
A research institution framework for publishing1

open code to enable reproducible science2

Thomas R. Etherington Ben Jolly Jan Zörner3

Nick Spencer4

Abstract5

Reproducible science is greatly aided by open publishing of scientific computer6

code. There are also many institutional benefits for encouraging the publication of7

scientific code, but there are also institutional considerations around intellectual8

property and risk. We discuss questions around scientific code publishing from9

the perspective of a research organisation asking: who will be involved, how10

should code be licensed, where should code be published, how to get credit,11

what standards, and what costs? In reviewing advice and evidence relevant to12

these questions we propose a research institution framework for publishing open13

scientific code to enable reproducible science.14

Keywords: archiving, code, version control, open science, programming15

Introduction16

There is evidence of a ‘reproducibility crisis’ in science, with few scientists17

able to replicate and therefore confirm the findings of other scientists (Baker18

2016). Therefore, the calls for research to be transparent and more reproducible19

are growing. Two key components of transparency and reproducibility of a20

scientific method are (i) access to the original data sources used, and (ii) an exact21

description of the method provided by computer code (Nosek et al. 2015). When22

scientists analyse data or create models by programming computer code instead23

of navigating around graphical user interface, they not only can do more novel24

science faster but they also create an efficient way of providing the exact analysis25

method to others such that it is more easily reproduced (Baker 2017; Ince,26

Hatton, and Graham-Cumming 2012). To support this, open and citable data27

and scientific code is required. However, while there has been discussion of how28

research institutions may support scientific data archiving and citation (Renaut29

et al. 2018), we feel a similar research institution focussed discussion needs to30

occur for scientific code. There are many institutional benefits for encouraging31

1

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27762v1 | CC BY 4.0 Open Access | rec: 28 May 2019, publ: 28 May 2019

scientific code archiving and citation that include: supporting transparency32

and reproducibility, preservation of effort, opportunities for collaboration, and33

management of intellectual property (IP) and risk. There are also tools and34

advice available on best practice that can be called upon. These come from both35

the formal (private) software sector and increasingly, the scientific coding and36

data sharing communities. We provide a unique perspective on these issues by37

discussing questions around scientific code publishing from the perspective of a38

research institution. In doing so we present a research institution framework for39

publishing scientific code that leverages community accepted tools to minimise40

the institutional effort required and maximise the benefits of their scientist’s41

computer programming.42

Who will be involved?43

There are two primary groups involved for institutional publishing of scientific44

code, scientists and managers. Scientists need advice and assistance, including45

tools, to support their code management practices. The primary needs of this46

group are solutions that are easy to use, access to simple guidelines, and support47

that doesn’t get in the way of doing their research. They also need some advice48

on how to make decisions on IP, what to publish and not, how to licence code49

correctly, and where to store it. Managers within an institution will be interested50

in bringing these topics together into a standard operating procedure that helps51

articulate obligations for staff. We felt the second group was more likely to be52

focused at a company perspective, especially concerned with issues such as IP,53

risk, preservation of effort, standards, and reporting. The important point here54

is that we expect that scientists will be better able to publish scientific code55

with the support and engagement of other members of their research institution,56

and as such any code publishing framework will include members of staff other57

than the scientist-programmer.58

If we assume that all code is accompanied by a paper (either an associated59

research paper or a dedicated software paper), then making these decisions can60

most likely be supported by an existing internal pre-publication review process61

that most research institutions are likely to have for publication of papers. The62

scientist-programmer would then submit their paper for internal review, and any63

intent to openly publish code could be reviewed by managers simultaneously64

with other considerations such as data, ethics, and IP to ensure publication65

decisions are appropriate. Therefore, we do not foresee that the publishing of66

code should require any additional managerial workflows, other than highlighting67

the intention to openly publish code during an existing internal review procedure.68

2

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27762v1 | CC BY 4.0 Open Access | rec: 28 May 2019, publ: 28 May 2019

How should code be licensed?69

It is worth noting that with respect to licencing and IP we are focusing our70

discussion on publishing research code and not commercial code. This is an71

important distinction as unlike commercial code for which the right to use must72

be purchased, much of the value in scientific code is in its openness to support73

the scientific method, as demonstrated by higher rates of citation for free rather74

than commercial software (Pan, Yan, and Hua 2016). It is also important to75

note that many science funders now expect that any code developed as part76

of a project will be made openly available. Therefore, our starting point for77

discussing publishing scientific code is that it is made free and open by default,78

and we consider proprietary licensing to be out of scope. Such a decision will79

need to be supported by the research institution which is likely to own the IP of80

any code (Morin, Urban, and Sliz 2012), but as most scientific code will have81

minimal value for direct commercialisation if any (Barnes 2010), this should not82

be problematic. Also, as long as the code is developed carefully to ensure that it83

does not contain sensitive information such as embedded data, network paths,84

or passwords, there should not be any issues around privacy or security that85

would preclude open publishing. Regardless, the scientist-programmer should86

still begin the process of code publishing with a discussion with their project87

leader about any requirements or stipulations that would prevent or require open88

publishing.89

Choice of an appropriate software licence is of fundamental importance to code90

publishing as leaving code unlicensed can be hugely problematic, as it exposes91

a scientist who developed or uses that code to possible legal issues at a later92

date, and potential difficulties in controlling how the code is used (Morin, Urban,93

and Sliz 2012). Indeed, without a licence most potential collaborators and94

open source participants will not reuse such code as the IP risk is too great95

downstream, so not attaching a licence to open code can prevent the intention of96

making code open so it can be reused or developed further. It is also important97

to note that in our later discussion of coding standards we have taken the view98

that a research institution cannot guarantee code correctness, so a licence is99

absolutely essential to protect against any possible liability. There are a wide100

variety of software licences available, and there is online guidance for choosing101

one (https://choosealicense.com/). Keys points of difference for open licences102

are perhaps differences between permissive licences that have no restrictions on103

use or copyleft licences that ensure development of the code has to be shared104

(Morin, Urban, and Sliz 2012). Scientists may even choose to pursue bespoke105

licences, but in our opinion this approach is not ideal. Developing a bespoke106

licence will require additional effort and legal support. A bespoke licence may107

also be off-putting as potential users must be confident that they understand108

the licence conditions, and this will be much more likely and easy through the109

use of a widely recognised and accepted licence. Ultimately the choice of the110

most appropriate licence is likely to be project specific, so that is a decision best111

made by the scientist-programmer and project leader.112

3

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27762v1 | CC BY 4.0 Open Access | rec: 28 May 2019, publ: 28 May 2019

Where should code be published?113

We envisage two main options for places to publish scientific code: version control114

hosting services (such as GitHub, GitLab, Bitbucket, GNU Savannah, etc), and115

archiving services (such as Zenodo, Dryad, FigShare, etc).116

While the focus of much discussion around open code involves version control117

services such as GitHub, it is important to recognise that code put into these118

services do not necessarily have guaranteed permanence (White 2015). Reposito-119

ries can be deleted and renamed at any time, meaning that code may become120

lost, or links to code broken. Therefore, it is important that each release of code121

is also published in an appropriate archiving service (White 2015).122

It may also be the case that a version control repository is not the best place123

for code to be published. Openness is certainly at the heart of version control124

repositories, but there is a very strong emphasis on facilitating development and125

collaboration, which relates very strongly to scientific software. However, in an126

instance where a scientist has coded a computer program to analyse some data,127

while the code should be published alongside the data to enable reproducibility,128

it is unlikely that there will be any desire to develop the code further as it should129

remain a static documentation of the analysis underlying a scientific publication.130

In these instances, simply publishing the code in an archiving service alongside131

the data may be the best option. Publishing static code in a version control132

service would mainly serve the purpose of enabling other researchers to easily133

create copies of the code (clones) with the intention to improve it or adapt it134

to their applications. Read-only repositories on a version control service pose a135

viable option to share non-changeable code as they can be copied by other users,136

using built-in tools cloning and forking tools of the underlying version control137

system, to create their own trackable code repository.138

Ultimately, we don’t think there is any way to clearly define which publishing139

route is best. Rather we choose to pose the scientist-programmer the following140

series of questions that may indicate if a scientist’s code is more suitable for141

a version control service (given the potential for further development) or an142

archiving service (as it represents a static analytical workflow) and then leave143

the scientist-programmer to decide on the best course of action.144

• Have you chosen a permissive or copyleft licence?145

• Does your code come with instructions, examples, and tests?146

• Would someone else find your code useful, and be able to use it easily?147

• Your code doesn’t link to closed-source or local data or bespoke data148

formats?149

• Can you install your code on a computer?150

• Are you hoping the code will be developed further?151

• Are you hoping people will let you know about issues and errors?152

The more times a scientist-programmer answers yes to these questions, the more153

likely it is that putting the code into a version control service will be a worthwhile154

4

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27762v1 | CC BY 4.0 Open Access | rec: 28 May 2019, publ: 28 May 2019

effort.155

How to get credit?156

There is some evidence that making data open alongside a paper increases157

citations (Piwowar and Vision 2013) and we can easily envisage that this would158

be true of code as well. Therefore, having published code openly, it would be159

sensible for some consideration to be given to gaining credit for this effort by160

being able to demonstrate impact. We have already discussed the importance161

of putting releases of code into an archiving service to ensure permanence. But162

putting code into an archiving service also helps with citations, as on deposit of163

the code an archiving service will generate a digital object identifier (DOI) that164

can then form the basis of software citations (Poisot 2015). Also, as scientific165

community norms for citation are based on the citation of papers, software papers166

are often published and cited in addition to the software (Smith et al. 2016).167

However, the focus of a software paper should be in demonstrating how the168

software can be used for actual research, rather than documenting functionality169

which is best done with formatted comments (docstrings) embedded in the source170

code describing code segments that can be easily extracted to form a technical171

manual (Poisot 2015). Software papers are a growing trend, and a list of journals172

publishing software papers is actively maintained by the Software Sustainability173

Institute (https://www.software.ac.uk/resources/guides/which-journals-should-174

i-publish-my-software). Regardless of how a scientist chooses to publish code,175

some evidence suggests that software is more likely to be cited when information176

about how to cite the software is provided (Pan, Yan, and Hua 2016), therefore177

citation instructions should be included with the published code.178

What standards?179

A clear concern for any institutionally branded form of published code, is an180

assurance that the code has been peer-reviewed to ensure it meets some form of181

standard, i.e. quality standard and language-specific coding style. How exactly182

code should be peer-reviewed remains an active debate, but what is agreed is that183

it is too large a task to expect another scientist to conduct a line-by-line review184

of code to verify the code is correct (White 2015; Poisot 2015). Institutions185

may also have problems in that there is the potential for staff to be using a186

variety of programming languages, and given language choice can be domain187

specific there is no guarantee that there will necessarily be another scientist188

within the institution that is sufficiently fluent in a specific language to conduct189

a review. Institutions could consider imposing language choice to a set of official190

institutional languages, but this may be an overly restrictive approach that could191

limit scientific progress. We would also note that there are artistic differences in192

5

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27762v1 | CC BY 4.0 Open Access | rec: 28 May 2019, publ: 28 May 2019

the way code is written and that there is no single best way to program (Knuth193

1974). Therefore, it will be important to recognise and accept different styles194

of coding, and avoid getting bogged down in discussions (or arguments!) about195

how the code has been written.196

We believe that a pragmatic review process should focus of checking that the197

code is structured and presented in a way such that someone can, if they wanted198

to, delve into the code to understand and check exactly what the code is doing,199

and potentially then correct or develop the code further. Essentially our view is200

that it is better to have code made open such that errors are more likely to be201

found and fixed. Publishing erroneous code is clearly not ideal, but we consider202

it preferable to the alternative where the erroneous code stays on a scientist’s203

computer where it may be applied many times to produce incorrect science. Also,204

there is evidence that suggests making data underlying studies open reduces205

errors by encouraging greater scientific rigour (Wicherts, Bakker, and Molenaar206

2011), and we can imagine that the same may well be true of scientific code, and207

that working in an open manner will encourage programmers to aim for higher208

standards (Easterbrook 2014).209

While accepting that a line-by-line review of code to verify correctness is un-210

feasible, research institutions will clearly want to uphold some standards for211

code published under an institutional banner. There are well recognised best212

practices (Wilson et al. 2014), but given the lack of formal training scientists213

have received in computer programming (Merali 2010), setting a best practice214

standard may well be perceived by the average scientist as an impossible task.215

Hence, demanding best practices may result in a counter-productive result of216

scientists choosing not to engage at all with coding standards. Therefore, we217

would recommend focusing more on good enough practices (Wilson et al. 2017),218

and recommend the following minimum standards:219

• README file (including: project overview, installation requirements, setup220

instructions, dependencies),221

• LICENSE file (permissive or copyleft),222

• citation instructions (either included in the README or as a citation file),223

• example data and script,224

• documentation embedded within functions,225

• good coding practice (such as: commented, indented, white space, logical226

variable names, function definition),227

• sensitive information removed (including: usernames, passwords, appli-228

cation programming interface (API) keys, full paths to files on network229

drives),230

• version control history removed.231

Note that where code relies on hard-coded credentials such as usernames, pass-232

words, or API keys, it is best practice to place these in a separate file (commonly233

named ‘.credentials’) that is referenced by the rest of the code but excluded from234

the version control system. In this case it is a good idea to include a note in235

your README explaining the expected format, or even an ‘example’ credentials236

6

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27762v1 | CC BY 4.0 Open Access | rec: 28 May 2019, publ: 28 May 2019

file, to make it easier for users to recreate it on their own system. Also, while237

removing the version control history can also help with issues of security, we238

believe that in the context of publishing the first release of code is probably best239

done without the underlying development history which can often be complex,240

tangential, and possibly irrelevant to the first release.241

Software journals such as the Journal of Open Software Journal (Smith et al.242

2018) can impose greater standards such unit-testing and automated dependency243

checks as they are not obliged to accept code that is submitted and so the244

scope can be quite focussed and hence the standards very high. In contrast,245

a research institution may often have a very broad scope as there may be a246

variety of coding activities within the organisation, and there is a responsibility247

to provide a code archiving service and to facilitate maximum uptake by staff.248

Therefore, while an institutional repository may ensure a basic standard, if a249

scientist wishes to achieve greater evidence for the standard of their code, then250

we would recommend engaging with external processes and publish the code251

more formally through the publication of a dedicated software paper that is252

likely to demand higher standards of coding.253

What costs?254

Depending on the solution that is required for individual research institutions,255

there may be ongoing financial costs to purchase access to (or host and maintain)256

a version control hosting and archiving service. For institutions beginning to257

explore these options there are possibilities to make use of free service options.258

For example, at the time of writing, GitHub provide free team accounts as259

long as all code is made open, and free individual accounts that support private260

repositories with up to three collaborators. Scientist-programmers could therefore261

use a free private repository for version control of project code without exposing262

their development process (and possible intellectual property) publicly, and263

then use the research institution’s free team account to openly publish the code264

(or parts thereof). Similar options are available from other providers such as265

BitBucket, or if versional control is not required then archiving services such266

as Zenodo also provide a free option for archiving code. Given these options267

exist, we do not see financial cost as an obstacle for research institutions to start268

engaging with these issues around code publishing.269

What may be more of an obstacle is recognition that there can be significant270

time costs to making code sharable and reusable, over and above that required271

to develop well-structured code to answer a science question. This means that272

careful consideration needs to be given to justify the amount of effort that273

would be required to produce a well-documented and thoroughly-tested software274

package which is useful to others. Where projects are expected or required275

to openly publish reusable code the cost of staff time to do this should be276

acknowledged, in both the project budget and time-line. However, given the277

7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27762v1 | CC BY 4.0 Open Access | rec: 28 May 2019, publ: 28 May 2019

benefits of publishing code, we do not necessarily see this burden as being too278

arduous, especially if institutions are willing to invest in hiring staff or training279

scientists to support this activity. The Research Software Engineer (RSE) is a280

relatively new role in a research institute which describes someone who specialises281

in the production and publishing of scientific code and software. This is typically282

(though not necessarily) a ‘science support’ type of role, where RSEs are typically283

hired to both write code for others as well as boost the quality of others code284

via training and/or collaboration on a given project. Enabling scientists to285

publish code, either assisted by an RSE or through upskilling, facilitates more286

transparent and thus more credible research with a more rapid impact on the287

science community which translates to both higher scientific quality and more288

successful funding in the long-term, offsetting initial costs.289

A framework for publishing290

Clearly from our discussion establishing a research institution framework for291

publishing of open and good enough scientific code will require effort from both292

the scientists and managers. However, we expect that the advantages:293

• enables reporting to funders,294

• better outreach for the scientist and the institution,295

• stimulates collaboration with other researchers,296

• quality control and transparency of science,297

• greater visibility of code projects compared to personal accounts,298

• provides repository exemplars useful for other scientists,299

• other research institutions are already doing this,300

• provides long-term support or at least access of published code,301

• access and continuity of institutional knowledge if the person responsible302

for a repository leaves the research institution;303

will significantly outnumber the disadvantages:304

• services such as version control hosting and code review procedures need305

to be administered,306

• scientists like to have freedom and may prefer to use another platform or307

like to publish code personally,308

• ongoing institutional costs associated with version control hosting and309

archiving services,310

• increased project costs to factor in staff time to make open code well311

documented and supported,312

• accounts and repositories could become abandoned if nobody is using them.313

As this will be a new initiative for many research institutions, we have summarised314

a framework that outlines a potential workflow for the scientists and managers315

that will need to be involved in publishing scientific code (Figure 1). As has been316

recognised with institutional data archiving, a supportive corporate environment317

8

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27762v1 | CC BY 4.0 Open Access | rec: 28 May 2019, publ: 28 May 2019

and training is will be important for making such an initiative succeed (Renaut318

et al. 2018). The same will be true of expecting higher standards of computer319

programming publishing from research scientists, and while it may be challenging320

for research institutions to provide training, there are initiatives such as Software321

and Data Carpentry that can support this (Baker 2017).322

Acknowledgements323

This research was funded by internal investment by Manaaki Whenua — Landcare324

Research.325

References326

Baker, M. 2016. “1,500 Scientists Lift the Lid on Reproducibility.” Journal327

Article. Nature 533 (7604): 452–54. https://doi.org/10.1038/533452a.328

———. 2017. “Code Alert.” Journal Article. Nature 541: 563–65. https:329

//doi.org/10.1038/nj7638-563a.330

Barnes, N. 2010. “Publish Your Computer Code: It Is Good Enough.” Journal331

Article. Nature 467 (7317): 753. https://doi.org/10.1038/467753a.332

Easterbrook, S. M. 2014. “Open Code for Open Science?” Journal Article.333

Nature Geoscience 7 (11): 779–81. https://doi.org/10.1038/ngeo2283.334

Ince, D. C., L. Hatton, and J. Graham-Cumming. 2012. “The Case for Open335

Computer Programs.” Journal Article. Nature 482: 485–88. https://doi.org/10.336

1038/nature10836.337

Knuth, D. E. 1974. “Computer Programming as an Art.” Journal Article.338

Communications of the ACM 17 (12): 667–73.339

Merali, Z. 2010. “Error . . . Why Scientific Programming Does Not Compute.”340

Journal Article. Nature 467 (7317): 775–77. https://doi.org/10.1038/467775a.341

Morin, A., J. Urban, and P. Sliz. 2012. “A Quick Guide to Software Licensing342

for the Scientist-Programmer.” Journal Article. PLoS Computational Biology 8343

(7): e1002598. https://doi.org/10.1371/journal.pcbi.1002598.344

Nosek, B. A., G. Alter, G. C. Banks, D. Borsboom, S. D. Bowman, S. J. Breckler,345

S. Buck, et al. 2015. “Promoting an Open Research Culture.” Journal Article.346

Science 348 (6242): 1422–5. https://doi.org/10.1126/science.aab2374.347

Pan, X., E. Yan, and W. Hua. 2016. “Disciplinary Differences of Software Use348

and Impact in Scientific Literature.” Journal Article. Scientometrics 109 (3):349

1593–1610. https://doi.org/10.1007/s11192-016-2138-4.350

9

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27762v1 | CC BY 4.0 Open Access | rec: 28 May 2019, publ: 28 May 2019

Figure 1: A research institution framework for publishing of open code in support
of reproducible science. 10

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27762v1 | CC BY 4.0 Open Access | rec: 28 May 2019, publ: 28 May 2019

Piwowar, H. A., and T. J. Vision. 2013. “Data Reuse and the Open Data Citation351

Advantage.” Journal Article. PeerJ 1: e175. https://doi.org/10.7717/peerj.175.352

Poisot, T. 2015. “Best Publishing Practices to Improve User Confidence in353

Scientific Software.” Journal Article. Ideas in Ecology and Evolution 8: 50–54.354

https://doi.org/10.4033/iee.2015.8.8.f.355

Renaut, S., A. E. Budden, D. Gravel, T. Poisot, and P. Peres-Neto. 2018.356

“Management, Archiving, and Sharing for Biologists and the Role of Research357

Institutions in the Technology-Oriented Age.” Journal Article. BioScience 68358

(6): 400–411. https://doi.org/10.1093/biosci/biy038.359

Smith, A. M., D. S. Katz, K. E. Niemeyer, and FORCE11 Software Citation360

Working Group. 2016. “Software Citation Principles.” Journal Article. PeerJ361

Computer Science 2: e86. https://doi.org/10.7717/peerj-cs.86.362

Smith, A. M., K. E. Niemeyer, D. S. Katz, L. A. Barba, G. Githinji, M. Gymrek,363

K. D. Huff, et al. 2018. “Journal of Open Source Software (Joss): Design364

and First-Year Review.” Journal Article. PeerJ Computer Science 4: e147.365

https://doi.org/10.7717/peerj-cs.147.366

White, E. P. 2015. “Some Thoughts on Best Publishing Practices for Scientific367

Software.” Journal Article. Ideas in Ecology and Evolution 8: 55–57. https:368

//doi.org/10.4033/iee.2015.8.9.c.369

Wicherts, J. M., M. Bakker, and D. Molenaar. 2011. “Willingness to Share370

Research Data Is Related to the Strength of the Evidence and the Quality of371

Reporting of Statistical Results.” Journal Article. PLoS ONE 6 (11): e26828.372

https://doi.org/10.1371/journal.pone.0026828.373

Wilson, G., D. A. Aruliah, C. T. Brown, N. P. Chue Hong, M. Davis, R. T. Guy,374

S. H. D. Haddock, et al. 2014. “Best Practices for Scientific Computing.” Journal375

Article. PLoS Biology 12 (1): e1001745. https://doi.org/10.1371/journal.pbio.376

1001745.377

Wilson, G., J. Bryan, K. Cranston, J. Kitzes, L. Nederbragt, and T. K. Teal.378

2017. “Good Enough Practices in Scientific Computing.” Journal Article. PLoS379

Computational Biology 13 (6): e1005510. https://doi.org/10.1371/journal.pcbi.380

1005510.381

11

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27762v1 | CC BY 4.0 Open Access | rec: 28 May 2019, publ: 28 May 2019

	Abstract
	Introduction
	Who will be involved?
	How should code be licensed?
	Where should code be published?
	How to get credit?
	What standards?
	What costs?
	A framework for publishing
	Acknowledgements
	References

