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Introduction

Computational mass spectrometry has seen exponential growth in recent years in data size and 

complexity,  straining  the  existing  infrastructure  of  many  labs  as  they  moved  towards  high-

performance  computing  (HPC)  and  embraced  big  data  paradigms.  Transparent  and 

reproducible  data  analysis  has  traditionally  been  challenging  in  the  field  due  to  a  highly 

heterogeneous  software  environment,  while  algorithms and  analysis  workflows  have  grown 

increasingly complex. A multitude of competing and often incompatible file formats prevented 

objective  algorithmic  comparisons  and,  in  some  cases,  access  to  specific  software  or  file 

formats relied on a vendor license. Due to the fast technology progress in the field, many novel 

algorithms are proposed in the literature every year, but few are implemented with reusability, 

robustness,  cross-platform  compatibility  and  user-friendliness  in  mind,  creating  a  highly 

challenging software and data storage environment that in some aspects is even opaque to 

experts.
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The OpenMS software framework addresses these issues through a set of around 175 highly 

robust and transparent cross-platform tools with a focus on maximal flexibility  (Pfeuffer et al. 

2017; Röst et al. 2016; M. Sturm et al. 2008). Modern software engineering techniques ensure 

reproducibility between versions and minimize code duplication and putative errors in software. 

OpenMS  is  completely  open-source,  uses  standardized  data  formats  extensively  and  is 

available on all three major computing platforms (macOS, Windows, Linux). Multiple layers of 

access to the OpenMS algorithms exist for specialist, intermediate and novice users, providing 

low entrance barriers through sophisticated data visualization and graphical workflow managers. 

The  flexibility  of  OpenMS  allows  it  to  support  a  multitude  of  customizable  and  easily 

transmissible workflows in multi-omics data analysis, including metabolomics, lipidomics, and 

proteomics setups, supporting different quantitative approaches spanning label-free, isotopic, 

isobaric labeling techniques, as well  as targeted proteomics. Its highly flexible structure and 

layered  design  allow  different  scientific  groups  to  take  full  advantage  of  the  software. 

Developers  can  fully  exploit  the  sophisticated  C++  library  for  tool  and  data  structure 

development, while advanced Python bindings (pyOpenMS) wrap most of the classes  (Röst, 

Schmitt, et al. 2014), providing an excellent solution for fast scripting and prototyping. Users, 

can either  work on command line  tool  level  or  take advantage of  industry-grade workflows 

system, such as the KoNstanz Information MinEr (KNIME) (Berthold et al. 2007; Fillbrunn et al. 

2017), Galaxy (Afgan et al. 2018), Nextflow (Di Tommaso et al. 2017), or Snakemake (Koster 

and  Rahmann  2012).  The  framework  is  highly  adaptable,  allowing  even  novice  users  to 

generate complex workflows using the easy-to-learn graphical user interfaces of KNIME. Built-in 

support for most common workflow steps (such as popular proteomics search engines) ensures 

low entrance barriers while advanced users have high flexibility within the same framework. A 

modular  and  comprehensive  codebase  allows  rapid  development  of  novel  methods  as 

exemplified by the recent additions for metabolomics, SWATH-MS and cross-linking workflows.

In addition, a versatile visualization software (TOPPView) allows exploration of raw data as well 

as identification and quantification results (Marc Sturm and Kohlbacher 2009). The permissive 

BSD  license  encourages  usage  in  commercial  and  academic  projects,  making  the  project 

especially suited for reference implementations of file formats and algorithms.  

 

OpenMS for developers

The  OpenMS framework  consists  of  different  abstraction  layers.  The  first  layer  consists  of 

external libraries (Qt, Boost, Xerces, Seqan, Eigen, Wildmagic, Coin-Or, libSVM), which add 

additional data structures and functionality, simplifying complex tasks such as GUI-programming 

or XML parsing. The next layer consists of the OpenMS core library containing algorithms, data 

structures and input/output processing. The third layer encloses TOPP tools and utilities (~ 175), 

which  allow  various  analysis  tasks,  such  as  signal  processing,  filtering,  identification, 

quantification and visualization.  The core library and the TOPP tools have Python bindings, 

which can be used for fast scripting and prototyping (pyOpenMS) (Röst, Schmitt, et al. 2014). In 
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the top layer, the tools are accessible from different workflow systems, for the construction of 

flexible, tool based workflows. 

C++ library

OpenMS has  a  multi-level  architecture  with  an  open  source  C++  library  at  its  core  which 

implements all  data structures and algorithms required for MS data analyses. Its permissive 

license (3-clause BSD) allows using OpenMS both in academic as well as commercial projects 

without  any  licensing  fees.  Since  its  beginning,  its  aim  has  been  to  provide  efficient  data 

structures and algorithms for common MS data processing tasks. As such, the library targets 

computational biologists and algorithm developers with sound programming skills.  Using the 

library, developers have direct access to the richest set of functionality and generally profit from 

highly-optimized implementations of core data structures and algorithms when developing novel 

methods. More than 1,300 classes cover a broad range of functions in computational mass 

spectrometry, proteomics and metabolomics. These functionalities include

 file handling (mzXML, mzML, TraML, mzTab, fasta, pepxml, protxml, mzIdentML among 

others)

 chemistry (mass calculation, peptide fragmentation, isotopic abundances)

 signal processing and filtering (smoothing, filtering, de-isotoping, mass correction, 

retention time correction and peak picking)

 identification analysis (including peptide search, PTM analysis, cross-linked analytes, 

FDR control, RNA oligonucleotide search and small molecule search tools)

 quantitative analysis (including label-free, SILAC, iTRAQ, TMT, SWATH/DIA, and 

metabolomics analysis tools)

 chromatogram analysis (chromatographic peak picking, smoothing, elution profiles and 

peak scoring for targeted (SRM, MRM, PRM, SWATH, DIA) data)

 interaction with common tools in proteomics and metabolomics

 search engines such as Comet, Crux, Mascot, MS-GF+, InsPecT, PepNovo, 

MSFragger, Myrimatch, OMSSA, Sequest, SpectraST, XTandem

 post-processing tools such as Percolator, MSstats, Fido, EPIFANY

 metabolomics tools such as SIRIUS

Ideally,  newly  developed  methods,  algorithms,  or  data  structures  of  general  interest  are 

contributed by the community, find their way back to the library to be used by other OpenMS 

developers.  OpenMS itself  builds on other  open-source projects  like  Qt,  Xerces,  COIN-OR, 

libSVM, Eigen, WildMagic, or boost for tasks like GUI programming, XML parsing, non-linear 

optimizations,  machine  learning  or  fast  linear  algebra.  To  leverage  the  compute  power  of 

modern processors, the OpenMP library is used to parallelize many algorithms in OpenMS.

For a short example how a multi-threaded spectrum processing algorithm can be realized using 

the OpenMS library see Code Example 1.
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Code Example 1: Multi-threaded spectrum processing algorithm using the OpenMS library

// C++ example (excerpt):
// Load data, retain the 400 most intense peaks in a spectrum

MSExperiment exp;
MzMLFile().load(“file.mzML”, exp);
auto spectra = exp.getSpectra();

// construct a spectrum filter
NLargest nlargest_filter = NLargest (400);

// parallelize loop for concurrent execution using OpenMP

# pragma omp parallel for
for (auto it = spectra.begin(); it < spectra.end(); it++)
{
  // sort peaks by mass-to-charge position
  it->sortByPosition();

  // apply filter and keep only the 400 highest intensity peaks
  nlargest_filter.filterPeakSpectrum(*it);
}

Data formats and raw data API

Using open data formats for storing, exchanging, and deposition of primary raw data and final 

analysis results in public data repository are prerequisites for reproducible science. OpenMS 

builds on open standards for reading and writing MS data (e.g., mzML and mzXML format), 

transitions  (traML),  identifications  (mzIdentML),  or  exporting  final  results  (mzTab).  In  fact, 

members of the OpenMS community have been actively involved in the development of several 

HUPO-PSI standard formats in the past. For XML-based formats, OpenMS uses the powerful 

Xerces software library from the Apache project which implements both DOM and SAX parsing. 

For all data, in-memory data structures exist where data gets parsed from disk into these data 

structures,  manipulated  in  memory  and  then  written  to  disk  again  after  transformation  / 

manipulation. However, for raw MS data access in mzML files, OpenMS provides an advanced 

API that can handle access spectra and chromatograms in different ways, thus optimizing the 

tradeoff between memory and CPU requirements of the algorithm (Röst et al. 2015): (1) random 

access in memory, (2) random access on disk using indexedmzML, (3) random access on disk 

using a cached file format and (4) event-driven processing. While programmatically, it is easiest 

to program against interface (1) since all data is in memory and can be accessed very fast, this 

is not always possible for very large files that do not fit into the current computer’s memory. For 

these cases, it is possible to access spectra from disk using either mechanism (2) or (3) which 

allows accessing raw data that is not held in memory. Finally, we have implemented an interface 

that uses a call-back mechanism similar to SAX parsing in XML parsing, which works on a per-
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spectra basis: the call-back function gets called as soon as a new spectrum is available from the 

reader, allowing a consumer to process spectra as they get read from disk. The processing 

function can either keep all results in memory or write them back to disk such that in an ideal 

case only a single spectrum is in memory at any given time.

Algorithms

The OpenMS library provides a multitude of algorithms ranging from low-level algorithms, like 

the generation of isotope patterns, processing and filtering of raw signals, to more complex 

algorithms  like  peptide  database  search.  In  the  following  we  picked  two  examples  to 

demonstrate  how these  algorithms are  configured  and  executed  on  data.  Other  algorithms 

provide similar interfaces.

Some algorithms with few parameters provide a simple interface and can be directly called. For 

isotope pattern calculation see Code Example 2.

Code Example 2: Isotope pattern calculation

// excerpt: generate isotope pattern (max. 10 peaks or 
// 99.9% of the isotopic probability) of Glucose 

EmpiricalFormula molecule("C6H12O6");
IsotopeDistribution iso;
iso = molecule.getIsotopeDistribution(CoarseIsotopePatternGenerator(10));
iso = molecule.getIsotopeDistribution(FineIsotopePatternGenerator(1e-3));

Note that multiple algorithms may be available through the same interface, here an isotopic 

distribution  can  be  calculated  using  coarse  (unit  mass)  resolution  or  using  fine  (hyperfine 

isotopic) resolution. A single line of code will switch between the two algorithms, but the rest of 

the code will work without change (note that the two algorithms take different parameter sets, 

either number of peaks or total isotopic probability covered). This allows OpenMS to implement 

new algorithms that improve performance or accuracy “under the hood” while the interface stays 

the same for the user and algorithms can be switched to the new interface with ease. In the 

above  example,  this  may  become  important  with  high  resolution  instrumentation  that  can 

differentiate between the hyperfine isotopic peaks in an isotopic envelope.

Other algorithms allow to fine-tune many parameters via a so-called Param object. The signal 

processing algorithm PeakPickerHiRes for centroiding of profile data is one of those (see Code

Example 3). Internally PeakPickerHiRes uses a spline interpolation of the raw data to determine 

the m/z, FWHM, and intensity of peak centroids. Several aspects, e.g, the minimum signal-to-

noise ratio to call a peak, can be configured via the Param object. 

Code Example 3: Centroiding of profile spectra using the PeakPichkerHiRes class

// excerpt: centroiding profile spectra

// load profile spectra

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27766v1 | CC BY 4.0 Open Access | rec: 29 May 2019, publ: 29 May 2019



MSExperiment profile_data, centroided_data;
MzMLFile().load("myData.mzML"), profile_data); 

// get default parameters, change as desired and store changes
PeakPickerHiRes peak_picker;
Param param = peak_picker.getParam();
param.setValue("signal_to_noise", 1.0); 
peak_picker.setParameters(param); 

// run algorithm
peak_picker.pickExperiment(profile_data, centroided_data); 

Available parameters are listed in the developer documentation of each algorithm and each 

parameter  comes  with  information  on  allowed  parameter  ranges  and  a  human-readable 

description of the parameter.

TOPP tools (developer perspective)

TOPP tools are command line applications developed within the OpenMS framework that utilize 

the OpenMS C++ library to implement a specific function. OpenMS follows the UNIX philosophy 

which  is  based  on  providing  individual  tools  with  defined  functionality  that  can  be  chained 

together to powerful workflows, allowing greatest amount of flexibility to the user. Currently there 

are around 175 TOPP tools available which range from implementing a spectral noise filter to 

adaptors  of  thirdparty  tools  (e.g.  the  Comet  search  engine)  and  full  implementations  of 

quantitative analysis of SILAC, label-free or SWATH data. These tools are the preferred way to 

expose novel functionality in OpenMS and are available to user directly through the command 

line but are also automatically integrated into workflow engines such as KNIME. 

OpenMS provides a base class and a template for the creation and integration of new tools. The 

base  class  handles  logging,  exception  handling  and  command  line  argument  parsing.  The 

template  has  well-defined  slots  for  adding  tool  parameters,  input  and  output  as  well  as 

algorithmic functionality which can be added in a straightforward manner. Further, before a tool 

can be merged into the OpenMS repository, it is required to provide its own regression tests, 

which allow for the automatic validation of its functionality in future releases of the OpenMS 

framework. Once added, the tool will become available as a command-line executable as well 

as a node in the KNIME workflow engine where users can integrate it into their workflows. 

For  further  instruction  on  tool  development  in  OpenMS please  visit  the  tool  section  in  the 

Developer C++ Quickstart Guide (see Table 1).

Visualization

MS data exhibits a large degree of variability and complex experimental setups may result in 

highly heterogeneous raw data. Visual inspection is regularly done in practice to assess data 

quality. TOPPView is a graphical application in OpenMS that allows users to inspect spectra, 

chromatograms, and identification results (Marc Sturm and Kohlbacher 2009). It uses the Qt 5 

framework to implement advanced visualization which includes 1D (spectra, chromatogram), 2D 

and 3D (peak maps) plotting. Standard and re-useable Qt classes allow graphical plotting in 
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multiple  dimensions  and  OpenGL  (Open  Graphics  Library)  is  used  for  high-performance 

interactive  3D  plotting.  Developers  can  build  their  own  applications  using  the  provided 

SpectrumWidget  and  SpectrumCanvas  classes,  which  allows  advanced  plotting  of  mass 

spectrometric  data without  having to re-invent  the wheel.  Furthermore,  TOPPView is  tightly 

integrated  with  the  available  TOPP tools,  which  can  be  directly  executed  on  the  currently 

displayed data and the output  of  a transformation can then be loaded back into the same 

graphical view, providing direct feedback for a particular choice of tool and parameters. Fine-

tuning these parameters sometimes may open the chance to analyze difficult data that fail to 

produce acceptable results using the default settings. 

Code Quality and Community

OpenMS  uses  modern  software  engineering  concepts  more  commonly  found  in  industry 

settings  than  in  academic  environments.  The  project  places  great  emphasis  on modularity, 

reusability and extensive testing (using continuous integration), resulting in high code quality. 

The modular architecture of OpenMS tries to build upon existing standard libraries as much as 

possible,  relying on them for  sequence analysis,  XML parsing,  numerical  computations and 

statistics.  Modern  object-oriented  C++  is  used  exclusively  throughout  the  code  base, 

encapsulating raw data structures and discouraging manual heap-based memory management 

(when not provably crucial for efficiency), thus providing robust and error-tolerant code.  Coding 

conventions  are  enforced  and  extensive  English  documentation  is  available  for  several 

thousand C++ functions part of the public API. All development is performed in the open, using 

the public  source code repository and ticketing system GitHub.  Stringent  code reviews and 

continuous  integration,  running  a  multitude  of  functional,  unit  and  black-box  tests,  ensure 

continued support, robustness and correctness of the code. Automated tests verify correctness 

of  functionality of both individual functions and whole units on all  three supported platforms 

while  also analyzing the code quality using automated tools such as cppcheck and cpplint. 

Additionally,  the  code  is  reviewed  by  other  developers  using  the  four-eyes  principles  and 

changes can be requested depending on the performance, accuracy, style and code quality. 

The OpenMS development team is integrated into an international multi-site effort supported by 

leading labs in experimental and computational mass spectrometry across Europe and North 

America. It is unique in the field by providing industrial-strength high-performance algorithmic 

implementations for a majority of common tasks in computational proteomics as open-source 

software.  Frequent  physical  meetings  and  training  sessions  educate  users  and  transmit 

knowledge of established workflows to practitioners in the field, providing also opportunities for 

users and developers to meet and exchange ideas. The project sees high contributor activity 

and several downstream tools such as MSstats, aLFQ and Skyline have started to integrate 

their tools with OpenMS (Choi et al. 2014; MacLean et al. 2010; Rosenberger et al. 2014)  

Getting started with the OpenMS library for developers 

For getting started to develop a new tool or use specific classes from the OpenMS library please 

follow the steps in Table 1.
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Table 1: Developer instructions

OpenMS for users

TOPP tools (user perspective)

TOPP tools  are  individual  tools,  which usually  perform one specific  task.  For  example,  the 

FeatureFinderCentroided can be used to detect two-dimensional features in centroided LC-MS 

data. A multitude of different tools exists ranging from simple format conversion, data filtering, to 

new data analysis, and data reduction algorithms. Additionally, wrapper exist and can be added 

upon request,  which allow the usage of well-established third-party tools developed by non-

Follow the steps to start programming on the library:

Working with your own fork:

Fork the OpenMS repository (https://github.com/OpenMS/OpenMS) 

Clone the respective fork locally (git clone https://github.com/username/OpenMS.git)

Compile OpenMS (build instructions below)

Have fun working with and on the library

Working on OpenMS/OpenMS: 

Clone or download the source (https://github.com/OpenMS/OpenMS.git) 

Compile OpenMS (build instructions below)

Have fun working with and on the library

Build instructions for Linux:

https://openms.de/documentation  /install_linux.html

Build instructions for OS X: 

https://openms.de/documentation  /install_mac.html

Build instructions for Windows: 

https://openms.de/documentation/install_win.html

For further instructions and information about coding conventions, please check out our WIKI:

https://github.com/OpenMS/OpenMS/wiki

OpenMS Developer C++ Guide: 

https://openms.de/documentation/OpenMS_tutorial.html
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OpenMS developers,  such as MS-GF+  (Kim and Pevzner 2014) or  SIRIUS  (Dührkop et  al. 

2019) within  the  OpenMS  Framework.  All  OpenMS  tools  provide  a  detailed  choice  of 

parameters that  go beyond what  classical  software in  the field offers and allow to tailor  its 

function to the specific needs of the user. The tools can be used individually or in an analysis 

pipeline either using the command line or a workflow engine. In the following, we would like to 

present a few examples of how to tackle common problem settings in mass spectrometry based 

multi-omics research with OpenMS tools and workflows.

Getting started with OpenMS for users

Interested in using OpenMS for your application and your research, have a look at the 

installation instructions and further tutorials on the usage of OpenMS (Table 2).

Table 2: OpenMS installation instruction

Workflows in MS

A bioinformatics workflow defines a series of computational steps which can be applied to single 

or multiple data sets. Therefore, the concept of a workflow clearly separates the computation 

from the data on which it operates, describing a reproducible set of steps with a well-defined 

input and output. In theory, if the same software is run on the same data in the same order with 

the same parameters then the user should obtain the same output. In practice, it is often difficult 

to exactly reproduce these conditions on a different  computer or  at  a later  date,  leading to 

challenges with reproducible data analysis. This is the problem which a computational workflow 

solves.

The workflow describes the software, the order in which the software operates on the data and 

the chosen parameters, which allows the replication of the work with the same data. This will 

lead to consistent results after reanalysis, since the workflow contains all information on how to 

process the data - information that is often lost if only an input file and an output file is provided.  

It is therefore crucial to store and submit workflow files alongside any data output files for other 

users to have a machine-readable and reproducible description of how the scientific result was 

computed. Working without  workflows can lead to irreproducible computational results when 

Follow the steps to start using OpenMS TOPP and Command Line Tools:

Current release binary installer for MacOS, Windows and Linux (debian) can be obtained at  

https://www.openms.de/download/openms-binaries/

OpenMS Quickstart Guide:

https://openms.de/documentation/Quickstart.html
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other researchers try to re-analyse data and potentially end up with different results because the 

computational methods were not well described.

OpenMS in KNIME

The workflow platform KNIME implements  such  workflows  in  a  graphical  user  interface  by 

connecting so called nodes (see Fig. 1). The node is the smallest entity in a workflow, which 

represents a single operation. Nodes can be connected in the workflow using input and output 

ports.  In  KNIME  different  port  types  exists  depending  on  the  action  to  be  performed.  It 

distinguishes between tables (table ports - black triangle) and whole files (file ports - blue box). 

KNIME supports a plugin system which allows the usage of a multitude of analysis software in 

synergy with OpenMS. These cover a wide area of applications, such as machine learning, 

hypothesis testing, data visualization and chemoinformatics methods. Here, for example RDKit 

can be used for the visualization of small molecule structures encoded in SMILES. Additionally, 

KNIME supports scripting nodes for R, Python and other languages, which can be used to run 

custom scripts  within  the  workflow.  Finished  workflows  can  be  saved  and  shared  with  the 

community  using  the  KNIME  Community  Workflow  Hub  (https://hub.knime.com/).  Further  a 

large collection of plugins is provided by the user community, which can be integrated into the 

workflow. 

Getting started with OpenMS in KNIME

Interested in using OpenMS in combination with the workflow engine KNIME have a look at the 

installation instructions and further tutorials on the usage of OpenMS with KNIME (Table 3).
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Table 3: KNIME with OpenMS plugin installation instructions and tutorials

Other workflow systems with OpenMS integrations

In addition to KNIME, OpenMS can be used in various other workflow systems due to the 

common easily wrappable command line interface of its tools. Other popular workflow systems 

with graphical user interfaces (GUI) for which wrappers of OpenMS tools exist are the following:

- Galaxy: One of the most commonly used server-based workflow editors and managers 

in bioinformatics (Afgan et al. 2018).

- gUSE: A workflow system for high-performance computing clusters.

Another workflow language that also provides software for automatic execution of OpenMS 

tools on various hardware backends (local, remote, HPC clusters or clouds) is nextflow (Di 

Tommaso et al. 2017). Although nextflow does not provide a GUI yet, users can either script 

their own workflows or make use of community-made and well-maintained workflows available 

in its public workflow collection nf-core (Ewels et al. 2019). Lastly, OpenMS was successfully 

used in Pachyderm (Novella et al. 2019) and snakemake (Koster and Rahmann 2012) pipelines 

as well. Easy installation even in restricted HPC environments can be achieved through ready-

made OpenMS containers (see the chapter about Containerization and Reproducibility) or 

through the Bioconda (Grüning et al. 2018) package manager.

Peptide identification and protein inference

Follow the steps to start using KNIME with the OpenMS plugin:

Installing KNIME

Download KNIME (https://www.knime.com/downloads)

Follow the installation instructions

Installing the OpenMS plugin in KNIME:

Go to “Help” -> “Install New Software...”

Select “KNIME Community Contributions (3.7) –

http://update.knime.com/community-contributions/trusted/3.7” in “Work with”

Open the “KNIME Community Contributions - Bioinformatics & NGS” field 

Select “OpenMS” 

Click “Next” and follow the instructions.

In general, KNIME will automatically detect missing plugins upon opening of a workflow and 

directs the user to the installation process. 

OpenMS / KNIME Tutorial (with handout, example data and workflows):

https;//www.openms.de/tutorials/
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Figure 1: Identification workflow using OpenMS and KNIME can be applied for peptide identification and protein 
inference.

Search engine choice

One  task  that  is  commonly  needed  for  the  analysis  of  shotgun  proteomics  data  is  the 

identification of peptides and inference of their proteins of origin. Identification of proteomics 

data can be performed in a workflow as depicted in  Figure 1. Here, mass spectrometry input 

files (.mzML) are loaded in the “Input Files” node. All files are processed iteratively by all tools 

between the ZipLoopStart and ZipLoopEnd nodes (see  Figure 1A). Here, the search engine 

MS-GF+  (Kim  and  Pevzner  2014) is  applied  using  the  MSGFPlusAdapter  to  identify  MS2 

spectra.  Search parameters,  such as mass error,  fragmentation method,  possible fixed and 

variable modifications,  as well  as charge range and peptide length can be specified. As an 

alternative to the MSGFPlusAdapter,  OpenMS provides  a multitude of different wrappers for 

classic proteomic search engines, such as Comet (Jimmy K. Eng, Jahan, and Hoopmann 2013), 

Crux (Park et al. 2008), InsPecT (Tanner et al. 2005), Mascot (Perkins et al. 1999), MSFragger 

(Kong et al.  2017), MyriMatch  (Tabb, Fernando, and Chambers 2007), OMSSA (Geer et al. 

2004), Sequest (J K Eng, McCormack, and Yates 1994), PepNovo (Frank and Pevzner 2005), 

and XTandem (Craig and Beavis 2004). Hence, the search engine node within the workflow can 

be  conveniently  exchanged  for  other  tools  and  thus  one  could  test  and  find  out  the  best 

performing method in a concise benchmark.

Sequence database

Database search engines make use of a provided sequence database fasta file (“Input File” 

node),  which  should  contain  all  target  proteins  of  the  organism  of  choice  and  possible 

contaminants.  The  database  and  its  size  highly  depend  on  the  research question  and  the 

experimental design. In order to assess a false discovery rate in a later step, the database 

should additionally contain decoy proteins - shuffled or reversed sequences - of all provided 

targets.  The  OpenMS  tool  DecoyDatabase  provides  an  option  to  concatenate  multiple 

databases (e.g. Swiss-Prot human, cRAP) and generate decoys using different methods (e.g. 

protein- or peptide-based shuffling or pseudo-reversing) that will be appended to the provided 

database and tagged with a specified name prefix or suffix (e.g. “DECOY_”).

Identification post-processing

After  the  database  search  (see  Figure  1A),  identified  PSMs  (peptide  spectrum  matches) 

undergo  a  series  of  consecutive  post-processing steps to  yield  the FDR annotated  lists  of 
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peptide  and  protein  identifications.  First  target  and  decoy  annotations  are  assigned  to  the 

respective  PSM based  on  the  fasta  file  decoy  name tag  entries  (PeptideIndexer).  Next,  a 

number of descriptive features are computed and annotated in a standardized manner to each 

PSM in order to run a multivariate discrimination of target and decoy space at a later stage 

(PSMFeatureExtractor). Advanced users can also add specific or customized PSM features in 

this step.  While each MS run is processed separately, it  is  commonly recommended to co-

process  the  runs  and  compute  a  false  discovery  rate  globally  over  the  merged  set  of  all 

identifications (Serang and Käll 2015). Hence, the ZipLoop ends here and IDMerger performs a 

merging of all identifications. Subsequently, the tool Percolator  (The et al. 2016) is employed 

and  computes  a  global  FDR  based  on  target  and  decoy  PSM  feature  scores  annotated 

previously.  The  Percolator  version  in  OpenMS additionally  supports  basic  protein  inference 

capabilities which we will skip in favor of more advanced methods using ambiguous peptides.

Protein Inference

Carrying  out  a  robust  protein  inference  and  probabilistically  distributing  evidence of  shared 

peptides  in  this  workflow (see  Figure  1B),  requires  the application  of  the  FidoAdapter  tool. 

However, as FidoAdapter was designed to work with OpenMS’ own estimation tool for PEPs 

(IDPosteriorErrorProbability),  it  is  necessary  to  pick  and  rename  the  right  score  from  the 

PercolatorAdapter.  Hence,  IDScoreSwitcher,  FidoAdapter  and  subsequently  the 

FalseDiscoveryRate  node  is  applied  on  protein-level  to  calculate  a  protein  inference-based 

target-decoy FDR. As an alternative to Fido  (Serang, MacCoss, and Noble 2010) one could 

instead employ the tool EPIFANY, which has recently been added to the OpenMS toolbox or PIA 

which is provided in a separate KNIME plugin (Uszkoreit et al. 2015). Ultimately, the resulting 

peptide and protein identifications can be filtered by various criteria on both levels, including q-

value,  other  metavalues  or  blacklists  from  fasta/text  files  (IDFilter)  and  exported  in  the 

community standard format (mzTab). 

Further peptide identification methods 

De novo peptide search

Apart from database search, OpenMS also provides tools for de novo peptide identification for 

example  the  CompNovo  or  CompNovoCID  (Bertsch  et  al.  2009) tool,  as  well  as  the 

NovorAdapter tool which supports de novo peptide search using Rapid Novor (Ma 2015).

Spectral library search

Additionally, peptides can be identified via a spectral library search. Here, we provide a tool 

called  SpecLibSearcher,  which is  able  to  identify  MS2 spectra  (.mzML)  based on an input 

spectral library (.msp). Alternatively, we also support the SpectraST tool from the TPP through 

the SpectraSTSearchAdapter, which can be used for spectral library search (Lam et al. 2007).

Additional supported methods

Additional  tools  are available  which are able to use the identification data,  for  example for 

phosphosite localization and spectral clustering. 
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Phosphosite localization

The  LuciphorAdapter  uses  the  thirdparty  tool  LuciPHOr2  (Fermin  et  al.  2015) for  the 

assessment of the phosphosite localization on a phosphopeptide with multiple possible sites, 

which can be critical in phosphorylation studies. It estimates a false localization rate based on a 

target decoy approach, which can be used for filtering later on. 

Spectral clustering 

OpenMS also provides an adapter to MaRaCluster  (The and Käll  2016) a thirdparty tool  to 

cluster spectra into groups of similar spectra or to create consensus spectra. Applications range 

from  yielding  better  and  faster  identification  rates  for  database  search  to  unsupervised 

clustering to identify spectra. 

Peptide and Protein quantification

The identification workflow above can be extended to perform identification and quantification. 

Here,  depending on  the  experimental  method (e.g.  label  free,  SILAC,  TMT)  the  respective 

nodes can be plugged into the workflow. 

Figure 2: Workflow using OpenMS and KNIME which can be applied for peptide, protein identification and label free  
quantification. The peptide identification (C) and protein inference (E) are described in the workflow in Figure 1.

The workflow in see  Figure 2 depicts how identification and label free quantification can be 

performed with OpenMS in KNIME. 

Feature finding 

The  tools,  which  are  able  to  perform label  free  quantification  are  named FeatureFinder  in 

OpenMS.  There  are  several  different  implementations  available  such  as 

FeatureFinderCentroided (Weisser et al. 2013) (see Figure 2A) or the FeatureFinderMultiplex. A 

FeatureFinder  recognizes  features  in  LC-MS  maps,  corresponding  to  peptides,  by  their 

characteristic isotope pattern. Quantification is carried out based on the sum of intensities within 

the feature region.  Here,  the position in m/z and rt  as well  as the charge of the analyte is 
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computed. Resulting features are then represented with scores based on an isotope profile and 

retention time model.  Data points  which do not  fit  the model  are removed from the feature 

region. 

Combining post-processed identification with quantification data (peptide level)

Afterwards, a score estimation and filtering of peptide identifications found in an individual file is 

performed (see  Figure  2).  For  peptide  level  results,  posterior  error  probability  estimation is 

performed using  Percolator  (The  et  al.  2016) samplewise  and  a  user-defined  FDR filter  is 

applied  (e.g.  5% FDR).  In  order  to  combine  quantitative  and  identification  information  per 

sample,  peptide  identifications  are  generated  samplewise  and  mapped  to  their  respective 

feature by the IDMapper.

Retention time alignment, feature linking and generation of peptide level results

The mapped information is further processed by the MapAlignerPoseClustering, which performs 

a linear retention time alignment of input maps to correct retention time shifts and distortions. 

This  is  based  on  a  pose  clustering  algorithm,  which  uses  affine  transformation  and  later 

refinement based on feature grouping. The FeatureLinkerUnlabeledQT  (Weisser et al. 2013) 

uses QT-based clustering and linking to group corresponding features from multiple maps for 

label free data (see  Figure 2). Additionally, OpenMS provides the FeatureLinkerUnlabeledKD, 

which uses a faster KD-tree based approach for linking. The KD-tree based algorithm has a 

speed advantage, which becomes apparent for larger datasets (hundreds of samples upwards). 

The  IDConflictResolver  is  used  to  ensure  that  every  feature  is  associated  with  one  single 

identification based on its score. The peptide level results are then exported as MzTab (see 

Figure 2F). 

Generate protein level results

The peptide level information from the IDConflictResolver can also be used in conjunction with 

the protein inference information (see Figure 2C and Figure 2E) to quantify on protein level (see 

Figure 1G). In this workflow the ProteinQuantifier  (Weisser et al.  2013) accumulates feature 

intensities to peptide abundances based on the identification. Afterwards it  uses the protein 

inference information to average over the abundances the peptides referring to a protein.

Additional supported quantification methods 

Label free quantification based on identification data

The  quantification  and  retention  time alignment  can  also  be  performed based  on  previous 

identifications. The FeatureFinderIdentification (Weisser and Choudhary 2017) can be used for 

label free quantification of the MS1 features, based on prior peptide identification. This is based 

on the intuition that a high confidence identification on MS2 level from a specific precursor will 

produce a corresponding feature at that position in all LC-MS maps of an experiment. Similar, 

the  MapAlignerIdentification  performs  retention  time  alignment  based  on  previous  peptide 

identification. 
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Quantification using chemical or isotopic labeling 

Further,  quantification  can  be  performed  for  experiments  using  isotopically  or  chemically 

labelled peptides, such as dimethyl labeling or SILAC, by applying the FeatureFinderMultiplex. 

First,  the algorithm finds  pairs  in  a  MS1 scan by using the mass difference based on the 

labeling,  the  charge  and  the intensity  profile,  its  correlation  and  the  averagine  model.  The 

assessed features are then filtered, and clusters are formed in the rt and m/z range. These 

clusters correspond to the monoisotopic  trace referring to the lightest  peptide of  a pair  (for 

example SILAC). Afterwards hierarchical clustering is used to assign the peaks to a specific 

cluster. Then linear regression is used to determine the relative amount of the peptide based on 

their labels.  

Quantification using isobaric labeling 

In addition, quantification for isobaric labeling can be performed with the IsobaricAnalyzer, which 

is able to extract and normalize TMT and iTRAQ quantitative information. It is able to extract the 

data from centroided MS2 and MS3 spectra and performs an isotope correction based on the 

specified correction matrix (as provided by the manufacturer). 

Targeted Analysis

Targeted  proteomics  is  a  field  of  proteomic  analysis  where  accurate  and  reproducible 

quantification is required and is often used in clinical settings or laboratory experiments where 

quantification is of utmost importance. Multiple types of targeted proteomics workflows exist, 

traditional  workflows  on  a  triple  quadrupole  instrument  (SRM  or  MRM)  use  a  list  of  Q1 

(precursor m/z) and Q3 (fragment m/z) for a set of peptides, through which the instrument will 

then cycle deterministically. These Q1-Q3 m/z pairs are called transitions and the instrument will 

typically measure 3-6 transitions per peptide over the course of an experiment, producing a 

chromatographic measurement for each transition. In more advanced setup, a set of transitions 

will not be measured during the whole LC-MS/MS experiment but only during a fixed amount of 

time centered around the putative elution of the target peptide. Similarly, PRM measurements 

use a list  of  target  peptides,  but  acquire a high resolution full  MS/MS scan for  each target 

peptide (independent of whether a precursor signal was detected or not), resulting in a set of full 

MS/MS scans for a given precursor acquired deterministically over time. Software is then used 

to extract a set of N (typically 3-6) transitions from these scans to determine the elution time-

point of a peptide. One of the drawback of both SRM and PRM is that only a limited set of 

peptides can be targeted and no quantitative data is acquired for peptides that are not on the 

target list.

This limitation is addressed by DIA (or SWATH-MS) approaches, which partition the precursor 

m/z space into small windows of ca. 10 to 25 m/z and deterministically fragment all precursors 

in that window and record a full  high resolution MS/MS scan of the resulting fragment ions. 

Similar to PRM, software is used to extract fragment ion traces from these data, but unlike PRM, 

no target list  of peptides is required since the whole mass range is targeted. In the original 

SWATH-MS implementation, 32 windows of 25 m/z width were used to target the mass range of 

400 - 1200 Da, which covers most of the human tryptic peptides. 
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OpenMS supports targeted analysis through the OpenSWATH (Röst, Rosenberger, et al. 2014) 

module which allows automated analysis of targeted proteomics (SRM and PRM) as well as DIA 

/ SWATH-MS data. For all targeted proteomics experiments, the analysis requires the raw MS 

data as well as an assay library that contains information (precursor m/z, fragment ion m/z, 

retention  time,  fragment  intensity)  about  the  target  peptides.  Like  the  rest  of  OpenMS, 

OpenSWATH works with standard file formats (mzML for raw MS data, TraML for the assay 

library) in order to provide interoperability with other software and standard compliance. The 

OpenSWATH module  performs  automatic  retention  time and  m/z  calibration  using  a  set  of 

anchor  peptides  (e.g.  spiked  in  standards  such  as  iRT  peptides  (Escher  et  al.  2012) or 

endogenous peptides (Parker et al. 2015) using either a linear or non-linear function. 

Next,  OpenSWATH  will  perform  chromatographic  extraction,  where  extracted  ion 

chromatograms  are  constructed  for  all  peptides  in  the  assay  library  and  then  performs 

chromatographic  peak  picking  and  scoring.  For  DIA data,  it  will  perform  chromatographic 

analysis of the data, but it will also consult the full scan data to obtain additional information 

such as mass accuracy and isotopic envelope information. Statistical analysis of the data using 

the target-decoy approach can then either be performed using Percolator  (The et al. 2016) or 

the specifically designed pyProphet software  (Teleman et al. 2015), which will compute false 

discovery rate (FDR) estimates. Each task described above can be performed by individual 

TOPP tools, but for convenience we offer an integrated tool OpenSwathWorkflow that performs 

all steps at once which speeds up execution. 

As  mentioned  above,  each  targeted  analysis  requires  an  assay  library.  OpenMS  provides 

multiple tools to generate such assays including OpenSwathAssayGenerator which can take 

spectral  library input  (e.g.  in  SpectraST format)  and generate an assay library output  using 

specific transition-level criteria.  Similarly,  OpenSwathDecoyGenerator offers several  methods 

('shuffle', 'pseudo-reverse', 'reverse', 'shift') for generating spectral decoys that are required for 

target-decoy approaches to FDR estimation. 

Extensive  documentation  is  provided  at  http://www.openswath.org/en/latest/ with  detailed 

information on parameters, example data and extended tutorials on how to run OpenSWATH.

Metabolomics

OpenMS  can  be  used  for  label-free  LC-MS  metabolomics  data  analysis.  It  supports 

quantification and different identification techniques, such as accurate mass search,  de novo 

identification and spectral library search. Similar to label-free proteomics, feature detection and 

adduct  grouping  are  first  performed  for  each  LC-MS  map.  Retention  time  alignment  and 

grouping of features across multiple maps are then performed using MapAlignerPoseClustering 

and FeatureLinkerUnlabeledQT (see “Peptide and Protein quantification”).

Metabolite quantification

OpenMS  provides  several  tools  with  the  prefix  “FeatureFinder”  that  are  used  to  perform 

quantification  on  MS1-level.  FeatureFinderMetabo  (Kenar  et  al.  2014) was  specifically 

developed to detect small molecules in LC-MS samples with high sensitivity and specificity. As 
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before, a feature contains all signals that are caused by the same metabolite in a certain charge 

state. 

The algorithm first detects continuous mass traces by starting a new trace at the most intense 

peak and extending it in both retention time directions. Since low-intensity peaks are often less 

accurate, a heteroscedastic noise model is used to decide if an additional peak is added. Often, 

small molecules with the same mass elute at similar retention times and appear on a single 

continuous mass trace.  FeatureFinderMetabo can detect  these cases based on the elution 

profile and splits the mass trace at the local minimum of the elution profile. Finally, all mass 

traces that are caused by the same metabolite are assembled into a single feature, i.e.  the 

monoisotopic trace and additional isotopic traces. To decide which mass traces are assembled, 

they need to co-elute at the correct m/z distance and exhibit the expected isotope abundance 

ratios. Due to the vast diversity of metabolites, it is not possible to use the averagine model. 

Instead, a support vector machine was trained to detect isotope abundance ratios that are likely 

to be observed for metabolites.

Each feature corresponds to a metabolite with a certain adduct. The same compound can be 

observed multiple times at a similar retention time with different adducts or neutral losses (e.g. 

sodium adduct or water loss). The OpenMS tool MetaboliteAdductDecharger can be used to 

group these features and annotate them with their adduct and charge state, which can be useful 

for subsequent analysis steps. For this, a list of potential adducts and their probabilities has to 

be  provided.  The  MetaboliteAdductDecharger  then  builds  a  connected  graph  of  co-eluting 

features, which is resolved using a corresponding Integer Linear Programming approach (ILP). 

With this, the solution that maximizes the overall probabilities is chosen in the end.

Metabolite identification

Compound  identification  remains  one  of  the  major  challenges  in  metabolomics.  OpenMS 

supports commonly used approaches based on compound databases and spectral libraries. In 

addition, it integrates SIRIUS (Dührkop et al. 2019) for the de novo identification of metabolites. 

Compound databases

The tool AccurateMassSearch is the first step towards compound identification and can be used 

to annotate detected features with putative compound identifications using only their accurate 

mass. The tool considers arbitrary adducts for positive and negative polarity and a compound 

database providing access to the Human Metabolome Database (HMDB) by default (Wishart et 

al. 2018).

Spectral library search

Searching the accurate mass of  unidentified metabolites against  a compound database will 

provide insight into which compounds could be present in the sample, but the results are often 

ambiguous. To arrive at more confident identifications, MetaboliteSpectralMatcher can be used 

to search MS/MS spectra against spectral libraries containing experimentally acquired reference 

spectra. Spectrum matches are scored using a modified version of the hyperscore introduced by 

Fenyö and Beavis (Fenyö and Beavis 2003). Any spectral library in the mzML file format can be 

used, by default MassBank provides access MassBank (Horai et al. 2010).
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De novo

De novo identification has the advantage that it does not rely on a spectral library of previously 

measured compounds. SIRIUS reported identification rates of more than 70% (Dührkop et al. 

2019).  De novo approaches are computationally expensive making their application in large 

high-throughput studies cumbersome. To this end SIRIUS has been integrated into OpenMS 

(SiriusAdapter),  which  allows  the  pre-processing  and  complexity  reduction  of  mass 

spectrometry data, by providing feature, charge and adduct information. 

Metaproteomics

The field of Metaproteomics studies communities of (micro-) organisms like the gut microbiome 

at the proteome level. Besides host-pathogen interaction, central topics are the degradation of 

substrates  and  nutrients  -  including  feeding  on  other  organisms.  The  characterization  of 

organisms  helps  to  understand  clinical  relevant  processes  in  microbiomes  and  potentially 

associated diseases. In OpenMS, we provide the tool MetaProSIP to perform stable isotope 

probing of metaproteomic communities. It determines to what extent isotopes from the labeled 

substrate  were  incorporated  into  newly  synthesized  proteins  and  the  labeling  ratio  to 

characterize  the  speed  of  protein  biosynthesis  (protein  turnover).  Carefully  designed 

experiments and time-series analysis of MetaProSIP results allows reconstructing the elemental 

flow between functional  groups  of  organisms in  a  complex  community  (Sachsenberg et  al. 

2015).

Cross-linking MS

Structural proteomics is an emerging field combining different experimental methodologies with 

mass spectrometry  analysis  to  gain  insights  into  the structures  of  biomolecular  complexes. 

Cross-linking is one of these methods and involves inducing non-native covalent bonds between 

different  molecules  or  different  moieties  within  the  same  molecule  using  either  chemical 

reagents, UV light or both. In protein-protein cross-linking usually side chains of protein residues 

are bound using a chemical cross-linker. The linker has a specific length that it can span, so the 

identification of the two linked residues gives us an upper bound for the distance between these 

residues. They can be part of the same protein or two separate proteins interacting with each 

other, therefore cross-linking MS yields information about the structures of single proteins as 

well as protein complexes of any size  (Leitner et al. 2016). In nucleic acid to protein cross-

linking experiments, covalent bonds are induced between proteins and RNA or DNA strands in 

close proximity. These bonds are induced while the molecules are as close as possible to their 

native state or a specific state of interest. Afterwards the proteins are digested with enzymes 

and the linked peptide pairs or peptides linked with nucleotide oligos are analyzed by mass 

spectrometry. Because of the increased search space and more complex MS2 fragmentation 

patterns, linear peptide search algorithms can not be effectively used to analyze these types of 

data.

OpenMS enables the analysis  of  both of  these types of  data through the dedicated search 

algorithms  OpenPepXL  for  protein-protein  cross-linking  and  RNPXL for  protein-RNA cross-

linking.
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OpenPepXL requires the centroided MS data from a protein-protein cross-linking experiment 

and a fasta database of the targeted proteins and decoys. If an isotopically labeled cross-linking 

reagent was used, it is possible to combine the information from two MS2 spectra (the same 

peptide pair linked by the light and the heavy linker) to reduce search time and increase the 

specificity of the search. In this case an additional consensusXML file produced by the tool 

FeatureFinderMultiplex is  necessary to link together MS1 features from the light  and heavy 

cross-linkers. OpenPepXL will then digest the fasta database and preprocess the spectra or 

spectra pairs by deisotoping and filtering. For each spectrum a list of candidate peptide pairs is 

generated  according  to  its  precursor  mass  and  the  given  precursor  tolerance.  Theoretical 

spectra are generated by considering both peptides and the cross-linker as a single molecule to 

accurately model the fragment masses of cross-linked peptides.  The experimental  spectrum 

and the theoretical spectrum are matched and scored against each other using the OpenPepXL 

scoring function. The hits for all MS2 spectra in the input mzML file are then written out in idXML 

or mzIdentML. These can be further processed by XFDR, the dedicated false discovery rate 

estimation tool for protein-protein cross-linking based on xProphet (Walzthoeni et al. 2012).

RNPXL identifies protein-RNA cross-links in UV-induced cross-linking experiments. Input files are 

centroided  spectra  and  a  fasta  database  of  the  targeted  proteins  and  decoys.  A detailed 

description on data analysis is given in the Supplementary material of Kramer et al. (Kramer et 

al. 2014).

RNA (modification) analysis

Besides  proteomics  and  metabolomics,  another  important  application  of  biological  mass 

spectrometry is the sequence analysis of nucleic acids. Before the advent of “next generation” 

sequencing approaches, mass spectrometry was being pursued as a potential  tool for high-

throughput  DNA  sequencing  (Apffel  et  al.  1997).  Recently,  the  nascent  field  of 

epitranscriptomics (RNA epigenetics) has spurred a growing interest in chemical modifications 

on RNA, and an appreciation of their varied biological roles. Mass spectrometric analysis of 

intact RNA oligonucleotides has become an important method in this area; it has the unique 

advantages of allowing the detection and localization of multiple different modifications at the 

same  time,  with  single-nucleotide  resolution.  The  experimental  and  computational  analysis 

workflows  are  largely  analogous  to  shotgun  proteomics:  Purified  RNA  samples  are 

enzymatically  digested  (typically  with  RNase  T1,  which  cuts  after  guanosines),  the 

oligonucleotides  separated  by  liquid  chromatography  (typically  ion-pair  HPLC)  and 

characterized by tandem mass spectrometry in negative ion mode.

OpenMS  now  includes  tools  to  analyze  data  from  such  experiments.  The 

NucleicAcidSearchEngine  (NASE)  provides  functionality  for  the  identification  of  RNA 

oligonucleotides  based on tandem mass spectra (mzML) and a sequence database (fasta) 

(Wein et al. 2018). Analogously to database search engines for shotgun proteomics, NASE has 

a  variety  of  options  that  can  be  adjusted  by  users,  including  support  for  a  plethora  of 

ribonucleotide modifications and different digestion enzymes. During development NASE has 

been tested on tRNA, rRNA, and miRNA samples.

Beyond RNA identification, OpenMS offers basic capabilities for label-free quantification of RNA 

analytes. To this end, NASE can produce a file with “target coordinates” for its search results,  
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which  the  FeatureFinderMetaboIdent  tool  can  use  to  perform targeted  quantification  of  the 

identified oligonucleotides.

Visualization capabilities (user perspective)

The graphical application TOPPView provides advanced visualization of  mass spectrometric 

data. It allows examining raw spectra and chromatograms, the effects of data processing steps 

as well as identification and quantification results in a graphical user interface (GUI). TOPPView 

offers one dimensional visualization of spectra (m/z vs intensities) and chromatograms (RT vs 

intensities). Additionally, whole experimental maps can be visualized in 2D (RT vs m/z) and 3D 

(RT vs m/z vs intensity) allowing visual quality inspection of the current experiment. From the 2D 

view, projections on either the RT axis (extracted ion chromatograms, XIC) or projections on the 

m/z axis (integrated spectra) can be computed (see Figure 3). 

Furthermore, chromatographic data as acquired in SRM or extracted ion chromatograms (from 

PRM  /  DIA  or  SWATH-MS  data)  can  be  visualized  using  TOPPView’s  chromatographic 

visualization module (RT vs intensities). DIA or SWATH-MS data can be visualized using full 

high-resolution MS/MS spectra by displaying SWATH maps individually in 2D or 3D (fragment 

ion m/z vs RT).  TOPPView is also capable of displaying ion mobility (IM) data is individual 

spectra (“frames”) contain additional ion mobility data, either annotated as meta-data or in 2D or 

3D (m/z vs IM) by right-clicking on a spectrum and selecting “Switch to ion mobility view”.

Identification data from search engines can be superimposed on individual spectra to annotate 

fragment ion peaks and display the highest-scoring peptide identification in the same graphical 

frameworks. These peptide-spectrum matches (PSMs) can be visualized and manually curated.

The  TOPPView application  is  tightly  integrated  with  the  TOPP tools  provided  by  OpenMS, 

offering graphical dialogues to conveniently configure and run TOPP tools without resorting to 

executing the tool on the command line. Possible applications are optimizing tool configurations 

to find the best parameters for a particular type of instrument or data.

TOPPView is  highly  configurable,  where  the  user  can  select  the  colors  of  the  display,  the 

position of the axes and the scaling of the data (log, relative, absolute). Furthermore, the user 

can  choose to  not  load all  data  into  memory  at  once,  which  can be suitable  for  memory-

constrained situations or in the case of very large files. In this case, TOPPView is capable of 

only loading the requested spectra into memory using the indexedmzML data standard that 

allows random-access to individual spectra even in large XML files (Röst et al. 2015).
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Figure 3: TOPPView - Tool for data visualization. (Top-left) Extracted ion chromatogram view of a specific feature in a  
segment of the current 2D map. (Bottom-left) Time points of a fragmentation events in the 2D view. (Top-right) MS2  
spectrum in a 1D view overlaid with the identification based on database search (Identification View). (Bottom-right)  
3D representation of a segment from a mass spectrometry map.

Containerization and reproducibility

Containerization of software is usually defined as a method to bundle code, configurations and 

dependencies into one object that is quickly and reliably deployable on different computing 

environments. Leading providers of software that is able to create and run such containers 

include Docker and Singularity. OpenMS regularly provides updated containers and recipes 

(see Table 4) to create such containers for different configurations and scenarios. Those 

scenarios include but are not limited to development, usage in container-enabled workflow-

systems (e.g. nextflow) or spawning workers in cloud or HPC environments to scale up 

analyses. Even full workflows can be containerized (e.g. with the deNBI-CIBI plugin from 

KNIME) to create a snapshot of the environment with which a certain analysis was performed. 

This is useful e.g. for generating referenceable identifiers in scientific journals and enabling 

reproducible research.
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Table 4: Information about containerization
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