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Background. Common phylogenomic approaches for recovering phylogenies are often time-consuming
and require annotations for orthologous gene relationships that are not always available. In contrast,
alignment-free phylogenomic approaches typically use structure and oligomer frequencies to calculate
pairwise distances between species. We have developed an algorithm to quickly calculate distances
between species based on codon aversion.

Methods. Utilizing a novel alignment-free character state, we present CAM, an alignment-free approach
to recover phylogenies by comparing diûerences in codon aversion motifs (i.e., the set of unused codons
within each gene) across all genes within a species. Synonymous codon usage is non-random and diûers
between organisms, between genes, and even within a single gene, where many genes do not use all
possible codons. We report a comprehensive analysis of codon aversion within 229 742 339 genes from
23 428 species across all kingdoms of life, and we provide an alignment-free framework for its use in a
phylogenetic construct. For each species, we ûrst construct a set of codon aversion motifs spanning all
genes within that species. We deûne the pairwise distance between two species, A and B, as one minus
the number of shared codon aversion motifs divided by the total codon aversion motifs of the species, A
or B, containing the fewest motifs. This approach allows us to calculate pairwise distances even when
substantial diûerences in the number of genes or a high rate of divergence between species exists.
Finally, we use neighbor-joining to recover phylogenies.

Results. Using the Open Tree of Life and NCBI Taxonomy Database as expected phylogenies, our
approach compares well, recovering phylogenies that largely match expected trees and are comparable
to trees recovered using maximum likelihood and other alignment-free approaches. Our technique is
much faster than maximum likelihood and similar in accuracy to other alignment-free approaches.
Therefore, we propose that codon aversion be considered a phylogenetically conserved character that
may be used in future phylogenomic studies.

Availability. CAM, documentation, and test ûles are freely available on GitHub at
https://github.com/ridgelab/cam
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1 ABSTRACT

2 Background. Common phylogenomic approaches for recovering phylogenies are often time-

3 consuming and require annotations for orthologous gene relationships that are not always 

4 available. In contrast, alignment-free phylogenomic approaches typically use structure and 

5 oligomer frequencies to calculate pairwise distances between species. We have developed an 

6 algorithm to quickly calculate distances between species based on codon aversion.

7 Methods. Utilizing a novel alignment-free character state, we present CAM, an alignment-free 

8 approach to recover phylogenies by comparing differences in codon aversion motifs (i.e., the set 

9 of unused codons within each gene) across all genes within a species. Synonymous codon usage 

10 is non-random and differs between organisms, between genes, and even within a single gene, 

11 where many genes do not use all possible codons. We report a comprehensive analysis of codon 

12 aversion within 229 742 339 genes from 23 428 species across all kingdoms of life, and we 

13 provide an alignment-free framework for its use in a phylogenetic construct. For each species, 

14 we first construct a set of codon aversion motifs spanning all genes within that species. We 

15 define the pairwise distance between two species, A and B, as one minus the number of shared 

16 codon aversion motifs divided by the total codon aversion motifs of the species, A or B, 

17 containing the fewest motifs. This approach allows us to calculate pairwise distances even when 

18 substantial differences in the number of genes or a high rate of divergence between species 

19 exists. Finally, we use neighbor-joining to recover phylogenies. 

20 Results. Using the Open Tree of Life and NCBI Taxonomy Database as expected phylogenies, 

21 our approach compares well, recovering phylogenies that largely match expected trees and are 

22 comparable to trees recovered using maximum likelihood and other alignment-free approaches. 

23 Our technique is much faster than maximum likelihood and similar in accuracy to other 

24 alignment-free approaches. Therefore, we propose that codon aversion be considered a 

25 phylogenetically conserved character that may be used in future phylogenomic studies.

26 Availability. CAM, documentation, and test files are freely available on GitHub at 

27 https://github.com/ridgelab/cam

28

29 INTRODUCTION

30 Phylogenies allow biologists to analyze similar characters between species by providing an 

31 evolutionary framework to infer homology (Haszprunar 1992; Soltis & Soltis 2003). Although 

32 Next Generation Sequencing (NGS) facilitates placement of novel species on the Tree of Life, 

33 many regions of the genome display contradictory phylogenetic signals (Philippe et al. 2011). 

34 Furthermore, typical alignment-based phylogenetic methods require ortholog annotations to 

35 recover the phylogeny, and assembled genes without orthologous pairs provide no information 

36 for species relatedness using a traditional approach (Pais et al. 2014b). Annotating a genome 

37 with orthologous relationships can often be costly and time-consuming, and some genes are 

38 currently impossible to annotate (Yandell & Ence 2012). As complete genomes of more non-

39 model organisms become available, correctly identifying orthologs will continue to impede the 

40 correct identification of taxonomic relationships. Common errors in recovering phylogenies 

41 include incorrect ortholog identification, erroneous alignments, and model violations for the 

42 phylogenetic tree reconstruction method (Philippe et al. 2011). 

43

44 Alignment-free approaches were developed to address these, and other, issues. Since alignment-

45 free methods do not use an alignment at any point in the algorithm, they can recover 

46 phylogenetic relationships even when recombination renders an alignment impossible 
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47 (Zielezinski et al. 2017). Additionally, alignment-free algorithms are computationally less 

48 expensive because they can generally be computed in linear time (Bonham-Carter et al. 2014), 

49 are not subject to potential errors in orthology (Zielezinski et al. 2017), are resistant to shuffling 

50 and recombination events (Vinga 2014), and are not dependent on assumptions regarding the 

51 correlation between sequence changes and evolutionary time (Zielezinski et al. 2017).

52

53 Alignment-free methods are based on sets of short oligonucleotides taken from the genome to 

54 infer phylogenies and often produce similar results as traditional methods (Chapus et al. 2005). 

55 The basic principle behind alignment-free phylogenetic tree reconstruction techniques is that 

56 genomic subsequences exhibit similar characteristics as the whole genome (Deschavanne et al. 

57 1999). These genomic signatures are most prominent in highly divergent species arising from 

58 deep phylogenetic splits (Edwards et al. 2002). For example, since oligomer mutation rates vary 

59 dramatically between taxonomic groups, certain simple sequence repeats (SSRs) and long 

60 interspersed elements (LINEs) can sometimes be used to recover phylogenies (Shedlock et al. 

61 2007). 

62

63 More than 100 alignment-free methods have been developed. These methods use a widespread 

64 variety of approaches to make phylogenetic inferences. However, most methods are based on 

65 one of three principles: the frequencies of words of a certain length, the match lengths between 

66 sequences, or the calculation of informational content between two sequences (Zielezinski et al. 

67 2017; Haubold et. Al 2014). Additionally, novel approaches create <micro-alignments= to 

68 compare sequences. In our analysis, we limit our search space to coding sequences and compare 

69 the codon usages between species, ignoring all gene name annotations. We compare our 

70 algorithm to the word-based approaches, FFP (Jun et al. 2010; Sims et al. 2009) and CVTree 

71 (Zuo & Hao 2015), the match-length approaches, ACS (Ulitsky et al. 2006), KMACS 

72 (Leimeister & Morgenstern 2014), and Kr (Haubold et al. 2009), and the micro-alignment based 

73 approaches, Co-phylog (Yi & Jin 2013), FSWM (Leimeister et al. 2017), and andi (Haubold et 

74 al. 2015). In addition to these comparisons with previous alignment-free techniques, we also 

75 provide a comparison with Maximum Likelihood, a common alignment-based technique. We 

76 analyze the performances of these algorithms based on accuracy and computational runtime.

77

78 Our approach exploits the Central Dogma of biology: three consecutive nucleotides of coding 

79 DNA, called codons, are used as a template for protein translation, where each codon encodes a 

80 single amino acid (Crick 1970). The genetic code is degenerate because 64 canonical codons are 

81 used to form 20 amino acids and the stop signal (Crick et al. 1961). Gene expression is fine-

82 tuned, in part, by the skewed occurrence of certain codons over others, called codon usage bias, 

83 because some codons are translated more efficiently than others (Quax et al. 2015). Differences 

84 in codon translational efficiencies are explained by unequal tRNA expression within different 

85 species and tissues, limiting the supply of anticodons directly complementing the codons (Quax 

86 et al. 2015). Complete codon aversion (i.e., when a codon is not used in a gene) can also be 

87 advantageous in certain genes, and is phylogenetically conserved within orthologs (Miller et al. 

88 2017a). A significant portion of synonymous codon usage can also be explained by GC-biased 

89 gene conversion (gBGC), which occurs when transmission of GC alleles is favored over AT 

90 alleles during meiotic recombination (Duret & Galtier 2009).

91
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92 Our research explores the conservation of codon aversion and determines if sets of codon 

93 aversion motifs (i.e., the set of codons not used in each gene) are phylogenetically conserved. 

94 We also analyze amino acid aversion across all taxonomic groups, and we compare its 

95 phylogenetic conservation against that of codon aversion. We present a novel alignment-free 

96 algorithm, CAM, which we use to recover a phylogeny using the codon aversion or amino acid 

97 aversion of 229 742 339 genes from 23 428 species across the Open Tree of Life (OTL) 

98 (Hinchliff et al. 2015) and the NCBI taxonomy (Sayers et al. 2012; Sayers et al. 2011; Sayers et 

99 al. 2010; Sayers et al. 2009). CAM determines phylogenetic relationships by using only the 

100 overall differences in codon aversion within each gene across all available genes from a given 

101 species. Therefore, CAM does not require orthologous gene annotations. Our results suggest that 

102 codon and amino acid aversion patterns are conserved across all genes within a species and can 

103 be utilized to reconstruct phylogenetic trees without a sequence alignment.

104

105 MATERIALS & METHODS

106 Defining Codon Aversion Motifs

107 We define a codon aversion motif as a set of codons that are not present in an individual gene. 

108 For example, a gene that uses all codons except for AAA and ATA would have a codon aversion 

109 motif of (ATT, ATG). We construct codon aversion motifs for each gene in a species, 

110 considering only each unique motif. For example, consider a species with four genes that have 

111 the following codon aversion motifs: (AAA, ATA), (AAA, ACG, CTC), (AAA, ATA), and 

112 (CGC). For this species, we would construct the following set of unique motifs: {(AAA, ATA), 

113 (AAA, ACG, CTC), (CGC)}. We constructed codon aversion motifs for all available genes of 

114 each species. Each gene was considered with equal weight, regardless of any orthologous 

115 annotations. 

116

117 Defining Amino Acid Aversion Motifs 

118 Similar to codon aversion motifs, we also calculated amino acid aversion motifs. We first 

119 translated the DNA/RNA sequences to protein sequences. We then used the same process 

120 mentioned above to make sets of unused amino acids from each gene. From this point, we 

121 proceeded with the same analysis as we conducted on codon aversion motifs.

122

123 Distance Calculation and Implementation

124 We constructed codon aversion motifs using all available genes in each species. Each gene, both 

125 annotated and unannotated, was given equal weight in our algorithm. We used differences in sets 

126 of codon aversion motifs found in each species to calculate the phylogenetic distances between 

127 species.

128

129 We calculate the pairwise distance between two species, A and B, as one minus the proportion of 

130 shared codon aversion motifs between the species. We define overlapping motifs as the 

131 intersection of codon aversion motifs in the two sets (i.e., codon aversion motifs that are found in 

132 both species). It is expected that more overlapping motifs will be present in closely related 

133 species because codon aversion is phylogenetically conserved in orthologs (Miller et al. 2017a). 

134 The proportion of shared codon aversion motifs is calculated by dividing the number of 

135 overlapping motifs between the two species by the number of possible overlapping motifs, where 

136 the number of possible overlapping motifs is defined as the number of motifs in the set, for 

137 species A or species B, containing the fewest motifs. We therefore calculate distances between 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27756v1 | CC BY 4.0 Open Access | rec: 24 May 2019, publ: 24 May 2019



138 two species A and B with sets of codon aversion motifs a and b respectively, with the following 

139 equation:

140

141 ÿÿýý(ý,ý) = 1 2  
|ÿ +  ÿ|

min (|ÿ|,|ÿ|)
142

143 This approach allows us to calculate pairwise distances (with a maximum distance of one), 

144 where smaller distances reflect species that share a large proportion of codon aversion motifs, 

145 and larger distances reflect species that share few codon aversion motifs. We also require that 

146 5% of motifs between species overlap to limit any bias due to a small genome (e.g., it would not 

147 be unusual if a species with five genes has at least one codon usage motif that randomly overlaps 

148 with a motif from a species with 20 000 genes without directly inheriting 20% of its motifs from 

149 the same most recent common ancestor). This process is depicted in Figure 1. We developed 

150 CAM in Python 3.5 to accomplish the codon aversion motif and distance calculations. CAM 

151 takes as input any number of species FASTA files, and it creates a matrix of distances between 

152 species based on either codon aversion or amino acid aversion. 

153

154 The most common way to run CAM is by using the following command, where ${DIR} is a 

155 directory with all compressed or uncompressed species FASTA files, one for each species, and 

156 ${MATRIX} is the path to a distance matrix that will be created:

157
158 python cam.py -i ${DIR}/* > ${MATRIX}

159

160 For a summary of optional parameters when running CAM, see Supplementary Note 1.

161

162 Phylogeny Reconstruction

163 After the distance matrix was created, we used a Biopython (Talevich et al. 2012) 

164 implementation of neighbor-joining to recover the phylogenetic tree. Neighbor-joining was used 

165 to combine the pairwise species distances because each pairwise distance represented a distance 

166 based on codon aversion motifs present in a species, not homologous locations of the codon 

167 aversion motifs. We provide a python script, makeNewick.py, that calculates the phylogenetic 

168 tree from the output matrix created by CAM using the following command:

169
170 python makeNewick.py -i ${MATRIX} -o ${OUTPUT}
171
172 All algorithms, with accompanying README and test files, are freely available from GitHub at: 

173 https://github.com/ridgelab/cam.

174

175 Data Collection and Processing

176 We downloaded all coding sequences (CDS) from the National Center for Biotechnology 

177 Information (NCBI) in September, 2017 (Pruitt et al. 2014; Pruitt et al. 2000; Wheeler et al. 

178 2007). The CDS regions of the reference genomes were derived from the most common alleles 

179 within each species (Pruitt et al. 2000; Wheeler et al. 2007). When multiple transcript isoforms 

180 were annotated, we used the longest isoform in order to include the most possible codons used in 

181 a gene. Additionally, we removed any annotated exceptions from the gene dataset (e.g., 

182 translational exceptions, unclassified transcription discrepancies, suspected errors, etc.). Most 

183 sequences do not have annotated exceptions, and these filters removed fewer than 5% of 
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184 sequences from each species. Partial gene annotations were included in the analysis. Although 

185 not present in most species, some species included large numbers of partial gene sequences, so 

186 we included partial gene sequences in the main analysis (See Supplementary Figure S1 for the 

187 percentage of partial protein sequences in each taxonomic group). We also compared the 

188 phylogenies recovered with and without partial gene sequences to determine the robustness of 

189 this method to partial gene inclusion. 

190

191 Data Analyzed

192 Our analysis included 23 428 species, which were divided into the following taxonomic groups 

193 based on annotations within the NCBI database: 418 archaea, 15 068 bacteria, 234 fungi, 149 

194 invertebrates, 89 plants, 75 protozoa, 107 mammalian vertebrates, 123 other vertebrates, and 7 

195 233 viruses. Sixty-eight species are included in both bacteria and viruses because they are 

196 annotated in both taxonomic groups in RefSeq. Using CAM, we reconstructed phylogenetic trees 

197 for each of these taxonomic groups. We also reconstructed a phylogenetic tree for all 23 428 

198 species.

199

200 Reference Phylogenies

201 In order to determine the accuracy of our phylogenetic trees, we compared them to reference 

202 trees from both the OTL and the NCBI Taxonomy Browser. Although the NCBI Taxonomy 

203 Browser is not considered a primary source for taxonomic phylogenetic information because it 

204 gathers phylogenetic annotations from many sources, it provides useful information for our 

205 analysis because it includes more species than the OTL. Although the OTL and the NCBI 

206 reference trees are biased by the tree reconstruction methods originally used to assemble the 

207 trees, they provide a comprehensive tree spanning all species that can be used in our 

208 comparisons. Both trees combine the results from multiple studies and are based on multiple 

209 phylogenomic approaches. We assessed the accuracy of codon aversion by comparing recovered 

210 phylogenies to trees from each of these databases.

211

212 Extracting Phylogenies from the Open Tree of Life

213 We used the OTL documentation for programmatically inferring subtrees to develop a Python 

214 3.5 program, getOTLtree.py, that retrieves subtrees from the OTL. Although other OTL parsers, 

215 such as ROTL (Michonneau et al. 2015), are available, getOTLtree allows users to obtain a 

216 subtree of any number of species from the OTL in a single step. Inferring subtrees from a set of 

217 species requires accessing the OTL database twice: first to retrieve OTL Taxonomy Identifiers 

218 (OTT ids) for each species, and second to retrieve the phylogenetic tree. getOTLtree does both 

219 commands in a single step at runtime, prompting the user to manually select the correct domain 

220 of life when duplicates are found in the OTL database (e.g., Nannospalax galili is listed as a 

221 eukaryote [OTT id: 207281] and as a bacterium [OTT id: 5909124]). Furthermore, we account 

222 for the OTL command, match_names, which limits identical matching of species to 1 000 names, 

223 by combining results from multiple queries of fewer than 1 000 species. This process makes 

224 large-scale species analyses easier and takes only a few seconds to extract a phylogeny of 2 000 

225 species on a single processing core. If each species is listed on a different line (or CSV or 

226 Newick format) in a file called ${INPUT}, the typical usage for extracting the tree from the 

227 OTL is:

228
229 python getOTLtree.py -i ${INPUT}

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27756v1 | CC BY 4.0 Open Access | rec: 24 May 2019, publ: 24 May 2019



230

231 getOTLtree, accompanying test files, and a README with more detailed explanations of how to 

232 run the program with different parameters are also available in the GitHub repository at 

233 https://github.com/ridgelab/cam. A summary of the process behind getOTLtree is depicted in 

234 Figure 2.

236 Extracting Phylogenies from the NCBI Taxonomy Browser

237 The NCBI Taxonomy Browser 

238 (https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi) has many tools to enable 

239 large queries of its database. We opted to include unranked taxa in our analyses to maximize the 

240 number of included species. We then downloaded the phylogeny in PHYLIP (Felsenstein 1989) 

241 format directly from the website, and we used the extracted phylogenies in our analyses. 

242

243 Tree Comparison

244 We used the ete-compare module from the Environment for Tree Exploration toolkit (ETE3) 

245 (Huerta-Cepas et al. 2010; Huerta-Cepas et al. 2016) to quantify the similarity between the tree 

246 constructed using codon aversion and the corresponding reference trees from the OTL and the 

247 NCBI taxonomy. The following command calculates edge similarity of an unrooted tree, where 

248 ${INPUT} is the path to the recovered tree and ${REF} is the path to the reference tree from 

249 the OTL or the NCBI taxonomy:

250
251 ete3 compare -t {INPUT} -r {REF} --unrooted

252

253 We selected the percentage of edge similarity (i.e., the number of branches in one tree that are 

254 present in the other tree) to compute the topological distance between both trees. This metric was 

255 selected based on the following criteria: capability to efficiently compare very large trees, 

256 capability to compare unrooted trees (neighbor-joining is unrooted by definition (Saitou & Nei 

257 1987) and we wanted to account for potential variations at the root node in the reference tree), 

258 and capability to compare trees with polytomies. Although several tree-comparison metrics exist, 

259 many suffer from problems ranging from high computational cost to lack of robustness (Lin et al. 

260 2012). Advantages for using the percentage of edge similarity metric from the compare method 

261 in ETE3 include: clarity in comparing the output as a percentage of congruent branches between 

262 trees, optimization for large datasets, capability to compare unrooted trees, and robustness to 

263 polytomies (Huerta-Cepas et al. 2016). The advantages and disadvantages of several common 

264 tree comparison techniques are listed in Supplementary Table S1.

265

266 Validation Using Maximum Likelihood

267 Since maximum likelihood (Felsenstein 1981) has been widely used to construct the current 

268 version of the OTL, there is a potential confirmation bias when comparing it to the OTL (i.e., it 

269 is likely to have an artificially high percent overlap with the species relationships found in the 

270 OTL since it was used to create the OTL). However, it is still widely used and should be 

271 evaluated against our alignment-free technique. Using ortholog annotations approved by the 

272 HUGO Gene Nomenclature Committee (HGNC) (Gray et al. 2015), we extracted the most 

273 commonly used orthologs in each taxonomic group. Although we performed no formal tests for 

274 orthology, in cases where duplicated genes with the same gene names existed (e.g., RPS4 in the 

275 mitochondrion and rps4 in the chloroplast are both listed in Arabidopsis thaliana), both genes 
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276 were removed. After this filtering, we performed a multiple sequence alignment (MSA) on the 

277 DNA sequences of each ortholog using the following CLUSTAL OMEGA (Sievers & Higgins 

278 2018) command:

279
280 clustalo -i ${INPUT} > ${OUTPUT}

281

282 We used CLUSTAL OMEGA because it performed very well in full-length sequence 

283 comparisons presented by Pais et al. (2014a), and we used full-length gene sequences in our 

284 analyses. After each MSA was completed, we created a super-matrix by concatenating the 

285 alignments from all orthologs for each species (if an ortholog was not annotated for a species, all 

286 nucleotide characters for that ortholog were expressed as "-" for that species). After the super-

287 matrix was created, we used the following IQ-TREE (Nguyen et al. 2015) command to 

288 automatically choose the correct model (Posada & Crandall 1998) and perform maximum 

289 likelihood to recover the phylogeny:

290
291 iqtree -s ${INPUT} -m TEST -pre ${OUTPUT}

292

293 The recovered phylogeny was then compared to the OTL and the NCBI Taxonomy using the 

294 unrooted compare method from ETE3 to identify branch similarities. 

295

296 Comparison with Traditional k-mer Approach

297 One alignment-free technique to recover phylogenies is to create a feature frequency profile 

298 (FFP) which consists of counting the occurrences of different k-mers and comparing those 

299 profiles between species (Jun et al. 2010; Sims et al. 2009). Although FFP is often used on the 

300 whole genome, it can also be used on the proteome (Jun et al. 2010), which allowed us to do a 

301 direct comparison of this approach using our dataset, which consists of all CDS regions. All 

302 analyses were done using the step-by-step procedures outlined in the FFP software README. 

303 Since the FFP software requires uncompressed data, we uncompressed all FASTA files before 

304 conducting the analysis. Preprocessing time was not included in the comparison results.

305

306 We included all species FASTA files in a single directory, ${DIR}. If all species names are 

307 shorter than 10 characters, they can be included in a single file called ${SPECIES}. However, 

308 if any species names are longer than 10 characters, then a list of numbers (IDs) can be substituted 

309 for the species names. We used unique IDs for this step and then converted them back to species 

310 names after the tree was recovered. We used the recommended command from the FFP 

311 README (https://sourceforge.net/projects/ffp-phylogeny/files/Documentation/) to create the 

312 distance matrix, ${MATRIX}:

313
314 ffpry -l 5 ${DIR}/* | ffpcol | ffprwn | ffpjsd -p ${SPECIES > 
315 ${MATRIX}

316

317 Comparison with CVTree approach

318 CVtree is an example of a word-based approach (Zuo & Hao 2015). The algorithm uses 

319 composition vectors to compute frequencies of words of a given length. It then normalizes these 

320 frequencies by the expected frequencies predicted by random chance. Finally, it compares these 

321 frequencies between species to compute a distance. 
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322

323 We ran CVTree across each taxonomic group by following the procedure outlined in the CVTree 

324 README (https://github.com/ghzuo/CVTree). We first created a file containing the names of 

325 each species to be compared called ${SPECIESLIST}. We also created a directory of the 

326 species FASTA files called ${DIR}. We retained the default settings for word length, which 

327 counts words of lengths five, six, and seven. We then used the recommended command to 

328 compute the distance matrix, ${MATRIX}:

329
330 ./build/bin/cvtree -g ffn -G ${DIR} -i ${SPECIESLIST} -t 
331 ${MATRIX}
332

333 Comparison with Average Common Substring Approach (ACS)

334 ACS is an approach based on substring match lengths (Ulitsky et al. 2006). This algorithm finds 

335 the longest substring, beginning at each index of a sequence, that is also found in a second 

336 sequence. They use the average of these matching substrings to calculate a distance. 

337

338 We ran ACS using an implementation described by Leimeister & Morgenstern (2014), and can 

339 be found at http://kmacs.gobics.de/. This algorithm takes a single sequence as input for each 

340 species. In order to do a whole-genome analysis of the species, we first created an input FASTA 

341 file called ${INPUT} for each dataset containing a single sequence for each species. We created 

342 this single sequence by concatenating all genes together, separating each gene by ten 8N9 

343 characters to limit potential biases based on the order that the genes were concatenated. We then 

344 followed the steps found in the ACS README file. This implementation allows the user to 

345 specify a k-value for the number of mismatches allowed, we ran the algorithm with a k-value of 

346 0, which calculates ACS distances. We used the recommended command to compute the 

347 distance matrix:

348
349 ./kmacs ${INPUT} 0
350

351 Comparison with K-mismatch Average Common Substring Approach (KMACS)

352 KMACS is another approach based on match lengths (Leimeister & Morgenstern 2014). This 

353 algorithm is similar to ACS, but it differs by allowing k number of mismatches in the common 

354 substrings. 

355

356 We ran KMACS using the same implementation that we used to compute ACS 

357 (http://kmacs.gobics.de/). We used the same input FASTA files, ${INPUT}, described in our 

358 ACS comparisons. Each input file contained a single sequence for each species. We ran KMACS 

359 with a k-value of 1, using the following command:

360
361 ./kmacs ${INPUT} 1

362

363 Comparison with Kr Approach

364 Kr is also based on match lengths (Haubold et al. 2009). This algorithm estimates the number of 

365 mutations per site. It reduces the computational runtime of the algorithm by creating a 

366 generalized suffix tree of all input sequences to identify the match lengths. 

367
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368 We ran Kr using the steps outlined in the README (http://guanine.evolbio.mpg.de/kr/). We 

369 used the same input FASTA files for single sequences that were previously used in the ACS and 

370 KMACS comparisons (${INPUT}). We used the following command for each comparison:

371
372 ./kr ${INPUT}

373

374 Comparison with Co-Phylog

375 Co-Phylog is considered a novel alignment-free approach (Yi & Jin 2013). Co-phylog creates 

376 <micro-alignments= that enclose a maximum of one mismatch across all species. Instead of 

377 conducting a global sequence alignment, co-phylog combines the mismatches from multiple 

378 local alignments into a single matrix that is then used to estimate a mutation rate. 

379

380 We ran Co-Phylog using the steps found in the README 

381 (http://humpopgenfudan.cn/resources/softwares/CO-phylog.tar.gz). The first step was to make 

382 <co-files= for each of the species FASTA files. We accomplished this task with the following 

383 command:

384
385 ./fasta2co ${SPECIES_FASTA} ${SPECIES_CO_FILE}

386

387 The second step was to use the directory of co-files, ${DIR}, to create a distance matrix called 

388 ${MATRIX}. We used the following command:

389
390 ./co2dist ${DIR} > ${MATRIX}
391

392 Comparison with andi

393 Andi is another novel alignment-free approach (Haubold et al. 2015). Andi uses a similar 

394 approach to Co-phylog, but it allows the local "micro-alignments" to include more than a single 

395 mismatch. It searches for mismatches that are bracketed by long exact matches, referred to as 

396 anchors. 

397

398 We ran andi using the steps found in the README (https://github.com/evolbioinf/andi/). We 

399 used as input each of the species FASTA files in our original dataset (${INPUT}). We ran andi 

400 using the default parameters. We also include the --join parameter to indicate that each 

401 sequence in the individual FASTA files is part of the same species. We performed this analysis 

402 with the following command:

403
404 ./andi --join ${INPUT}
405

406 Comparison with Filtered Spaced-Word Matches

407 Filtered spaced-word matches (FSWM) is another novel alignment-free approach that, similar to 

408 Co-Phylog and andi, finds matching-spaced words between sequences (Leimeister et al. 2017). It 

409 differs from these previous methods by accounting for pattern matches caused by random 

410 chance.
411

412 We ran FSWM using the steps found in the README (https://github.com/evolbioinf/andi/). We 

413 used the same input FASTA files, ${INPUT}, described in the ACS and KMACS comparisons 
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414 because the input files are required to contain a single sequence for each species. We used the 

415 following recommended command to compute the distance matrix:
416
417 ./fswm ${INPUT}
418

419 Using Neighbor-Joining to Infer Phylogenetic Trees

420 The methods above (FFP, CVTree, ACS, KMACS, Kr, Co-Phylog, andi, and FSWM) each 

421 created a distance matrix, ${MATRIX}, in PHYLIP format. We then used the same Biopython 

422 implementation of the neighbor-joining algorithm that CAM used by specifying the PHYLIP 

423 input format option (-p) of makeNewick.py (provided in the GitHub repository for CAM):

424
425 python makeNewick.py -p -i ${MATRIX} -o ${OUTPUT}

426

427 After the Newick tree was recovered and the species IDs were converted back to species names, 

428 we compared the recovered tree with the OTL and the NCBI taxonomy using the unrooted 

429 compare method in ETE3.

430

431 RESULTS

432

433 Frequency of Codon Aversion Motifs

434 Since 64 codons exist, and each species typically uses only one of three possible stop codons and 

435 the one start codon per gene, there are 61 degrees of freedom (64 3 2 unused stop codons 3 1 

436 start codon), allowing for 261 possible motifs. Similarly, amino acid aversion motifs have 20 

437 degrees of freedom (for 20 amino acids), allowing for 220 possible motifs. We observed 54 336 

438 494 (~226) codon motifs across all genomes, with significant overlap between species (see Table 

439 1). When including counts for multiple occurrences of a motif within the same species, there are 

440 still more than 5x as many completely unique motifs (i.e., motifs that occur in a single gene 

441 within a single species) as overlapping motifs (i.e., motifs that occur in multiple genes or 

442 multiple species) (See Supplementary Figures S2-S11). We also note that not all codons have 

443 equal probabilities of being present in a gene, and we show the frequency of codon aversion per 

444 codon within each taxonomic group in Supplementary Figures S12-S21. Although most genes 

445 use most codons, some genes exclude significantly more codons than others. Across all species, 

446 the mean number of codons not used within a sequence is 14.4819, with a standard deviation of 

447 8.6881 codons. The number of codons included in each codon aversion motif is depicted in 

448 Supplementary Figures S22-S31. In Supplementary Figures S32-S41, we also show that 

449 relatively few motifs are present in more than a few genes. 

450

451 Trees Constructed by CAM, amino acid motifs, Maximum-Likelihood and Alignment-free 

452 Techniques

453 We ran each alignment-free algorithm on a 24-core Intel Broadwell (2.4 GHz) compute node. 

454 For each analysis, we allowed the algorithms to run for a maximum of 3 days on 24 processing 

455 cores with a maximum of 256 gigabytes of RAM. With these constraints, CAM, amino acid 

456 motifs, and FFP each recovered a tree for all 23 428 species. ACS, CVTree, andi, and FSWM 

457 recovered trees for most of the analyses. ACS and andi exceeded the time limitation for all 

458 species and bacteria. CVTree had a segmentation fault on comparisons for all species and 

459 bacteria. FSWM exceeded the memory limitation for all species and bacteria. KMACS exceeded 
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460 the three-day time limit for all of the analyses except for protozoa. In addition, Co-phylog was 

461 not able to complete any of the analyses in the allotted time. Kr exceeded the maximum memory 

462 allocation for each analysis. Maximum Likelihood recovered trees for most of the analyses, 

463 although insufficient ortholog annotations were available in bacterial species and all species. The 

464 Maximum Likelihood trees included relatively few fungi (25%), protozoa (32%), invertebrates 

465 (38%), and plants (67%) because many of the species did not have ortholog annotations. The 

466 NCBI taxonomy included almost all species found in RefSeq, missing only two archaea, 456 

467 bacteria, and 188 viruses. Since the OTL does not include viruses, it contains significantly fewer 

468 species, with the inferred phylogeny containing only 12 337 species out of the possible 23 428 

469 species. We show the number of species included in the phylogenies recovered by each 

470 algorithm in Table 2, excluding KMACS, Co-Phylog, and Kr which were unable to complete the 

471 analyses.

472

473 Percent Similarity Compared to Reference Trees

474 We compared the recovered phylogenies from each of the algorithms with the reference 

475 phylogenies from the OTL (Table 3) and the NCBI taxonomy (Table 4). Of the CAM analyses, 

476 bacteria and viruses have the highest similarity with the reference phylogenies (84-91%), and 

477 invertebrates have the lowest similarity (60-70%). In most instances, amino acid aversion motifs 

478 performed comparably to codon aversion motifs when compared against the OTL and the NCBI 

479 taxonomy. However, the percent overlap between the NCBI taxonomy and amino acid aversion 

480 motifs in mammals, other vertebrates, and viruses was much lower than the percent overlap with 

481 CAM (9-25% lower). The same trend exists when comparing the recovered trees with the OTL, 

482 with amino acid motifs recovering 10-14% fewer species relationships than CAM. The other 

483 taxonomic groups did not appear to vary significantly between the recovered trees using amino 

484 acids or codons, with the difference between the two methods being -3% to +3% for the NCBI 

485 taxonomy and -5% to +2% different for the OTL. CAM and the other alignment-free algorithms 

486 all had similar percent similarities to the reference trees. There was no single algorithm that 

487 consistently had the highest percent similarity compared to the references. Maximum likelihood 

488 also recovered trees with comparable branch percent similarities with the alignment-free 

489 methods. 

490

491 As expected, the NCBI taxonomy and the OTL are highly similar (Table 3), although 6-9% of 

492 species relationships disagree outside of invertebrates, plants, and mammals. Even though the 

493 NCBI and OTL reference trees are similar to each other, our analyses lend support to the NCBI 

494 taxonomy in every taxonomic group -- 70 out of the 71 completed analyses reported phylogenies 

495 being 2-15% more similar to the NCBI taxonomy than the OTL. 

496

497 We also ran the entire CAM analysis excluding partial protein sequences. Excluding partial 

498 genes had a minimal effect on the overall percent overlap with the OTL (minus 2% to plus 5% 

499 similarity) and the NCBI taxonomy (minus 2% to plus 3% similarity).

500

501 Comparing Algorithm Runtimes

502 Table 5 shows the CPU runtime of each algorithm in hours. The alignment-free techniques had 

503 significantly faster runtimes than the maximum likelihood approach. FFP and CVTree 

504 consistently had the fastest runtimes. CAM and amino acid motifs also ran quickly with runtimes 

505 ranging from less than 2 minutes for the smaller datasets, such as protozoa, to approximately 20 
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506 hours for all species. Runtime was always longer for amino acid motifs than CAM because the 

507 DNA sequences were translated into protein sequences before being evaluated for amino acid 

508 usage. Andi9s runtimes ranged from 1 to 12 hours for the smaller taxonomic groups excluding 

509 bacteria. ACS ran slightly slower with a range of 4 to 42 hours. FSWM was the slowest 

510 alignment-free method with CPU runtimes ranging from 20 to 63 hours, excluding bacteria. 

511 Maximum likelihood required between 2.5 and 200 hours of CPU time to compute a tree for 

512 each taxonomic group.

513

514 Although the maximum likelihood analysis was not possible on bacteria or all species because 

515 insufficient ortholog gene annotations exist to accurately compare the majority of the bacterial 

516 species, it would have also been infeasible based on CPU runtime. As more species and 

517 orthologs are included in the maximum likelihood analysis, the runtime increases exponentially. 

518 The fastest iteration of maximum likelihood finished in 2.5 hours on 100 mammals, using 18 

519 orthologous genes which were each present in at least 97 species. In contrast, CAM used all 

520 genes in 107 mammals and finished in 0.2101 hours (12 minutes, 36 seconds). The slowest 

521 iteration of maximum likelihood finished in 199.75 hours on 58 fungi using 648 orthologs which 

522 were each annotated in at least five species. CAM again analyzed all genes, both annotated and 

523 unannotated, across 234 fungi, finishing in 0.2167 hours (13 minutes).

524

525 Ortholog Frequency for Maximum Likelihood Analysis

526 Maximum Likelihood is highly dependent on the number of orthologs annotated in the analysis. 

527 In Table 6, we report the minimum number of species with an ortholog annotation, the number of 

528 orthologs used, and the total number of characters in the super-matrix for each taxonomic group. 

529 All orthologous genes with gene annotations spanning at least the number of species noted in 

530 column 2 (minimum number of species with orthologs) were included in the analysis. 

531 Differences in the minimum number of species with an ortholog are due to differences in the 

532 breadth of gene annotations within a taxonomic group. For instance, few orthologous gene 

533 annotations spanned more than five species in fungi, invertebrates, and protozoa; however, many 

534 orthologs were annotated in 100 vertebrate species. We did not filter the orthologs on any metric 

535 besides the number of species with that gene annotation.

536

537 DISCUSSION

538 The advent of Next Generation Sequencing (NGS) and RNA-seq enables researchers to quickly 

539 and inexpensively sequence genomes faster than orthologous relationships and species 

540 phylogenies can be annotated and examined. Therefore, alignment-free algorithms are becoming 

541 increasingly more important in determining phylogenetic trees in a cost-effective and time-

542 efficient manner. The results of our CAM analyses show that CAM produces comparable trees to 

543 other alignment-free algorithms, performs quickly, and has the ability to compare vastly 

544 divergent species.

545

546 CAM Accuracy 

547 Although alignment-free methods are not currently considered as accurate as alignment-based 

548 methods, as more alignment-free methods and phylogenetically conserved characters are 

549 discovered and combined, they can become more accurate. We recognize that the OTL and the 

550 NCBI reference trees suffer from biases based on the phylogenetic tree reconstruction methods 

551 used to create them. However, they provide researchers with the most comprehensive number of 
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552 species by combining the results of various studies. Therefore, similarity to the reference trees is 

553 a relative metric that can be used to assess each algorithm against the results from all other 

554 algorithms. Furthermore, all algorithms are subject to the same potential biases that exist by 

555 performing this type of analysis because they are each compared to the same reference 

556 phylogenies.  

557

558 CAM recovered trees that were 60 3 82% similar to the OTL and 70-91% similar to the NCBI 

559 Taxonomy. Although CAM does not recover identical phylogenies to the OTL or the NCBI 

560 taxonomy, the recovered phylogenies have comparable percent branch similarities as 

561 phylogenies recovered using traditional ortholog-based maximum likelihood estimates. For 

562 protozoa, the percent similarity with the OTL and the NCBI taxonomy was only 1% different 

563 between maximum likelihood and CAM. Species relationships recovered for archaea, mammals, 

564 and other vertebrates were more similar to established phylogenies using maximum likelihood. 

565 However, since traditional ortholog-based techniques were used to construct the current 

566 representation of the OTL, it is expected that taxonomic groups with well-documented orthologs 

567 should recover very similar trees to the reference. CAM recovered trees that were comparable in 

568 percent similarity to other alignment-free algorithms. No single algorithm outperformed all other 

569 algorithms in terms of percent similarity with the OTL or the NCBI taxonomy. Since CAM 

570 performed comparably to all other alignment-free algorithms, codon aversion motifs should be 

571 considered in conjunction with these other methods in phylogenomic analyses.

572

573 Amino acid aversion motifs also recovered trees that were comparable to the OTL and NCBI 

574 taxonomy. Since amino acid aversion recovered trees with similar percent identities as the other 

575 alignment-free algorithms, amino acids might be sufficient to determine phylogenetic 

576 relationships when only protein sequences are available. However, CAM performed slightly 

577 better than amino acid aversion in the majority of the analyses, indicating that codon aversion 

578 provides additional phylogenetic information. This difference may be due to the larger number of 

579 possible codon aversion motifs (261) as opposed to amino acid aversion motifs (220). This 

580 additional information allows CAM to distinguish the relationships between species at a higher 

581 resolution in the majority of analyses, indicating that codon aversion provides additional 

582 phylogenetic information. 

583

584 We considered the possibility that gene lengths influence CAM9s algorithm. Since fewer codons 

585 are present in short genes, there are potentially more codons that are avoided by random chance. 

586 This potential bias could cause genomes with a preponderance of short genes to be clustered based 

587 on gene size as opposed to a codon or amino acid bias within the gene. To determine if this bias 

588 affected our analysis, we analyzed the frequency of the number of codons excluded in each codon 

589 aversion motif (Supplementary Figures 22-31). If short gene bias were prevalent, we would expect 

590 to observe an evenly distributed number of codons in each codon aversion motif, ranging from two 

591 to about sixty (indicating that long genes used all available codons and short genes used few 

592 available codons). We graphed these frequencies and determined that each of the taxonomic 

593 groups showed the same trend of codon aversion motifs. On average, relatively few codons were 

594 included in each motif (14.4819 codons with a standard deviation of 8.6881). 

595

596 CAM is also robust to partial gene annotations. Including or excluding partial gene sequences in 

597 the analysis had a minimal effect on the overall species relationships. This analysis indicates that 
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598 missing data or incomplete data has a minimal effect on the algorithm. Furthermore, without 

599 relying on gene alignments, the recovered phylogeny is not dependent on the accuracy of the 

600 aligner or ortholog annotations. This property of all alignment-free algorithms facilitates a more 

601 universal technique to compare distantly related species that might have incorrectly labeled 

602 genes or highly mutated orthologs.

603

604 CAM Runtime

605 Although CAM requires genomes to be assembled with CDS regions annotated, it does not 

606 require an alignment of the genes against other species, nor does it require the time-consuming 

607 approaches of traditional methods such as maximum likelihood. Codon aversion motifs provide a 

608 basis for alignment-free methods to recover robust phylogenies quickly and with sufficient 

609 resolution to account for future species discovery. In contrast to maximum likelihood, most 

610 cladal relationships were recovered using CAM within minutes. CAM had comparable runtimes 

611 to FFP and CVTree, and faster runtimes by several orders of magnitude than some of the 

612 alignment-free methods, including ACS, Andi, and FSWM. Therefore, we show that CAM is a 

613 time-efficient alignment-free method that is comparable or faster than other alignment-free 

614 algorithms.

615

616 CAM applies to more species than Maximum Likelihood

617 Since alignment-free methods, such as CAM, are not dependent on ortholog annotations, they are 

618 able to recover species relationships when gene sequences lack ortholog annotations. For 

619 example, ortholog annotations in protozoa were sufficient for only 24 species, whereas CAM 

620 recovered 75 taxonomic relationships. Maximum Likelihood recovered only 58 species 

621 relationships for fungi, whereas CAM recovered 234 relationships. Since ortholog annotations 

622 are a limiting factor in phylogenomic studies, alignment-free methods provide the ability to 

623 recover a higher number of species relationships than traditional techniques.

624

625 CAM consistently recovers comparable phylogenies compared with other alignment-free 

626 techniques. Since CAM uses a single character state, codon aversion, across all domains of life, 

627 it limits ad hoc hypotheses by facilitating a single analysis of all species instead of piecing 

628 together the phylogenetic signal from different genes. Additionally, codon aversion motifs can be 

629 used to examine coevolutionary forces between different domains, such as viruses and hosts. 

630 Since similarities in codon usages have previously been identified between some viruses and 

631 their respective hosts (Chantawannakul & Cutler 2008; Miller et al. 2017b), this technique could 

632 facilitate coevolutionary analyses by identifying overlapping motifs in distantly related species, 

633 which can then be analyzed using traditional techniques. 

634

635 Conclusions

636 We understand that certain limitations to our study exist. For instance, while we have shown that 

637 CAM successfully recovers most species relationships with similar accuracy as other alignment-

638 free methods, we do not fully understand the biological mechanisms that govern the phylogenetic 

639 signal we identified. One potential explanation is that codon aversion is conserved due to 

640 selection on translational efficiency. A limited supply of tRNA exist in a given organism, and 

641 codons that do not directly complement all three anti-codons in the tRNA are generally 

642 considered suboptimal. Although suboptimal codons are sometimes preferred (Tuller et al. 

643 2010), they generally slow translation and decrease gene expression (Quax et al. 2015). 
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644

645 The phylogenetic signal could also be attributed to neutral processes such as GC biased gene 

646 conversion, since GC content changes during meiosis and is therefore likely to vary directly with 

647 evolutionary time. We also note that alignment-free methods often appear as a "black box" to 

648 researchers who are accustomed to homologous character analyses that allow for directly 

649 identifying nucleotide differences in sequences. While CAM presents a paradigm shift, it has the 

650 potential to be as informative as analyses of homologous character states. Since CAM is based in 

651 codon usages within each gene, we propose that percent similarities in codon aversions between 

652 species represents similarities in the mechanisms that maintain these codon usages. Although 

653 these mechanisms are presently not fully understood, we show that they are phylogenetically 

654 conserved and can be utilized to recover a phylogeny using our method.

655
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Figure 1
Flow charts for calculating the distance matrix and comparing the recovered
phylogenies.

(A) Calculate Distance Matrix: Start with two FASTA ûles of the DNA coding sequences of two species. For
each species, ûnd the unused codons within each gene, alphabetize them, and make those codons into a
tuple. Add the tuple to an unordered set for that species. The distance is calculated by dividing the number
of tuples in the intersection of the two sets by the minimum number of tuples in the two original sets. (B)
Recover and Compare Phylogenies: From the distance matrix, use neighbor-joining to recover a phylogeny.
We do not use a model of evolution to compute distances because distance is a function of the number of
shared codon aversion motifs within a species. This technique allows a fair comparison of diverse or
unknown species. Using the compare method within the Environment for Tree Exploration (ETE3), we then
compare the unrooted tree with the OTL and the NCBI taxonomy. Finally, we report the percentage of the
phylogenies that overlap.
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Figure 2
A ûow chart depicting the process getOTLtree takes to infer a subtree phylogeny from
the OTL.

All steps are done with a single command at runtime.
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Table 1(on next page)

Unique Tuples in Each Taxonomic Group

Unique tuples were calculated by adding all tuples of unused codons from all genes within
each species from a taxonomic group to a set, and then counting the number of elements in
that set. The All group includes all species in the same analysis. Total (without all) sums the
number of motifs and genes from each taxonomic group, calculated individually. Since most
species in this analysis are bacteria, Total (without all and without bacteria) summed the
values from each taxonomic group without including bacteria or all species combined. Note:
23 983 viral and bacterial genes overlap and 1 048 861 motifs span diûerent taxonomic
groups (diûerence between values in All and Total (without all).
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1

2 Table 1

3

Taxonomic Group
Number of Unique 

Motifs
Number of Genes

Average Number of Genes 

with a Given Motif

All 54 336 494 229 742 339 4.228

Archaea 1 057 898 1 903 114 1.799

Bacteria 49 177 047 215 581 296 4.384

Fungi 904 513 2 194 206 2.426

Invertebrates 951 901 2 153 164 2.262

Plants 1 009 268 2 510 219 2.487

Protozoa 510 582 841 682 1.648

Mammals 732 868 2 004 675 2.735

Other 

Vertebrates
806 510 2 274 837 2.821

Viruses 234 768 303 129 1.291

Total 

(without all)
55 385 355 229 766 322 4.149

Total 

(without all and without 

bacteria)

5 159 447 14 161 043 2.745
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Table 2(on next page)

Number of Species Included in Phylogenies

For each algorithm, we report the number of species used to recover the phylogeny. *Note:
Some species are included in both bacteria and viruses.
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1 Table 2

Taxonomic Group CAM

Amino 

Acid 

Motifs

FFP CVTree ACS Andi FSWM
Maximum 

Likelihood

NCBI 

Taxonomy
OTL

All 23 428 23 428
23 

428

 N/A N/A N/A N/A
N/A 22 794 12 337

Archaea 418 418 418 418 418 418 418 418 416 362

Bacteria* 15 068 15 068
15 

068
N/A

N/A N/A N/A
N/A 14 612 11 227

Fungi 234 234 234 232 232 232 232 58 234 214

Invertebrates 149 149 149 149 149 149 149 57 149 147

Plants 89 89 89 89 89 89 89 60 89 87

Protozoa 75 75 75 75 75 71 75 24 75 75

Mammals 107 107 107 107 107 107 107 100 107 105

Other vertebrates 123 123 123 123 123 123 123 118 123 120

Viruses* 7 233 7 233 7 233  6996 7230 6996 6996 N/A 7 045 N/A
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Table 3(on next page)

Comparison to the OTL

Percent edge overlap of an unrooted tree comparison of each algorithm versus the
established phylogeny from the OTL for each taxonomic group. Maximum likelihood could not
compute a tree for bacteria or all species because insuûcient ortholog annotations were
available for the majority of these species. ACS, andi, and FSWM could not complete bacteria
and all species analyses due to time or memory constraints.
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1 Table 3

2

Taxonomic Group CAM

Amino 

Acid 

Motifs

FFP CVTree ACS Andi FSWM
Maximum 

Likelihood

NCBI 

Taxonomy

All 82 84 83 N/A N/A N/A N/A N/A 95

Archaea 75 77 74 80 80 68 82 89 94

Bacteria 84 84 85 N/A N/A N/A N/A N/A 95

Fungi 69 67 67 73 75 65 69 65 91

Invertebrates 60 57 55 65 68 63 78 73 98

Plants 64 63 54 72 79 70 85 73 98

Protozoa 65 65 64 72 68 60 75 64 93

Mammals 77 63 52 69 90 95 94 93 99

Other Vertebrates 66 56 54 68 76 81 80 81 94

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27756v1 | CC BY 4.0 Open Access | rec: 24 May 2019, publ: 24 May 2019



Table 4(on next page)

Comparison to the NCBI Taxonomy

Percent edge overlap of an unrooted tree comparison of each algorithm versus the
established phylogeny from the NCBI taxonomy for each taxonomic group. Maximum
likelihood could not compute a tree for bacteria, viruses, or all species because insuûcient
ortholog annotations were available for the majority of these species. ACS, andi, and FSWM
could not complete bacteria and all species analyses due to time or memory constraints.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27756v1 | CC BY 4.0 Open Access | rec: 24 May 2019, publ: 24 May 2019



1 Table 4

2

3

4

Taxonomic 

Group
CAM

Amino 

Acid 

Motifs

FFP CVTree ACS Andi FSWM
Maximum 

Likelihood

All 89 90 90 N/A N/A N/A N/A N/A

Archaea 81 84 80 85 86 76 89 92

Bacteria 91 90 91 N/A N/A N/A N/A N/A

Fungi 73 69 69 75 77 67 72 70

Invertebrates 70 68 65 75 78 71 70 78

Plants 71 70 61 80 84 78 92 79

Protozoa 72 71 72 82 78 68 85 73

Mammals 87 73 63 80 95 98 98 98

Other 

Vertebrates
79 70 67

83 90 93 93
95

Viruses 90 65 91 91 92 89 60 N/A
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Table 5(on next page)

CPU Runtime of Each Algorithm in Hours

CVTree and FFP were the fastest algorithms. CAM and Amino Acid Motifs had comparable
runtimes and were faster than ACS, andi, FSWM, and maximum likelihood.
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1 Table 5

Taxonomic 

Group
CAM

Amino Acid 

Motifs
FFP CVTree ACS Andi FSWM

Maximum 

Likelihood

All 17.2794 20.2692 3.9072 N/A N/A N/A N/A N/A

Archaea 0.0667 0.1436 0.0408 0.0236 28.87 8.05 28.83 161.5

Bacteria 14.6994 17.4458 3.7442 N/A N/A N/A N/A N/A

Fungi 0.0783 0.2167 0.0294 0.0028 42.12 8.75 56.92 199.75

Invertebrates 0.0763 0.2126 0.0447 0.0150 28.75 5.88 54.93 2.5

Plants 0.0781 0.2211 0.0383 0.0217 22.17 4.21 49.77 6.0

Protozoa 0.0287 0.0833 0.0183 0.0078 4.88 1.01 20.65 4.0

Mammals 0.0718 0.2101 0.0294 0.0122 22.32 4.32 63.25 2.5

Other vertebrates 0.0872 0.2356 0.0322 0.0206 27.03 5.63 61.35 6.75

Viruses 0.1028 0.1161 0.1019 0.2906 42.53 12.67 6.03 N/A
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Table 6(on next page)

Matrix Statistics for Maximum Likelihood Analysis.

The ûrst column is the taxonomic group. The second column is the minimum number of
species which must include an ortholog annotation for it to be included in the matrix. The
third column is the number of orthologs with the minimum number of species annotations.
The fourth column is the number of nucleotide characters in the combined alignment of all
orthologs included in the analysis.
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1 Table 6

2

Taxonomic Group
Minimum number of 

species with ortholog

Number of orthologs in 

super-matrix

Characters in super-

matrix

Archaea 95 45 62 442

Fungi 5 648 1 403 618

Invertebrates 5 20 17 665

Plants 40 75 87 764

Protozoa 5 200 411 028

Mammals 97 18 24 767

Other vertebrates 108 28 30 900
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