A peer-reviewed version of this preprint was published in PeerJ on 7 January 2020.

<u>View the peer-reviewed version</u> (peerj.com/articles/8396), which is the preferred citable publication unless you specifically need to cite this preprint.

Pietrzak S, Pazikowska-Sapota G, Dembska G, Dzierzbicka-Glowacka LA, Juszkowska D, Majewska Z, Urbaniak M, Ostrowska D, Cichowska A, Galer-Tatarowicz K. 2020. Risk of phosphorus losses in surface runoff from agricultural land in the Baltic Commune of Puck in the light of assessment performed on the basis of DPS indicator. PeerJ 8:e8396 https://doi.org/10.7717/peerj.8396

Risk of phosphorus loss in surface runoff from agricultural land in the Baltic Commune of Puck

Stefan Pietrzak ^{Corresp.,1}, Grażyna Pazikowska-Sapota², Grażyna Dembska², Lidia Dzierzbicka-Głowacka³, Dominika Juszkowska¹, Zuzanna Majewska¹, Marek Urbaniak¹, Dominika Ostrowska², Agnieszka Cichowska², Katarzyna Galer-Tatarowicz²

¹ Department of Water Quality, Institute of Technology and Life Sciences in Falenty, Raszyn, Poland

² Department of Environmental Protection, Maritime Institute, Gdańsk, Poland

³ Physical Oceanography Department, Eco-hydrodynamics Laboratory, Institute of Oceanology of the Polish Academy of Sciences, Sopot, Poland

Corresponding Author: Stefan Pietrzak Email address: s.pietrzak@itp.edu.pl

Background. Risk assessment of Phosphorus (P) losses in surface runoff from agricultural land is the basic measure that should be used as a part of actions taken to counteract the water eutrophication in watercourses and water reservoirs. To assess this risk, a new method has been recently developed based on the determination of degree of P saturation (DPS) which depends on P content in soil determined with the use of distilled water (water-soluble P – WSP).

Methods. Based on DPS method, the risk of P losses in surface runoff from agricultural land in Puck Commune (Baltic Sea Coast) was assessed and a critical analysis of assessment results was carried out. The research was conducted on mineral and organic soils from 50 and 11 separate agricultural plots with a total area of 133.82 and 37.23 ha, respectively. In collected soil samples, P content was determined using distilled water (all soil samples), Egner-Riehm method (mineral soils) and extract of 0.5 mol HCl • dm⁻³ (organic soils). The results of determinations P content in water extract from soils were converted to DPS values, which were classified by appropriate limit intervals.

Results & Discussion. It was found that on 96.7% of tested agricultural parcels (96% plots with mineral soils and 100% plots with organic soils) there was a potentially high risk of P losses from soil by surface runoff. At the same time, it was ascertained that in soils from 62% of agricultural plots, there was a large deficiency of plant available P. Due to the above, as well as due to the lack of connection with other factors affecting the P losses in surface runoff such as type of crop and area inclination, it was considered that the assessment based on the DPS index may be unreliable.

1 Risk of phosphorus loss in surface runoff from agricultural

2	land in the Baltic Commune of Puck
3	
4	Stefan Pietrzak ¹ , Grażyna Pazikowska-Sapota ² , Grażyna Dembska ² , Lidia Dzierzbicka-
5	Głowacka ³ , Dominika Juszkowska ¹ , Zuzanna Majewska ¹ , Marek Urbaniak ¹ , Dominika
6	Ostrowska ² , Agnieszka Cichowska ² , Katarzyna Galer-Tatarowicz ²
7	
8	¹ Department of Water Quality, Institute of Technology and Life Sciences in Falenty, Raszyn,
9	Poland
10	² Department of Environmental Protection, Maritime Institute, Gdańsk, Poland
11	³ Physical Oceanography Department, Eco-hydrodynamics Laboratory, Institute of Oceanology
12	of the Polish Academy of Sciences, Sopot, Poland
13	
14	Corresponding Author:
15	Stafan Pietrzak
16	Hrabska 3, 05-090 Raszyn, Poland
17	E-mail address: s.pietrzak@itp.edu.pl
18	

19 Abstract

20	Background. Risk assessment of Phosphorus (P) losses in surface runoff from agricultural land
21	is the basic measure that should be used as a part of actions taken to counteract the water
22	eutrophication in watercourses and water reservoirs. To assess this risk, a new method has been
23	recently developed based on the determination of degree of P saturation (DPS) which depends on
24	P content in soil determined with the use of distilled water (water-soluble P – WSP).
25	Methods. Based on DPS method, the risk of P losses in surface runoff from agricultural land in
26	Puck Commune (Baltic Sea Coast) was assessed and a critical analysis of assessment results was
27	carried out. The research was conducted on mineral and organic soils from 50 and 11 separate
28	agricultural plots with a total area of 133.82 and 37.23 ha, respectively. In collected soil samples,
29	P content was determined using distilled water (all soil samples), Egner-Riehm method (mineral
30	soils) and extract of 0.5 mol HCl \cdot dm ⁻³ (organic soils). The results of determinations P content in
31	water extract from soils were converted to DPS values, which were classified by appropriate
32	limit intervals.
33	Results & Discussion. It was found that on 96.7% of tested agricultural parcels (96% plots with
34	mineral soils and 100% plots with organic soils) there was a potentially high risk of P losses
35	from soil by surface runoff. At the same time, it was ascertained that in soils from 62% of
36	agricultural plots, there was a large deficiency of plant available P. Due to the above, as well as
37	due to the lack of connection with other factors affecting the P losses in surface runoff such as

- type of crop and area inclination, it was considered that the assessment based on the DPS indexmay be unreliable.
- 40

41 Introduction

The Baltic Sea is a basin affected by strong eutrophication which results in many adverse 42 changes in the marine flora and fauna and in turn leads to large social and economic losses. One 43 of the main reasons for eutrophication of the Baltic Sea waters is the excessive inflow of 44 phosphorus (P) to it through rivers. The inflow from the entire Baltic basin is at 29.3 tons per 45 year, of which 35.7% comes from dispersed sources, mainly from agriculture (HELCOM, 2018). 46 12.7 tons of P are brought from Poland to the Baltic Sea by river waters (HELCOM, 2018), 47 including 21 or 33% from the agricultural sector depending on the method of assessment 48 (National..., 2016). In order to counteract the eutrophication of the Baltic Sea, various initiatives 49 and actions have been taken for many years, both at the regional and national level, aimed at 50 limiting the supply of the mentioned component to the waters of the Baltic Sea. In this respect, 51 particularly important arrangements have been recently made at the Conference of Ministers for 52 the Environment of the HELCOM countries held on 3rd October 2013 in Copenhagen. There 53 were specified, among others, expected degrees of reduction of total P loads discharged by the 54 HELCOM Member States to the Baltic Sea. According to them, Poland should reduce the P 55 inflow to the Baltic Sea by 51%, respectively, compared to the reference period 1997-2003 56

57	(National, 2016). Poland approved this level of reduction as a rough indication, stating that it
58	will adopt a final position after conducting relevant analyses. Regardless of their result, Polish
59	agriculture is expected to face a major challenge to significantly reduce its pressure on the Baltic
60	Sea in terms of P. There is a need to seek and implement effective solutions to reduce P loss
61	from agricultural sources to waters considering the above as well economic reasons and
62	prevention from eutrophication of inland surface waters (according to polish monitoring data, in
63	2012-2015 eutrophication parameters were exceeded in 42% for sites located on flowing waters
64	(rivers) and 66% for stands on stagnant waters (lakes/water reservoirs) (National, 2016)).
65	Undoubtedly, the list of measures should include tools and procedures for controlling
66	agricultural land soils in case of P loss in surface runoff. Thanks to the results of such a control it
67	is possible to manage agricultural land so as to minimize the threat posed by the component in
68	question. In this context, it should be stated that the problem of diagnosing threats to rivers and
69	reservoirs by P loss from agricultural soils is by no means new and has been of interest to many
70	researchers for years. This problem is most commonly considered in terms of interactions
71	between the content of plant available P in soil (determined by various methods, for example
72	Mehlich 3, Olsen, Egner-Riehm), and P saturation in runoff water. Using this approach, it was
73	proved that as P content in soil increases, its amount increases along with surface runoff (Torbert
74	et al., 2002; Sharpley & Kleinman, 2003; Pietrzak et al., 2017), yet the system of cultivation of
75	plants and the type of soil have an impact, too (Gaj, 2008 after: Sharpley et al., 1981). It should

be emphasized that the existing P agrochemical tests are not equally useful for testing all soil
types – which is a factor limiting their use.

78	Another applied approach to assessing P loss from agricultural soils via rainwater and the risk of
79	surface waters eutrophication is based on the determination of the degree of P saturation (DPS)
80	(Alleoni et al., 2014). The DPS in its classical formula is expressed in percentage relation of the
81	P content in the soil extract to the P sorption capacity of soil, wherein various approaches are
82	used for determination of the components in this formula (Nair et al., 2004; Casson et al., 2006).
83	The procedure for determining the DPS index according to this formula is unique for different
84	types of soil, which can create specific methodological problems and limit the possibilities of its
85	wider use (Sapek, 2007). Pöthig et al. (2010) have recently developed a different method for
86	determining this index according to which the only factor from which the DPS parameter
87	depends is the P content in soil determined with the use of distilled water - WSP (water-soluble
88	P). This method is simpler and can be used to assess the risk of P loss from all soils, regardless of
89	their type and use – that is why it is often described as 'universal'. In the MONERIS model
90	(Modelling Nutrient Emissions into River Systems), developed for quantifying the amount of
91	nutrient emissions from point and diffuse sources in river catchments (Venohr et al., 2001 after:
92	Behrendt et al., 2000), it is particularly used to determine P saturation in surface runoff.
93	The aim of this work is to test the usefulness of the Pöthig et al. method (2010) to assess the risk
94	of P loss in surface runoff from agricultural soils in the conditions of the Puck Commune. It was

NOT PEER-REVIEWED

Peer Preprints

assumed that this aim would be achieved by determining and analysing indicators characterizing 95 these soils, such as: P saturation determined by the tested method, content of plant available P 96 determined by the Egner-Riehm method (for mineral soils), content of P soluble in 0.5 mol HCl · 97 dm⁻³ (for organic soils), as well as data concerning their composition and use. 98

99

109

Material & Methods 100

The research was conducted in the Puck Commune. It is located in Poland, in the north-eastern 101 region of the Pomeranian Voivodeship, on the western shore of the Puck Bay, which is part of 102 the Baltic Sea. This commune is agricultural by nature. The land use structure is dominated by 103 agricultural land (57.3% of the total area of the commune), the vast majority of which is 104 characterized by high vield potential. The area of the commune is largely undulating, with land 105 falls up to approx. 9% (5.14°). Such landform features increase the danger of P loss in surface 106 runoff. 107 The research was conducted in 61 agricultural plots from 22 farms taking part in the project 108 "Modelling of the impact of the agricultural holdings and land use structure on the quality of

inland and coastal waters of Baltic Sea set up on the examples of the Municipality of Puck 110

region - Integrated info-prediction Web Service WaterPUCK" (Dzierzbicka-Głowacka et al., 111

2019) (this project was established, among others, to determine the impact of farms located in 112

113	the Puck Commune on the pollution of surface and ground waters and ultimately the Baltic Sea,
114	with biogenic compounds).
115	In the spring of 2018, soil samples from the above mentioned agricultural plots were taken for
116	chemical analysis based on the guidelines included in the PN-R-04031: 1997 standard to
117	determine the percentage of floating particles (i.e. the fraction content <0.02 mm), the organic
118	matter content in the layer of 0-5 cm, pH in the layer 0-30 cm, the content of plant available P in
119	layers 0-5 and 0-30 cm, the content of WSP in the layer of 0-5 cm. In this regard:
120	- fraction content below 0.02 mm was determined by the sedimentation (pipette) method
121	according to PN-EN ISO 17892-4: 2016 standard;
122	- organic matter content was determined as a loss on ignition at 550°C by the weight
123	method according to PN-EN 12879: 2004 standard;
124	- pH measurement of soil was conducted in 1N suspension of KCl by potentiometric
125	method according to PN-ISO 10390: 1997 standard;
126	- the content of available P forms in mineral soils was determined by the Egner-Riehm
127	method, with the use of calcium lactate solution (pH \sim 3.55) according to PN-R-04023: 1996
128	standard, in organic soils the content of available P was determined in the extract of 0.5 mol
129	HCl \cdot dm ⁻³ according to PN-R-04024: 1997 standard; the content of WSP was determined by
130	the method of Inductively Coupled Plasma Optical Emission Spectroscopy ICP-OES after
131	stages involving drying soil samples in the air and sieving them (through the sieve <2 mm),

132	preparing a suspension in the ratio: 1 g of soil in 50 ml of distilled water, agitation for 2 hours,
133	filtration through a 0.45 µm filter.
134	The results of analysis of soil samples were ordered and evaluated according to the principles
135	and criteria presented below.
136	1. Based on the organic matter content, the soils were divided into mineral and organic. With the
137	content of more than 10% (threshold value between mineral and organic soils) organic soil was
138	classified as organic (on the basis of: Szymanowski, 1995; PN-R-04024: 1997).
139	2. According to the accepted standards, the assessment of soil acidification was conducted,
140	defining their reaction classes: very acidic, acidic, slightly acidic, neutral and alkaline under
141	conditions where their measured pH was in the following ranges: ≤ 4.5 ; (4.5-5.5>; (5.5-6.5>;
142	(6.5-7.2> and >7.2.
143	3. An assessment of P content in soil was conducted with respect to threshold values given in the
144	following standards: PN-PN-R-04023 and PN-R-04024: 1997, for the following abundance
145	classes: very low, low, medium, high and very high – Table 1. The basis for the assessment was
146	the percentage share of the soil samples tested in individual reaction and abundance classes.
147	4. Based on the results of the P content determination in soil using water extract, DPS indices
148	were calculated using the equation (Pöthig et al., 2010):
149	$DPS(\%) = \{1/[1 + (1.25 \cdot WSP^{-0.75})]\} \cdot 100$

150 where: WSP – is the content of water soluble P, mg $P \cdot kg^{-1}$ of soil.

151	On the basis of the determined P saturation indices, the risk of P loss by surface runoff was
152	assessed using the limit intervals specified by Pöthig et al. (2010) – Fig. 1. It was assumed that if
153	the DPS value exceeds 80%, there is a high risk of P loss from the soil by surface runoff, DPS
154	values lower than 70% were considered as safe, and values between 70 and 80% as tolerable.
155	The results of laboratory tests were also developed statistically determining the basic parameters
156	of descriptive statistics and correlations between the analysed soil indices. The statistics of the
157	results were prepared with the use of the Statistica 6.
158	Irrespectively of the research and assessments discussed above, indoor work was conducted
159	aimed at determining the area and type of development of agricultural plots selected for research,
160	recognizing the categories, types and soils subtypes occurring on them as well as inclination of
161	slopes in the research area. In these works the following were used: the results of own terrain
162	observations, a 1:25 000 soil-agricultural map of the Puck Commune in a vector format
163	developed by IUNG-PIB Puławy and maps of selected agricultural plots acquired with the use of
164	Google Earth Pro.

165

166 **Results & Discussion**

The research covered soils taken from 61 separate agricultural plots with a total area of 171.05
ha. 50 plots with a total area of 133.82 ha were agricultural lands (AL) made from mineral-

derived soils (with an organic matter content of 2.53-7.01%), and 11 plots with a total area of

170	37.23 ha were AL made from organic soils (characterized by organic matter content at the level
171	of 25.60- 68.17%). Given the genetic criteria, the following types and subtypes of soils occurred
172	in the research area in the given proportions (constituting the share in the area):
173	- brown soils -61.9% ,
174	- brown soils, lessive soils, podzolic soils and rusty soils made from gravel and sands -
175	10.2%,
176	- lessive soils -3.7% ,
177	- black soils -2.4% ,
178	- peat and muck-peat soils -21.8% .
179	Among mineral soils, in terms of the agronomic category, medium soils dominated, covering
180	49.7% of their area, followed by light and very light soils, whose share in the mineral soil area
181	was respectively 39.1 and 11.2%. On most plots with mineral soils, grains were grown, while
182	most of the plots with organic soils were covered with permanent grassland. The area of these

- 183 plots was largely undulating Fig. 2, with landfalls of up to approx. 9% (5.14°). Such landform
- 184 features increased the danger of P loss in surface runoff.
- 185 The analysed soils in the 0-30 cm layer which is treated as a diagnostic layer in the analysis of
- agrochemical properties of soils for the needs of fertilizer consultancy, were characterized by a
- pH within 4.2-7.2 (average 5.4). In 62.3% of plots, these soils were characterized by a very

NOT PEER-REVIEWED

188	acidic and acidic reaction, in 31.1% of plots slightly acidic, and in 6.6% neutral, whereby the
189	share of mineral and organic soils in individual reaction classes varied – Fig. 3.
190	In the range of the optimum pH value – which can be assumed at 5.6 to 7.0 for mineral soils (for
191	the majority of cultivated species of plants in Poland) (Kocoń, 2014) and at 4.5 to 5.5 for organic
192	soils (Moraczewski, 1996; Barszczewski et al., 201;), there were soils covering 34.4% of plots,
193	including 30% plots with mineral soils and 54.5% plots with organic soils.
194	The available P content in the discussed layer of analysed soils reached values from 3.6 to 66.5
195	mg P _{ER} · kg ⁻¹ (average 33.3 mg P _{ER} · kg ⁻¹) in case of mineral soils and from 171.0 to 707.0 mg
196	$P_{HCl} \cdot kg^{-1}$ (average 340.6 $P_{HCl} \cdot kg^{-1}$) in case of organic soils. P content in these in relation to
197	62.3% of plots was "very low" and "low", compared to 3.8% "medium" – Fig. 4. In 4.9% of all
198	plots, soil fertility in P was "high" and "very high". In comparison with mineral soils, the share
199	of organic soils was much smaller in the abundance classes "very low" and "low", and much
200	higher in the classes "medium" and "very high".
201	In the soil layer of 0-5 cm – treated as a standard in environmental research on establishing
202	relationships between the quantitative state of P in soil and surface runoff (Sharpley et al., 1985;
203	Schindler, German & Gelderman, 2002; Hansen et al., 2012), P content ranged from 3.6 to 68.8
204	mg P _{HCl} · kg ⁻¹ (average 35.4 mg P _{ER} · kg ⁻¹) in mineral soils and from 136.0 to 526.0 mg P _{HCl} · kg ⁻¹
205	¹ (average 284.6 $P_{HCl} \cdot kg^{-1}$) in organic soils. In this layer of mineral soils, the P content was on
206	average 6.5% higher than in the 0-30 layer. In organic soils, the P content in the shallower of the

207	analysed seams was 16.6% lower than in the deeper ones. In turn, the content of WSP at the level
208	of 0-5 cm of the tested mineral and organic soils determined in water extract was in the range of
209	2.2-58.5 mg $P_{\rm H2O}$ P \cdot kg^{-1} (average 24.6 $P_{\rm H2O}$ P \cdot kg^{-1}) and 13.7-79.5 mg $P_{\rm H2O}$ P \cdot kg^{-1} (average
210	40.3 $P_{H2O} P \cdot kg^{-1}$), respectively. At this level of mineral soils there was on average 39.0% less P
211	than in organic soils. Calculated on the basis of WSP in the analysed soils, their DPS was 59.1-
212	94.4% (average 87.8%) for mineral soils and 85.1-95.5% (average 91.4%) for organic soils. For
213	soils from 59 plots, including 48 with mineral soils and 11 organic soils, the DPS values were set
214	at 80% and higher – Table 2. There was a high risk of P loss from these soils to water following
215	the approach to determining this risk suggested by Pöthig et al. (2010).
216	There were numerous interactions between the analysed soil indices. First of all, they occurred
217	between indices describing mineral soils. In this case, each parameter analysed was correlated
218	with all others (according to the peer-to-peer mechanism) – Table 3. These were positive and
219	mostly strong or very strong dependencies.
220	There was a relatively low correlation between the pH value of the soil and its P content
221	determined by the Egner-Riehm method both in the layer up to 5 and 30 cm. However, this
222	correlation indicates that by reducing the acidity of soils plant available P would increase. It is
223	worth emphasizing that the pH of soil is one of the factors that have the greatest direct impact on
224	the P availability. In acid soils, a large part of this component is immobilized by Manganese

(Mn), Iron (Fe) or Aluminium (Al) compounds. The use of liming on such soils increases theamount of plant available P.

The P content was most strongly correlated with 0-5 and 0-30 cm soil profiles, which indicates that it was quite homogeneously accumulated in the topsoil. Hence, the data regarding P state may prove equally useful to quantify P loss in surface runoff from agricultural land at each of mentioned levels.

231 There were fairly strong correlations between WSP and P content determined by the Egner-

232 Riehm method. Similarly strong relationships were found between WSP and P content in

233 Brazilian and German soils defined by Mehlich-1 and CAL (calcium-acetate-lactate) methods

based on the P-extraction by a mixture of calcium lactate and calcium acetate (*Fischer 2018*). In

235 case of such correlations, it is possible to convert the results obtained with one method to another

- with great accuracy. As DPS is a function of P_{H2O} w1 (R=1), then in a view of a relatively strong
- relationship between P_{H2O} w1 and P_{ER} w2 and P_{ER} w1, the latter two indices also remained in a
- strong relationship with DPS.

239 While all the analysed indices in mineral soils were correlated, in case of organic soils only

240 P_{HCl}w1 and P_{HCl}w2 were statistically correlated, with the moderate degree of this correlation –

- Table 4, ignoring the natural relationship between DPS and P_{H2O} w1 (DPS is a function of
- 242 $P_{H2O}w1$).

243	The correlation between the P contents in soil profiles 0-5 and 0-30 cm of organic soils is less
244	stronger than in mineral soils which may result from the fact that they were not usually mixed
245	when used (mainly for grasslands) and therefore did not favour homogenisation of their top layer
246	composition – including P content. The lack of correlation between $P_{H2O}w1$, $P_{HCI}w2$ and
247	P _{HCl} _w1 indicates that P transfers from soil to water and 0.5 mol HCl extracts in a different way
248	and in disproportionate amounts due to their different extraction possibilities (HCl solution is an
249	aggressive extractant, water – not).
250	In the light of presented research results and analyses as well as the purpose of the work, it
251	should be stated that the risk of P loss to waters based on the DPS is arguable. As established, the
252	share of agricultural plots with soils at high risk of P loss by surface runoff (DPS \ge 80) was
253	96.7%, with 96% plots with mineral soils and 100% plots with organic soils. The obtained results
254	indicate that, in environmental terms, soils practically in the whole analysed area of agricultural
255	lands were overly supplied with P, and suggest that measures need to be taken in this area to
256	prevent its outflow to waters, e.g. by decreasing phosphate fertilizers application. However, the
257	results of agronomic tests revealed that in order to obtain satisfactory crops, the P content in
258	assessed soils should be significantly increased rather than decreased (therefore, in terms of soil
259	P management various or even contradictory conclusions emerge from environmental and
260	agronomic assessments). They were indeed largely characterized by very low or low level of P –
261	in case of plots with mineral soils, 72% of them were affected by this problem. It should be

262	emphasized that in case of serious P deficiencies in soil (as identified in the research area),
263	relatively small amounts of this component are found in surface runoff (Pietrzak et al., 2017),
264	which, given the episodic character of the formation of runoffs, indicates that the risk of surface
265	water quality under these conditions should not be overestimated.
266	With regard to the above, it is worth adding that from an agronomic point of view the vast
267	majority of analysed soils requires not only increased application of phosphate fertilization, but
268	also liming in order to optimize their pH. This treatment would increase the resources of plant
269	available P and would be productively justified, yet it could be considered unnecessary in terms
270	of DPS-based analyses.
271	Doubts over the adequacy of determining the risk of P loss from soils to waters by means of DPS
272	threshold values are increased by the results of the assessment conducted with respect to all
273	analysed organic soils, which were mainly under grasslands. DPS for these soils exceeded 80%
274	each time so the risk of P loss to waters was high. However, it is difficult to take it as a deciding
275	conclusion as grassland is a biological filter that protects against the release of pollutants into
276	waters. The fact that this approach overlooks the aspect of landform features contributes to the
277	uncertainty as to the risk of P loss in surface runoff from agricultural land soils to waters
278	determined by DPS index. In these assessments, the inclination factor should be taken into
279	account as it contributes to the risk of surface runoff – Table 5. In the research area there were
280	sometimes significant landfalls which undoubtedly affected the dynamics of P outflow to waters.

281	In addition, it should be considered that the outflow was shaped by a number of other factors,
282	such as: physical and chemical soil properties (including pH and organic matter content), soil
283	and plants cultivation, atmospheric conditions (Ulen, 2013; Sapek, 2014).
284	As indicated above, the problem of determining the risk of P loss in surface runoff from
285	agricultural soils to waters is complex. The assessment of such a risk should by no means depend
286	solely on the value of DPS index.
287	

288 Conclusion

The research was conducted on a typical undulating area of agricultural land in the Puck 289 Commune, 78.2% of which consisted of arable land and 21.8% of grassland. In terms of 290 mechanical composition, agricultural land soils were predominantly medium and light, whereas 291 alluvial soils were entirely of organic origin. Most of them were characterized by high acidity 292 (on more than 62% of agricultural plots the soils had a very acidic and acid reaction) and 293 deficiency of plant available P. In the latter case, over 62% of the analysed soils - including 72% 294 of mineral soils and over 18% of organic soils - were characterized by very low and low content 295 of the mentioned component. The DPS (determined on the basis of P content extracted in the 296 water extract) in almost all of the assessed soils exceeded 80%. Hence, taking into account the 297 existing criterion of DPS index assessment, there was a high risk of P loss in surface runoff to 298 water. It seems, however, that this assessment should be approached cautiously as it does not 299

- 300 correspond to the results of the agronomic assessment of the P content in soil (conducted in
- 301 terms of requirements for application of phosphate fertilization). It also disregards other factors
- 302 affecting P loss in runoff, such as the type of crop or area inclination.
- 303 In the light of the above, it can be concluded that the problem of determining the risk of P loss in
- 304 surface runoff from agricultural land to water is still open. There is a need for further work on its

305 solution.

306

307 **REFERENCES**

- Alleoni LRF, Fernandes AR, de Campos M. 2014. Degree of phosphorus saturation of an Oxisol
- amended with biosolids in a long-term field experiment. *Environmental Science and Pollution*

310 *Research* 21(8): 5511-5520. DOI:10.1007/s11356-013-2469-0.

- Barszczewski J, Jankowska-Huflejt H, Mendra M. 2015. Renovation of permanent grassland.
- 312 Falenty: ITP Publishing House: 20. Available at
- 313 <u>http://www.itp.edu.pl/wydawnictwo/mat_informacyjne/Mat_Inf%2042.pdf</u> (accessed 20
- 314 February 2019) (in Polish).
- Behrendt H, Huber P, Kornmilch M, Opitz D, Schmoll O, Scholz G, Uebe R. 2000. Nutrient
- emissions into river basins of Germany. UBA-Texte 23/00: 266.
- 317 Casson JP, Bennett DR, Nolan SC, Olson BM, Ontkean GR, Little JL. 2006. Degree of
- 318 phosphorus saturation thresholds in Alberta soils. 40 pp. In: Alberta Soil Phosphorus Limits

319	Project. Volume 3: Soil sampling, manure application, and sorption characteristics. Alberta
320	Agriculture Food and Rural Development Lethbridge Alberta Canada: 48 Available at

- 321 <u>http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.536.6133&rep=rep1&type=pdf</u>
- **322** (accessed 15 May 2019).
- 323 DEFRA. 2005. Environmental Stewardship. Producing a Soil Management Plan for
- 324 Environmental Stewardship: 22. Available at
- 325 <u>http://adlib.everysite.co.uk/resources/000/107/821/soil-management-plan.pdf</u> (accessed 15 May
- **326** 2019).
- 327 Dzierzbicka-Głowacka L, Janecki M, Dybowski D, Szymczycha B, Obarska-Pempkowiak H,
- 328 Wojciechowska E, Zima P, Pietrzak S, Pazikowska-Sapota G, Jaworska-Szulc B, Nowicki A,
- 329 Kłostowska Ż, Szymkiewicz A, Galer-Tatarowicz K, Wichorowski M, Białoskórski M,
- 330 Puszkarczuk T. 2019. A new approach for investigating the impact of pesticides and nutrient flux
- from agricultural holdings and land-use structures on the coastal waters of the Baltic Sea. Polish
- *Journal of Environmental Studies* 28(4): 2531–2539. DOI:10.15244/pjoes/92524.
- 333 Fischer P. 2018. The degree of phosphorus saturation of agricultural soils in Brazil and
- 334 Germany: New approaches for risk assessment of diffuse phosphorus losses and soil phosphorus
- management. PhD thesis: 129. Available at https://edoc.hu-
- 336 <u>berlin.de/handle/18452/20359;jsessionid=720DF55810D021E4217F60AFC1E7518E</u> (accessed
- 337 15 May 2019).

- 338 Gaj R. 2008. Sustainable management of phosphorus in soil and plant. Fertilizers and
- *fertilization* 33: 3-143 (in Polish).
- 340 Google Earth Pro. Available at <u>https://www.google.com/intl/pl/earth/versions/#earth-pro</u>
- 341 (accessed 15 May 2019).
- Hansen NE, Vietor DM, Munster CL, White RH, Provin TL. 2012. Runoff and nutrient losses
- from constructed soils amended with compost. *Applied and Environmental Soil Science* 2012.
- 344 DOI:10.1155/2012/542873.
- 345 HELCOM. 2018. Sources and pathways of nutrients to the Baltic Sea. Baltic Sea Environment
- 346 Proceedings No. 153. Available at <u>http://www.helcom.fi/Lists/Publications/BSEP153.pdf</u>
- 347 (accessed 15 May 2019).
- 348 Kocoń A. 2014. Effectiveness of liming and fertilization on light acid soils and yield of plants
- and selected indicators of soil fertility. *Fragmenta Agronomica* 31(3): 66-74 (in Polish).
- 350 National program for the protection of marine waters Report to the European Commission.
- 351 2016. Warsaw, National Water Management Board: 170. Available at
- 352 <u>https://www.kzgw.gov.pl/files/kpowm/kpowm-2016.pdf</u> (accessed 15 May 2019) (in Polish).
- 353 Nair VD, Portier KM, Graetz DA, Walker ML. 2004. An environmental threshold for degree of
- phosphorus saturation in sandy soils. *Journal of Environmental Quality* 33(1): 107-113.
- 355 DOI:10.2134/jeq2004.0107.

356	Pietrzak S, Wesołowski P, Brysiewicz A. 2017. Correlation between the quantity of phosphorus
357	in the soil and its quantity in the run-off from a cultivable field on a selected farm. Journal of
358	Elementology 22(1): 105-114. DOI:10.5601/jelem.2016.21.1.1103.
359	PN-ISO 10390:1997. Polish Norm: Quality of soil. Determination of pH. Polski Komitet
360	Normalizacji (in Polish).
361	PN-R-04023:1996. Polish Norm: The chemical and agricultural analysis of the soil.
362	Determination of the content of assimilable phosphorus in mineral soils. Polski Komitet
363	Normalizacji (in Polish).
364	PN-R-04024:1997. Polish Norm: The chemical and agricultural analysis of the soil.
365	Determination of the content of assimilable phosphorus, potassium, magnesium and manganese
366	in organic soils. Polski Komitet Normalizacji (in Polish).
367	PN-R-04031:1997. Polish Norm: The chemical and agricultural analysis of the soil. Sampling.
368	Polski Komitet Normalizacji (in Polish).
369	Pote DH, Daniel TC, Sharpley AN, Moore PA, Edwards DR, Nichols DJ. 1996. Relating
370	extractable soil phosphorus to phosphorus losses in runoff. Soil Science Society of American
371	Journal 60(3): 855-859. DOI:10.2136/sssaj1996.03615995006000030025x.
372	Pöthig R, Behrendt H, Opitz D, Furrer G. 2010. A universal method to assess the potential of
373	phosphorus loss from soil to aquatic ecosystems. Environmental Science and Pollution Research
374	17(2): 497-504. DOI:10.1007/s11356-009-0230-5.

- Report on the implementation of the provisions of the Council Directive of December 12, 1991
- 376 concerning the protection of waters against pollution caused by nitrates from agricultural sources
- 377 (91/676/EWG) in the period: 01.05.2012-30.04.2016. Available at
- 378 <u>http://www.krir.pl/images/179_2016_raport_OSN_Podzadanie_II_1_v_1_1.pdf</u> (accessed 15
- 379 May 2019) (in Polish).
- 380 Sapek A. 2007. Reasons for the increase of phosphorus resources in Polish soils. *Soil Science*
- 381 *Annual* 58(3/4): 110-118 (in Polish).
- 382 Sapek B. 2014. Soil phosphorus accumulation and release sources, processes, causes. Water-
- 383 *Environment-Rural Area* 14(1): 77-100 (in Polish).
- 384 Schindler FV, German D, Gelderman R. 2002. Establishing a relationship between soil test P and
- runoff P for a South Dakota soil using simulated rainfall. Annual Report. Available at
- 386 <u>https://water.usgs.gov/wrri/AnnualReports/2002/FY2002_SD_Annual_Report.pdf</u> (accessed 15
- 387 May 2019).
- 388 Sharpley AN, Smith SJ, Berg WA, Williams JR. 1985. Nutrient runoff losses as predicted by
- annual and monthly soil sampling. *Journal of Environmental Quality* 14(3): 354-360.
- 390 DOI:10.2134/jeq1985.00472425001400030010x.
- 391 Sharpley A, Kleinman P. 2003. Effect of rainfall simulator and plot scale on overland flow and
- 392 phosphorus transport. *Journal of Environmental Quality* 32(6): 2172–2179.
- 393 DOI:10.2134/jeq2003.2172.

- 394 Szymanowski M. 1995. Mineral and organic soils and their production value. Scientific Session,
- Falenty 6-7.XI.1995. *Seminar Materials*. Falenty: IMUZ Publishing House 34: 351-355 (in
 Polish).
- 397 Torbert HA, Daniel TC, Lemunyon JL, Jones RM. 2002. Relationship of soil test phosphorus
- and sampling depth to runoff phosphorus in calcareous and noncalcareous soils. *Journal of*

399 *Environmental Quality* 31(4): 1380–1387. DOI:10.2134/jeq2002.1380.

- 400 Ulén B. 2013. Estimating the risk of phosphorus leaching from individual fields based on soil
- 401 surveys and fertilisation. In: Ulén B, Pietrzak S, Tonderski K, eds. Self-evaluation of farms for
- 402 *improved nutrient management and minimised environmental impact*. Falenty: ITP Publishing
- 403 House: 42-46. Available at http://balticsea2020.org/english/images/Bilagor/2014%20Guide%20-
- 404 <u>%20Self-evaluation%20of%20farms.pdf</u> (accessed 15 May 2019) (in Polish).
- 405 Venohr M, Hirt U, Hofmann J, Opitz D, Gericke A, Wetzig A, Natho S, Neumann F, Hürdler J,
- 406 Matranga M, Mahnkopf J, Gadegast M, Behrendt H. 2011. Modelling of Nutrient Emissions in
- 407 River Systems MONERIS Methods and Background. *International Review of Hydrobiology*
- 408 96: 435-483. DOI:10.1002/iroh.20111133.

Figure 1(on next page)

Correlation between DPS and WSP of soils; own elaboration (based on: Pöthig et al., 2010)

Figure 1: Correlation between DPS and WSP of soils; own elaboration (based on: *Pöthig et al., 2010*).

Figure 2(on next page)

View of an exemplary agricultural plot from the research area and the shape of its longitudinal profile; Map data © 2019 Google Earth Pro

NOT PEER-REVIEWED

Figure 2: View of an exemplary agricultural plot from the research area and the shape of its longitudinal profile; Map data © 2019 Google Earth Pro.

Figure 3(on next page)

Distribution of soil pH in tested agricultural plots, in the 30 cm layer

NOT PEER-REVIEWED

Figure 3: Distribution of soil pH in tested agricultural plots, in the 30 cm layer.

Figure 4(on next page)

Distribution coming from the tested agricultural parcels, in the layer of 30 cm

Peer Preprints NOT PEER-REVIEWED 63.6 70 ■ Total Share of analysed soil samples [%] Mineral soils 60 Organic soils 46.050 39.3 32.8 40 26.026.023.0 30 18.2 20 9.1 9.1 10 3.3 2.0 1.6 0 0 0 high very high very low low medium P content

Figure 4: Distribution coming from the tested agricultural parcels, in the layer of 30 cm.

Table 1(on next page)

Assessment of P content; own elaboration (based on: PN-PN-R-04023; PN-R-04024:1997)

- 1 Table 1: Assessment of P content; own elaboration (based on: PN-PN-R-04023; PN-R-
- 2 *04024:1997*).
- 3

Abundance	Abundance	Ingredient content, mg P·kg ⁻¹ of soil dry matter			
class	assessment	mineral soils	organic soils		
V	very low	≤ 22	≤ 174		
IV	low	(22-44>	(174-262>		
III	medium	(44-65>	(262-349>		
II	high	(65-87>	(349-523>		
Ι	very high	> 87	> 523		

4

5

Table 2(on next page)

Share of agricultural plots with soils in various DPS thresholds

1 Table 2: Share of agricultural plots with soils in various DPS thresholds.

2

	Risk of phosphorus loss from soil:	Type of soil		
DPS thresholds, %		mineral	organic	total
		Number of plots (share, %)		
70 <	lack	1 (2.0)	0 (0.0)	1 (1.6)
<70-80)	acceptable	1 (2.0)	0 (0.0)	1 (1.6)
≥ 80	big	48 (96.0)	11 (100.0)	59 (96.7)

3

Table 3(on next page)

Correlations between analysed indices of mineral soils

Explanation: pH_{KCl} – soil acidity measured in a suspension of KCl solution; P_{ER} – P content in soil determined by the Egner-Riehm method; P_{H2O} – water soluble P (WSP) content; DPS – degree of P saturation; w1 – layer 0-5 cm; w2 – layer 0-30cm; * – correlation significant at α = 0.05; ** – correlation significant at α = 0.01

1 Table 3: Correlations between analysed indices of mineral soils.

2

- 3 Explanation: pH_{KCl} soil acidity measured in a suspension of KCl solution; P_{ER} P content in
- 4 soil determined by the Egner-Riehm method; P_{H2O} water soluble P (WSP) content; DPS –
- 5 degree of P saturation; w1 layer 0-5 cm; w2 layer 0-30cm; * correlation significant at α =
- 6 0.05; ** correlation significant at $\alpha = 0.01$.
- 7

Indox	рН _{КСІ}	P _{ER} _w2	P _{ER} _w1	P _{H2O} _w1	DPS	
muex	Spearman rank correlation coefficient (R)					
рН _{КС1}		0.3655**	0.3244*	0.4017**	0.4017**	
P _{ER} _w2			0.9552**	0.8474**	0.7474**	
P _{ER} _w1				0.8176**	0.8176**	
P _{H2O} _w1					1**	
DPS						

8

Table 4(on next page)

Correlations between analysed indices of organic soils

Explanation: P_{HCI} – P content in soil determined in the extract of 0.5 mol HCl dm⁻³; other

explanations as in Table 3

- 1 Table 4: Correlations between analysed indices of organic soils.
- 2
- 3 Explanation: $P_{HCl} P$ content in soil determined in the extract of 0.5 mol HCl dm⁻³; other
- 4 explanations as in Table 3.
- 5

Index	рН _{КСІ}	P _{HCl} w2	P _{HCl} w1	P _{H2O} _w1	DPS	
Inucx	Spearman rank correlation coefficient (R)					
рН _{КСІ}		0.4828	0.4771	0.4863	0.4863	
P _{HCl} _w2			0.6196*	0.0866	0.0866	
P _{HCl} _w1				0.3091	0.3091	
P _{H2O} _w1					1**	
DPS						

6

Table 5(on next page)

Assessment of runoff risk for all soil types; own elaboration (based on: DEFRA 2005)

1 Table 5: Assessment of runoff risk for all soil types; own elaboration (based on: *DEFRA 2005*)

2

	Inclination:				
Specification	>7° (12.3%)	3-7° (5.2-12.3%)	2-3° (3.5-5.2%)	<2° (3.5%)	
runoff risk	high	moderate	low	low	

3

4