / DIA or SWATH-MS data) can be visualized using TOPPView’s chromatographic

visualization module (RT vs intensities). DIA or SWATH-MS data can be visualized using full

high-resolution MS/MS spectra by displaying SWATH maps individually in 2D or 3D (fragment

ion m/z vs RT). TOPPView is also capable of displaying ion mobility (IM) data is individual

spectra (“frames”) contain additional ion mobility data, either annotated as meta-data or in 2D or

3D (m/z vs IM) by right-clicking on a spectrum and selecting “Switch to ion mobility view”.

Identification data from search engines can be superimposed on individual spectra to annotate

fragment ion peaks and display the highest-scoring peptide identification in the same graphical

frameworks. These peptide-spectrum matches (PSMs) can be visualized and manually curated.

The TOPPView application is tightly integrated with the TOPP tools provided by OpenMS,

offering graphical dialogues to conveniently configure and run TOPP tools without resorting to

executing the tool on the command line. Possible applications are optimizing tool configurations

to find the best parameters for a particular type of instrument or data.

TOPPView is highly configurable, where the user can select the colors of the display, the

position of the axes and the scaling of the data (log, relative, absolute). Furthermore, the user

can choose to not load all data into memory at once, which can be suitable for memory-

constrained situations or in the case of very large files. In this case, TOPPView is capable of

only loading the requested spectra into memory using the indexedmzML data standard that

allows random-access to individual spectra even in large XML files (Röst et al. 2015).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27766v1 | CC BY 4.0 Open Access | rec: 29 May 2019, publ: 29 May 2019

Figure 3: TOPPView - Tool for data visualization. (Top-left) Extracted ion chromatogram view of a specific feature in a
segment of the current 2D map. (Bottom-left) Time points of a fragmentation events in the 2D view. (Top-right) MS2
spectrum in a 1D view overlaid with the identification based on database search (Identification View). (Bottom-right)
3D representation of a segment from a mass spectrometry map.

Containerization and reproducibility

Containerization of software is usually defined as a method to bundle code, configurations and

dependencies into one object that is quickly and reliably deployable on different computing

environments. Leading providers of software that is able to create and run such containers

include Docker and Singularity. OpenMS regularly provides updated containers and recipes

(see Table 4) to create such containers for different configurations and scenarios. Those

scenarios include but are not limited to development, usage in container-enabled workflow-

systems (e.g. nextflow) or spawning workers in cloud or HPC environments to scale up

analyses. Even full workflows can be containerized (e.g. with the deNBI-CIBI plugin from

KNIME) to create a snapshot of the environment with which a certain analysis was performed.

This is useful e.g. for generating referenceable identifiers in scientific journals and enabling

reproducible research.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27766v1 | CC BY 4.0 Open Access | rec: 29 May 2019, publ: 29 May 2019

Table 4: Information about containerization

Acknowledgements

O.K., L.B., J.P. and T.S. were supported by a grant from the German Federal Ministry of
Education and Research (BMBF) under grant no. 031A535A (German Network for
Bioinformatics, de.NBI/CIBI).

This Project was funded by the Government of Canada through Genome Canada and the

Ontario Genomics Institute (OGI-164). This work was supported by the Canadian Institutes for

Health Research, the Natural Sciences and Engineering Research Council of Canada, and the

Canada Research Coordinating Committee. H.L.R. is supported by the Canadian Foundation for

Innovation and the John R. Evans Leaders Fund and is the Canada Research Chair in Mass

Spectrometry-based Personalized Medicine.

References

Afgan, Enis et al. 2018. “The Galaxy Platform for Accessible, Reproducible and Collaborative
Biomedical Analyses: 2018 Update.” Nucleic Acids Research 46(W1): W537–44.
https://academic.oup.com/nar/article/46/W1/W537/5001157.

Apffel, Alex et al. 1997. “Analysis of Oligonucleotides by HPLC−Electrospray Ionization Mass
Spectrometry.” Analytical Chemistry 69(7): 1320–25.
https://pubs.acs.org/doi/10.1021/ac960916h.

Berthold, Michael R et al. 2007. Studies in Classification, Data Analysis, and Knowledge
Organization (GfKL 2007) KNIME: The Konstanz Information Miner. Springer.

Bertsch, Andreas et al. 2009. “De Novo Peptide Sequencing by Tandem MS Using
Complementary CID and Electron Transfer Dissociation.” Electrophoresis 30(21): 3736–47.
http://www.ncbi.nlm.nih.gov/pubmed/19862751.

Choi, Meena et al. 2014. “MSstats: An R Package for Statistical Analysis of Quantitative Mass
Spectrometry-Based Proteomic Experiments.” Bioinformatics (Oxford, England) 30(17):
2524–26. http://www.ncbi.nlm.nih.gov/pubmed/24794931.

Craig, Robertson, and Ronald C Beavis. 2004. “TANDEM: Matching Proteins with Tandem Mass

Further information about OpenMS containers can be found here:

OpenMS DockerHub pages:

https://hub.docker.com/u/openms and https://hub.docker.com/u/hroest

Biocontainers collection:

https://biocontainers.pro

Containerization of KNIME workflows:

https://www.knime.com/denbicibi-contributions

https://github.com/OpenMS/OpenMS/wiki/Exporting-a-KNIME-workflow-as-a-Docker-

container

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27766v1 | CC BY 4.0 Open Access | rec: 29 May 2019, publ: 29 May 2019

Spectra.” Bioinformatics (Oxford, England) 20(9): 1466–67.
http://www.ncbi.nlm.nih.gov/pubmed/14976030.

Dührkop, Kai et al. 2019. “SIRIUS 4: A Rapid Tool for Turning Tandem Mass Spectra into
Metabolite Structure Information.” Nature Methods 16(4): 299–302.
http://www.nature.com/articles/s41592-019-0344-8.

Eng, J K, A L McCormack, and J R Yates. 1994. “An Approach to Correlate Tandem Mass
Spectral Data of Peptides with Amino Acid Sequences in a Protein Database.” Journal of
the American Society for Mass Spectrometry 5(11): 976–89.
http://www.ncbi.nlm.nih.gov/pubmed/24226387.

Eng, Jimmy K., Tahmina A. Jahan, and Michael R. Hoopmann. 2013. “Comet: An Open-Source
MS/MS Sequence Database Search Tool.” PROTEOMICS 13(1): 22–24.
http://doi.wiley.com/10.1002/pmic.201200439.

Escher, Claudia et al. 2012. “Using IRT, a Normalized Retention Time for More Targeted
Measurement of Peptides.” Proteomics 12(8): 1111–21.

Ewels, Philip A et al. 2019. “Nf-Core: Community Curated Bioinformatics Pipelines.” bioRxiv:
610741. http://biorxiv.org/content/early/2019/04/16/610741.abstract.

Fenyö, David, and Ronald C. Beavis. 2003. “A Method for Assessing the Statistical Significance
of Mass Spectrometry-Based Protein Identifications Using General Scoring Schemes.”
Analytical Chemistry 75(4): 768–74. https://pubs.acs.org/doi/10.1021/ac0258709.

Fermin, Damian, Dmitry Avtonomov, Hyungwon Choi, and Alexey I. Nesvizhskii. 2015.
“LuciPHOr2: Site Localization of Generic Post-Translational Modifications from Tandem
Mass Spectrometry Data.” Bioinformatics 31(7): 1141–43.

Fillbrunn, Alexander et al. 2017. “KNIME for Reproducible Cross-Domain Analysis of Life
Science Data.” Journal of Biotechnology 261(February): 149–56.

Frank, Ari, and Pavel Pevzner. 2005. “PepNovo: De Novo Peptide Sequencing via Probabilistic
Network Modeling.” Analytical Chemistry 77(4): 964–73.
https://pubs.acs.org/doi/10.1021/ac048788h.

Geer, Lewis Y et al. 2004. “Open Mass Spectrometry Search Algorithm.” : 958–64.
Grüning, Björn et al. 2018. “Bioconda: Sustainable and Comprehensive Software Distribution for

the Life Sciences.” Nature Methods 15(7): 475–76. http://www.nature.com/articles/s41592-
018-0046-7.

Horai, Hisayuki et al. 2010. “MassBank: A Public Repository for Sharing Mass Spectral Data for
Life Sciences.” Journal of Mass Spectrometry 45(7): 703–14.

Kenar, Erhan et al. 2014. “Automated Label-Free Quantification of Metabolites from Liquid
Chromatography-Mass Spectrometry Data.” Molecular & Cellular Proteomics 13(1):
348–59. http://www.mcponline.org/content/13/1/348.full
%5Cnpapers3://publication/doi/10.1074/mcp.M113.031278.

Kim, Sangtae, and Pavel A Pevzner. 2014. “Database Search Tool for Proteomics.” Nature
Communications 5: 1–10. http://dx.doi.org/10.1038/ncomms6277.

Kong, Andy T et al. 2017. “MSFragger: Ultrafast and Comprehensive Peptide Identification in
Mass Spectrometry–Based Proteomics.” Nature Methods 14(5): 513–20.
http://www.nature.com/articles/nmeth.4256.

Koster, J., and S. Rahmann. 2012. “Snakemake--a Scalable Bioinformatics Workflow Engine.”
Bioinformatics 28(19): 2520–22. https://academic.oup.com/bioinformatics/article-
lookup/doi/10.1093/bioinformatics/bts480.

Kramer, Katharina et al. 2014. “Photo-Cross-Linking and High-Resolution Mass Spectrometry
for Assignment of RNA-Binding Sites in RNA-Binding Proteins.” Nature Methods 11(10):
1064–70. http://www.nature.com/articles/nmeth.3092.

Lam, Henry et al. 2007. “Development and Validation of a Spectral Library Searching Method for
Peptide Identification from MS/MS.” Proteomics 7(5): 655–67.

Leitner, Alexander, Marco Faini, Florian Stengel, and Ruedi Aebersold. 2016. “Crosslinking and

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27766v1 | CC BY 4.0 Open Access | rec: 29 May 2019, publ: 29 May 2019

Mass Spectrometry: An Integrated Technology to Understand the Structure and Function of
Molecular Machines.” Trends in Biochemical Sciences 41(1): 20–32.
https://linkinghub.elsevier.com/retrieve/pii/S0968000415002078.

Ma, Bin. 2015. “Novor: Real-Time Peptide de Novo Sequencing Software.” Journal of The
American Society for Mass Spectrometry 26(11): 1885–94.
http://link.springer.com/10.1007/s13361-015-1204-0.

MacLean, Brendan et al. 2010. “Skyline: An Open Source Document Editor for Creating and
Analyzing Targeted Proteomics Experiments.” Bioinformatics (Oxford, England) 26(7): 966–
68. http://www.ncbi.nlm.nih.gov/pubmed/20147306.

Novella, Jon Ander et al. 2019. “Container-Based Bioinformatics with Pachyderm” ed. Jonathan
Wren. Bioinformatics 35(5): 839–46.
https://academic.oup.com/bioinformatics/article/35/5/839/5068160.

Park, Christopher Y. et al. 2008. “Rapid and Accurate Peptide Identification from Tandem Mass
Spectra.” Journal of Proteome Research 7(7): 3022–27.
http://pubs.acs.org/doi/abs/10.1021/pr800127y.

Parker, Sarah J et al. 2015. “Identification of a Set of Conserved Eukaryotic Internal Retention
Time Standards for Data-Independent Acquisition Mass Spectrometry.” Molecular & cellular
proteomics : MCP 14(10): 2800–2813. http://www.ncbi.nlm.nih.gov/pubmed/26199342.

Perkins, David N., Darryl J. C. Pappin, David M. Creasy, and John S. Cottrell. 1999.
“Probability-Based Protein Identification by Searching Sequence Databases Using Mass
Spectrometry Data.” Electrophoresis 20(18): 3551–67.
http://doi.wiley.com/10.1002/%28SICI%291522-
2683%2819991201%2920%3A18%3C3551%3A%3AAID-ELPS3551%3E3.0.CO%3B2-2.

Pfeuffer, Julianus et al. 2017. “OpenMS - A Platform for Reproducible Analysis of Mass
Spectrometry Data.” Journal of Biotechnology 261(February): 142–48.

Rosenberger, George et al. 2014. “ALFQ: An R-Package for Estimating Absolute Protein
Quantities from Label-Free LC-MS/MS Proteomics Data.” Bioinformatics (Oxford, England)
30(17): 2511–13. http://www.ncbi.nlm.nih.gov/pubmed/24753486.

Röst, Hannes L., Uwe Schmitt, Ruedi Aebersold, and Lars Malmström. 2014. “PyOpenMS: A
Python-Based Interface to the OpenMS Mass-Spectrometry Algorithm Library.” Proteomics
14(1): 74–77.

Röst, Hannes L, George Rosenberger, et al. 2014. “OpenSWATH Enables Automated, Targeted
Analysis of Data-Independent Acquisition MS Data.” Nature biotechnology 32(3): 219–23.
http://www.ncbi.nlm.nih.gov/pubmed/24727770.

Röst, Hannes L et al. 2016. “OpenMS: A Flexible Open-Source Software Platform for Mass
Spectrometry Data Analysis.” Nature Methods 13(9): 741–48.
http://www.nature.com/articles/nmeth.3959.

Röst, Hannes L, Uwe Schmitt, Ruedi Aebersold, and Lars Malmström. 2015. “Fast and Efficient
XML Data Access for Next-Generation Mass Spectrometry.” PloS one 10(4): e0125108.
http://www.ncbi.nlm.nih.gov/pubmed/25927999.

Sachsenberg, Timo et al. 2015. “MetaProSIP: Automated Inference of Stable Isotope
Incorporation Rates in Proteins for Functional Metaproteomics.” Journal of proteome
research 14(2): 619–27. http://www.ncbi.nlm.nih.gov/pubmed/25412983.

Serang, Oliver, and Lukas Käll. 2015. “Solution to Statistical Challenges in Proteomics Is More
Statistics, Not Less.” Journal of proteome research 14(10): 4099–4103.
http://www.ncbi.nlm.nih.gov/pubmed/26257019.

Serang, Oliver, Michael J. MacCoss, and William Stafford Noble. 2010. “Efficient Marginalization
to Compute Protein Posterior Probabilities from Shotgun Mass Spectrometry Data.”
Journal of Proteome Research 9(10): 5346–57.
http://pubs.acs.org/doi/abs/10.1021/pr100594k.

Sturm, M. et al. 2008. “OpenMS - an Open-Source Software Framework for Mass

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27766v1 | CC BY 4.0 Open Access | rec: 29 May 2019, publ: 29 May 2019

Spectrometry.” BMC Bioinformatics 9: 163.
Sturm, Marc, and Oliver Kohlbacher. 2009. “TOPPView: An Open-Source Viewer for Mass

Spectrometry Data.” Journal of Proteome Research 8(7): 3760–63.
http://pubs.acs.org/doi/abs/10.1021/pr900171m.

Tabb, David L., Christopher G. Fernando, and Matthew C. Chambers. 2007. “MyriMatch: Highly
Accurate Tandem Mass Spectral Peptide Identification by Multivariate Hypergeometric
Analysis.” Journal of Proteome Research 6(2): 654–61.
http://pubs.acs.org/doi/abs/10.1021/pr0604054.

Tanner, Stephen et al. 2005. “InsPecT: Identification of Posttranslationally Modified Peptides
from Tandem Mass Spectra.” Analytical Chemistry 77(14): 4626–39.
https://pubs.acs.org/doi/10.1021/ac050102d.

Teleman, Johan et al. 2015. “DIANA-Algorithmic Improvements for Analysis of Data-
Independent Acquisition MS Data.” Bioinformatics 31(4): 555–62.

The, Matthew, and Lukas Käll. 2016. “MaRaCluster: A Fragment Rarity Metric for Clustering
Fragment Spectra in Shotgun Proteomics.” Journal of proteome research 15(3): 713–20.
http://www.ncbi.nlm.nih.gov/pubmed/26653874.

The, Matthew, Michael J. MacCoss, William S. Noble, and Lukas Käll. 2016. “Fast and Accurate
Protein False Discovery Rates on Large-Scale Proteomics Data Sets with Percolator 3.0.”
Journal of The American Society for Mass Spectrometry 27(11): 1719–27.
http://link.springer.com/10.1007/s13361-016-1460-7.

Di Tommaso, Paolo et al. 2017. “Nextflow Enables Reproducible Computational Workflows.”
Nature Biotechnology 35(4): 316–19. http://www.nature.com/articles/nbt.3820.

Uszkoreit, Julian et al. 2015. “PIA: An Intuitive Protein Inference Engine with a Web-Based User
Interface.” Journal of Proteome Research 14(7): 2988–97.
http://pubs.acs.org/doi/10.1021/acs.jproteome.5b00121.

Walzthoeni, Thomas et al. 2012. “False Discovery Rate Estimation for Cross-Linked Peptides
Identified by Mass Spectrometry.” Nature Methods 9(9): 901–3.
http://www.nature.com/articles/nmeth.2103.

Wein, Samuel et al. 2018. “A Computational Platform for High-Throughput Analysis of RNA
Sequences and Modifications by Mass Spectrometry.” bioRxiv: 501668.
http://biorxiv.org/content/early/2018/12/20/501668.abstract.

Weisser, Hendrik et al. 2013. “An Automated Pipeline for High-Throughput Label-Free
Quantitative Proteomics.” Journal of Proteome Research 12(4): 1628–44.

Weisser, Hendrik, and Jyoti S Choudhary. 2017. “Targeted Feature Detection for Data-
Dependent Shotgun Proteomics.” Journal of proteome research 16(8): 2964–74.
http://www.ncbi.nlm.nih.gov/pubmed/28673088.

Wishart, David S. et al. 2018. “HMDB 4.0: The Human Metabolome Database for 2018.” Nucleic
Acids Research 46(D1): D608–17.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27766v1 | CC BY 4.0 Open Access | rec: 29 May 2019, publ: 29 May 2019

	Introduction
	OpenMS for developers
	C++ library
	Data formats and raw data API
	Algorithms
	TOPP tools (developer perspective)
	Visualization
	Code Quality and Community
	Getting started with the OpenMS library for developers

	OpenMS for users
	TOPP tools (user perspective)
	Getting started with OpenMS for users
	Workflows in MS
	OpenMS in KNIME
	Getting started with OpenMS in KNIME
	Other workflow systems with OpenMS integrations

	Peptide identification and protein inference
	Further peptide identification methods
	De novo peptide search
	Spectral library search

	Additional supported methods
	Phosphosite localization
	Spectral clustering

	Peptide and Protein quantification
	Additional supported quantification methods
	Label free quantification based on identification data
	Quantification using chemical or isotopic labeling
	Quantification using isobaric labeling

	Targeted Analysis
	Metabolomics
	Metabolite quantification
	Metabolite identification

	Metaproteomics
	Cross-linking MS
	RNA (modification) analysis
	Visualization capabilities (user perspective)
	Containerization and reproducibility

	Acknowledgements
	References

