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Proteins are the building blocks of all cells in both human and all our living creatures of the world. Most of
the work in the living organism is performed by Proteins. Proteins are polymers of amino acid monomers
which are biomolecules or macromolecules. The tertiary structure of protein represents the three-
dimensional shape of a protein. The functions, classiûcation and binding sites are governed by protein9s
tertiary structure. If two protein structures are alike then the two proteins can be of the same kind
implying similar structural class and ligand binding properties. In this paper, we have used protein
structure to generate eûective features for applications in structural similarity to detect structural class
and ligand binding. Firstly, we analyze the eûectiveness of a group of image based features to predict
the structural class of a protein. These features are derived from the image generated by the distance
matrix of the tertiary structure of a given protein. They include local binary pattern histogram, Gabor
ûltered local binary pattern histogram, separate row multiplication matrix with uniform local binary
pattern histogram, neighbour block subtraction matrix with uniform local binary pattern histogram and
atom bond. The experiments were done on a standard benchmark dataset. We have demonstrated the
eûectiveness of these features over a large variety of supervised machine learning algorithms.
Experiments suggest Random Forest is the best performing classiûer on the selected dataset using the
set of features. We believe the excellent performance of Hybrid LBP in terms of accuracy would motivate
the researchers and practitioners to use it to identify protein structural class. To facilitate that, a
classiûcation model using Hybrid LBP is readily available for use at http://brl.uiu.ac.bd/PL/.

Protein-Ligand binding is accountable for managing the tasks of biological receptors that helps to cure
diseases and many more. So, binding prediction between protein and ligand is important for
understanding a protein9s activity or to accelerate docking computations in virtual screening-based drug
design. Protein-Ligand Binding Prediction requires three-dimensional tertiary structure of the target
protein to be searched for ligand binding. In this paper, we9ve proposed a supervised learning algorithm
for predicting Protein-Ligand Binding which is a Similarity-Based Clustering approach using the same set
of features. Our algorithm works better than most popular and widely used machine learning algorithms
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ABSTRACT11

Proteins are the building blocks of all cells in both human and all our living creatures of the world.

Most of the work in the living organism is performed by Proteins. Proteins are polymers of amino acid

monomers which are biomolecules or macromolecules. The tertiary structure of protein represents the

three-dimensional shape of a protein. The functions, classification and binding sites are governed by

protein’s tertiary structure. If two protein structures are alike then the two proteins can be of the same

kind implying similar structural class and ligand binding properties. In this paper, we have used protein

structure to generate effective features for applications in structural similarity to detect structural class

and ligand binding. Firstly, we analyze the effectiveness of a group of image based features to predict

the structural class of a protein. These features are derived from the image generated by the distance

matrix of the tertiary structure of a given protein. They include local binary pattern histogram, Gabor

filtered local binary pattern histogram, separate row multiplication matrix with uniform local binary pattern

histogram, neighbour block subtraction matrix with uniform local binary pattern histogram and atom bond.

The experiments were done on a standard benchmark dataset. We have demonstrated the effectiveness

of these features over a large variety of supervised machine learning algorithms. Experiments suggest

Random Forest is the best performing classifier on the selected dataset using the set of features. We

believe the excellent performance of Hybrid LBP in terms of accuracy would motivate the researchers

and practitioners to use it to identify protein structural class. To facilitate that, a classification model using

Hybrid LBP is readily available for use at http://brl.uiu.ac.bd/PL/.
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Protein-Ligand binding is accountable for managing the tasks of biological receptors that helps to

cure diseases and many more. So, binding prediction between protein and ligand is important for

understanding a protein’s activity or to accelerate docking computations in virtual screening-based drug

design. Protein-Ligand Binding Prediction requires three-dimensional tertiary structure of the target

protein to be searched for ligand binding. In this paper, we’ve proposed a supervised learning algorithm

for predicting Protein-Ligand Binding which is a Similarity-Based Clustering approach using the same set

of features. Our algorithm works better than most popular and widely used machine learning algorithms.
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INTRODUCTION37

Protein tertiary structure comparison is very important in many applications of modern structural biology,38

drug design, drug discovery, in studies of protein-ligand binding, protein-protein interactions and other39

fields. This is especially significant because the structure of a protein is more protected than the protein40

sequence (Chothia and Lesk, 1986). Many works have been done to find protein binding (Brady and41

Stouten, 2000). Comparison of protein structure has been done in many works of literature by alignment42

of distance matrices (Holm and Sander, 1993), using iterated double dynamic programming (TAYLOR,43

∗First two authors contributed equally
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1999), using elastic shape analysis (Srivastava et al., 2016) and many other techniques. The most common44

way of comparing protein tertiary structure is to treat the protein as a three-dimensional object and45

superimpose one on another. Different distances are used to calculate the differences between the proteins.46

The distance matrix of α carbon can be seen extensively used in (Holm and Sander, 1997; Singh and47

Brutlag, 1997) as a feature which represents the tertiary structure of a protein chain. This feature is used48

as a feature vector which represents the structure of a protein to measure either similarity or dissimilarity49

to measure and compare the feature vectors with one another in pattern recognition literature. A mapped50

two-dimensional feature matrix is created from the 3D coordinate data of protein. The intra-molecular51

distance is used to make the α carbon distance matrix which mirrors the tertiary structure of a protein and52

the conserved elements of the secondary structure in it. With an input matrix size of N x N, the distance53

matrix based exact algorithms run in O(N) time (Karim et al., 2015).54

An image is basically a matrix of N x N dimension with corresponding data in each cell. Thus the55

distance matrix can be used as an image. Basically, three types of features can be generated from an image:56

pixel based, filter based and computationally generated features. Pixel-based features e.g histograms57

are simplistic and dependent on the capability of classification algorithms. Filter based methodologies58

transform the original image to use feature extraction methods. Refined algorithms are used to segment59

and other various algorithms are used to detect different features. Using ideas from computer vision and60

utilizing it in protein structure retrieval is not uncommon in the field. ProteinDBS server (Shyu et al.,61

2004) implement a similar approach in (Chi et al., 2005) by Chi et al. Texture features from the original62

size images and diagonally partitioned images were extracted by Chi et al. CoMOGrad and PHOG (Karim63

et al., 2015) also used images to extract their two novel feature whereas we are extracting histograms of64

local binary pattern images from the original image.65

Human body uses protein for repairing tissues, making enzymes, hormones, and other biological66

chemicals. It is an essential building block of bones, muscles, cartilage, skin, and blood. On the67

other hand, a ligand is a material that has the potentiality to bind to and forms a composite with a68

biomolecule in order to carry out a biological function. In Protein-Ligand Binding, the ligand is usually69

a molecule which produces a signal by binding to a locus on a target protein. The binding typically70

results in a change of conformational isomerism (conformation) of the target protein. The evolution71

of the protein’s responsibility depends on the development of specific sites which are designed to bind72

ligand molecules. Ligand binding ability is important for the management of biological functions. Ligand73

binding interactions changes the protein state and function. Protein-Ligand Binding prediction is very74

important in many applications of modern structural biology, drug design, drug discovery and other fields.75

Many experimental techniques can be used to investigate various aspects of protein–ligand binding.76

X-ray crystallography, nuclear magnetic resonance(NMR), Laue X-ray diffraction, small-angle X-ray77

scattering, and cryo-electron microscopy provide atomic-resolution or near-atomic-resolution structures78

of the unbound proteins and the protein–ligand complexes, which can be used to study the changes79

in structure and/or dynamics between the free and bound forms as well as relevant binding events.80

Although experimental techniques can investigate thermodynamic profiles for a ligand–protein complex,81

the experimental procedures for determination of binding affinity are laborious, time-consuming, and82

expensive. Modern rational drug design usually involves the HTS of a large compound library comprising83

hundreds or thousands of compounds to find the lead molecules, but this is still not realistic using84

experimental methods alone. Different methods like Isothermal Titration Calorimetry (ITC) (Chaires,85

2008), Surface Plasmon Resonance (SPR) (Patching, 2014), Fluorescence Polarization(FP) (Rossi and86

Taylor, 2011), Protein–Ligand Docking (Sousa et al., 2013), Free Energy Calculations (Steinbrecher and87

Labahn, 2010), etc are being used to predict ligand-binding prediction.88

In this paper, we propose the combination of local binary pattern histogram, Gabor Filtered Local89

Binary Pattern Histogram, Separate Row Multiplication Matrix with Uniform Local Binary Pattern90

Histogram, Neighbour Block Subtraction Matrix with Uniform Local Binary Pattern Histogram and91

Atom Bond features to be used for protein similarity measurement. We extract the distance matrix of92

α carbon of a protein from PDB file and use the distance matrix as an image to extract our first four93

features and Atom Bond is extracted from the PDB files. We have used a large variety of classification94

algorithms to test the extracted features. We are also going to show the results and comparative study of95

different implementation methodologies such as wavelet and pyramid histogram based features (Ahmed96

et al., 2019) and CoMOGrad and PHOG. The method we have proposed is able to produce a better97

result on some classification algorithm over the previous methods on the same benchmark. In addition98
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Figure 1. Block diagram of the methodology used in structural class prediction.

to that, we’ve proposed a supervised learning algorithm for predicting Protein-Ligand Binding which99

is a Similarity-Based Clustering approach using the same set of features. Our algorithm works better100

than most popular and widely used machine learning algorithms. Our proposed method uses the features101

proposed in this paper.102

MATERIALS AND METHODS103

Our methodology is divided into two parts. Firstly, we have generated image based features using protein104

tertiary structures and performed feature analysis based on the prediction power on the structural class105

prediction problem. In this section, we present the materials and methods for both of the problems.106

For each of the problems the dataset, features, necessary algorithms and performance measurement is107

described accordingly.108

Structural Class Prediction109

In this section, we present the methodology on structural class prediction. Atom bond features are110

generated from the protein tertiary structures given as PDB files. Images are created from the distance111

matrix calculated using α carbon atom coordinates of the amino acids of the protein structures in the112

given dataset. From each image of protein, we have derived five features. There are in total seven different113

classes of protein structures. Synthetic minority over-sampling technique (SMOTE) is used to handle114

class imbalance problem. K-fold cross-validation with three fold was used to test the capability and115

efficiency of the dataset. The block diagram of the methodology is given in Figure 1.116

Structural Class Prediction Dataset117

We have used 40 percent ID filtered subset of PDB-style files for SCOPe domains version 2.03 (Fox et al.,118

2013) as our dataset. It contains a total of 12119 PDB files. Each PDB files contains SCOP(e) concise119

classification string (sccs) which respectively describes class, fold, superfamily, and family. In this paper,120

we are going to experiment only with the class of the protein. In the dataset, there are total seven protein121
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Table 1. Protein Classes and its Corresponding Instances

Class Name Total Instances

Small Proteins 640

All α Proteins 2195

α and β proteins(a/b) 3305

α and β proteins(a+b) 3006

Membrane and cell surface proteins and peptides 204

All β proteins 1485

Multi-domain proteins(α and β ) 219

Figure 2. Sample images of protein structures after rescaling.

structural classes. For benchmark analysis with CoMOGrad and Phog, the common pdb files were used as122

dataset. The common PDB files are total of 11052. The details of the protein structural classes are given123

in Table 1. This dataset is widely used as a benchmark in the literature for protein structural similarity124

prediction (Karim et al., 2015).125

Image Generation126

We have generated images of protein structures according to the methodology described in CoMOGrad127

and PHOG (Karim et al., 2015). Only α carbons of the amino acids in the protein structure are considered128

for image generation. From the three dimensional coordinates of the α carbon atoms a distance matrix129

is generated by taking the Euclidean distance among all pairs. Thus only half of the image contains130

redundant information due to symmetry.131

Scaling of Images132

The dimension of protein images is based on the total number of α carbon they have. So, every individual133

protein images are different from the other in dimension. Therefore, the images were scaled to the same134

dimension. CoMOGrad and PHOG have used Bi-cubic interpolation and wavelet transform to scale all135

the protein images into 128 x 128 dimension (Karim et al., 2015). During the Bi-cubic interpolation step,136

most of the images were in 128x128 dimension so in the wavelet transform step they scaled all the images137

to that dimension. Thus, we have directly scaled the images to 128x128 dimension. We have used both138

real and scaled images to examine the differences in their predictive power. Sample rescaled images of139

protein structures are given in Figure 2.140

Feature Extraction141

We have generated five different feature groups. Our first four feature groups are different types of142

histograms and the fifth feature group is about the prognosis of the atoms. The histograms were taken143

from both scaled and unscaled images.144

Local Binary Pattern Histogram Local binary pattern (LBP) histogram was first proposed by Ojala145

et al. (1994) and popularized by the work of Ojala et al. (2002). Local binary pattern computes the146

local representation of the texture of an image as a texture descriptor. Comparing each pixel with its147
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Figure 3. An example of basic LBP

neighboring pixels the local representation is created. The image is transformed into a grayscale image. In148

a 3×3 neighborhood, the center pixel value is calculated by comparing with its eight neighboring pixels.149

Each comparison gives a result of either 0 if the center pixel value is greater then the comparing neighbor150

pixel or 1 for the latter. A clockwise direction starting from the top-left one provides a binary number. The151

binary number is converted to a decimal number and the value is placed in the center pixel. LBP codes or152

Local Binary Patterns are the obtained binary numbers. An example of a basic Local Binary Pattern is153

given in Figure 3. After calculating the value for each pixel of the image, a histogram is calculated. A 3 x154

3 neighborhood has 28 = 256 possible patterns, thus the values range from 0 to maximum 255 in each155

pixel of the image. The total number of bins of the histogram is thus 256. We would get 256 attributes156

from each image. We have used zero padding technique to generate local binary pattern.157

Gabor Filtered Local Binary Pattern Histogram (GfLBP-Hist) Gabor Filter is titled after Dennis158

Gabor. It is used for texture segmentation (Jain and Farrokhnia, 1991), optical character recognition (Jain159

and Bhattacharjee, 1992), edge detection (Mehrotra et al., 1992) etc. It is a linear filter which examines if160

there is any particular frequency content in the image in specific areas in a localized region throughout the161

point. The multiplication of a sinusoid and a Gaussian is called the Gabor filter (Eq.1).162

g(x,y;λ ,θ ,φ ,γ) = exp

(

2
x22 + γ2y22

2σ2

)

cos

(

2π
x2

λ
+φ

)

(1)

.163

Here, λ controls the wavelength of this sinusoid, θ is the angle of the normal to the sinusoid, φ is the164

phase shift of the sinusoid, γ controls the aspect ratio, The spatial envelope or the standard deviation of165

the Gaussian is σ . For our experiments, we have used λ = 10, θ = 0, φ = 0,γ = 0.02 and σ = 5. After166

applying the Gabor filter, LBP techniques are applied to the image to get 256 attributes.167

Atomic Bond Features First of all, we’ve identified unique atoms amidst all the protein PDB files.168

From each protein PDB file, we’ve counted occurrences of each atom. Then we’ve taken the percentage169

as features of each atom among all the atoms that each protein has. Then we’ve taken first 100 sequential170

atoms and used their atomic mass as the feature. Then we’ve counted the bond that each pair of atoms171

has in a particular protein using atomic distance based on a threshold value. Finally, we’ve taken the172

percentage as the feature of the bond of each unique pair of atoms among all the bonds that the protein173

has.174

Separate Row Multiplication Matrix with Uniform LBP Histogram(SRMMat-ULBP-Hist) The image175

is split into 3x3 matrices. From each matrix, we get 3 rows with the dimension of 1x3. By multiplying176

each row with the same 3x3 matrix, we get three result matrix consisting of 1x3 dimension. Each cell is177

divided by 100. The results are then put in the 3x3 matrix in accordance with the row numbers. The color178

intensity of an image is between 0 to 255. So, if the value of any cell of the result matrix is greater than179

255, then the value is replaced with 255. After applying this technique, the uniform local binary pattern180

is applied. From Figure 4, (a) presents a 3x3 section of matrix and the rows, (b) exhibits the result of181

multiplication, (c) shows the value after dividing by 100, (d) shows the replacement result of value greater182

than 255 and (e) shows a 3x3 matix section after SRM-Matrix transformation.183

Another variation of the LBP is called uniform pattern (Ojala et al., 2002). Some binary patterns occur184

more generally in texture images. If the binary pattern comprises of at most two 0-1 or 1-0 transitions185

when the bit pattern is held circular then the pattern is called uniform. For instance, 01000000 has 2186

transitions, 00000111 has 2 transitions which are uniform pattern on the other hand 01010100 has 6187

transitions,11001001 has 4 transitions which are not uniform. A neighborhood with the dimension of188

3x3 has 28 = 256 possible patterns with 58 of them being uniform. For estimating the histogram, every189

5/15PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27743v1 | CC BY 4.0 Open Access | rec: 19 May 2019, publ: 19 May 2019



34 56

3x3Matrix

(a)

31

12 19 90

20 8 42

34 56

Row 3

31

12 19

Row 2

90

20 8

Row 1

42

1924 2664 2862

3528 3528 5004

2406 3072

(b)

7429

192 266 286

352 549 500

240 307

(c)

742

192 255 255

255 255 255

240 255

(d)

255

192 255 255

255 255 255

240 255

(e)

255

Figure 4. An example of Separate Row Multiplication Matrix with Uniform Local Binary Pattern

Histogram.

Table 2. Feature Groups

Identifier Feature Group Name Number of Features

A LBP-Hist 256

B GfLBP-Hist 256

C Atom Bond 116

D SRMMat-ULBP-Hist 59

E NBSMat-ULBP-Hist 59

uniform pattern gets a separate bin while a single bin is allotted for all non-uniform patterns. Therefore,190

from a uniform binary pattern, we get the histogram of total bin size of 59.191

Neighbour Block Subtraction Matrix with Uniform LBP Histogram (NBSMat-ULBP-Hist) Blocks192

are of the same dimension, 3x3. Two blocks of matrices are considered neighbors for this method if the193

center cells are neighboring. Because of this, the value of the last two columns of the first block and first194

two columns of the second block are same. The two blocks of matrices are subtracted and the result is set195

in the place of the first block. If any of the cells have any negative number, then 0 is placed instead of196

the negative value. The replacing of value is made because the histogram bin begins from zero. Uniform197

local binary pattern is then used to compute the histogram.198

Summary of all the feature groups used in this paper is given in Table 2.199

Handling Imbalance in Data200

From Table 1 it can be noted that the classes are imbalanced. To balance the classes, we have used201

Synthetic Minority Over-sampling Technique (SMOTE) (Chawla et al., 2002). The percentage of SMOTE202

indicates that how many more instances would be generated. As the highest number of instance a class203

has is 3305, we have over-sampled our instances close to that number. If x denotes the highest number of204

instances among all the classes and y denoted by a class which we will SMOTE then the expression for205
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the percentage calculation is
x2y

y
7100. We have used 5 nearest neighbors to generate the over-sampled206

instances. After applying SMOTE to all data sets, the total number of instances in the dataset is 23132.207

Classifiers Used208

We have used five classifiers for the analysis of features applied to solve structural class prediction209

problem: K-Nearest Neighbor (KNN), Naive Bayesian Classifier, Support Vector Machines (SVM),210

Adaptive Boosting (AdaBoost) and Random Forest. A concise description of the classifiers is given in211

this section.212

K-Nearest Neighbour (KNN) K-nearest neighbour algorithm (KNN) (Mohri et al., 2012) is a similarity-213

based classification technique. It is a lazy classification technique. Distance metrics are used for each214

instance of the whole dataset for calculating the K nearest neighbors. The labels of the nearest neighbors215

decide the label of the test instances. It works poorly for high dimensional data. Euclidean distance,216

Hamming distance, Manhattan distance, Minkowski distance, Tanimoto distance and Jaccard distance are217

used for similarity measures.218

Naive Bayesian Classifier Naive Bayesian classifier (Mohri et al., 2012) is based on probabilistic219

inference of samples observed where the decision variable and the features form a very naive structure of220

Bayesian Network. Naive Bayesian classifiers work best for image recognition and text mining.221

Support Vector Machine (SVM) Support Vector Machine (Mohri et al., 2012) works by creating and222

separating hyperplane for a given dataset by sampling different classes which are separated by maximum223

width.224

Adaptive Boosting (AdaBoost) Adaptive Boosting classifier (Mohri et al., 2012) is a meta-classifier225

which aims to make a strong classifier using a set of weak classifiers. The classifiers whose performance226

are marginally better than random classifiers are called weak classifiers.227

Random Forest Random Forest (Mohri et al., 2012) is an ensemble classifier.A decision tree is created228

in each iteration with features taken randomly. It samples selected features using bootstrap aggregating.229

Ligand-binding Prediction230

Protein Ligand Binding prediction is a binary class classification problem. We’ve used Image Based231

Features for each Protein and Ligand dataset. Our methodology learns threshold values from the training232

data and uses these in test data prediction. We have used the same set of features that were generated and233

analyzed for the structural class prediction problem to solve the ligang-binding problem. In this section,234

we present the necessary materials and methods that were used for the ligand binding problem.235

Ligand-Binding Dataset236

We’ve used Computer Vision and Pattern Discovery for Bioimages Group @ BII as our dataset. In our237

dataset, there are 3000 protein-ligand complexes that were determined experimentally with 3D structures238

available. Each protein and its ligand are of one-to-one correspondence, i.e. they can bind to each other239

and make Protein-Ligand complex. The dataset has 3000 pairs of protein and ligand where same name/ID240

of protein and ligand interacts/binds with each other.241

We’ve used OpenCV (Bradski and Kaehler, 2008) library to create images from PDB files. For protein,242

we’ve considered the coordinates of only the alpha-carbons to generate the distance matrix to create image.243

Because alpha-carbon can represent the structural information of protein quite well. But the given ligands244

were small in terms of atom number. So, while creating ligand images, we’ve considered all the atom’s245

co-ordinates for generating distance matrix.246

Among the PDB files, 33 ligands have only one atom, which will create 1x1 image having no247

significance for feature extraction. So, we had to compromise those 33 ligands as well as 33 corresponding248

proteins from training.249

Handling Imbalance250

The given dataset has only positive instances (the pairs of protein and ligand where they bind with each251

other). But there were no negative instances (the pairs of protein and ligand where they do not bind with252

each other). The missing negative instances have created our dataset highly imbalanced. To overcome this253

imbalance, we’ve generated negative instances in two different ways.254
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Figure 5. Clustering-Based Undersampling.

1. Random Negative Undersampling: We have 2967 protein PDB and 2967 ligand PDB where255

8803089 pairs are possible. Among these, 2967 pairs are given as positive instances and the rest256

8800122 pairs are unknown/unseen instances. From the unseen pairs, we’ve taken 2967 pairs257

randomly as negative instances to make our dataset balanced.258

2. Clustering-Based Undersampling: Using the positive instances (2967 pairs), we’ve created 10259

clusters. Then we’ve searched for 2967 unseen pairs randomly as negative instances where they260

belong to those 10 clusters. We’ve made sure that each cluster has exactly same number of positive261

and negative instances to make the dataset balanced (See Figure 5).262

Similarity Based Classifier263

We’ve developed a similarity-based clustering method to predict the binding class. Distance is used to264

measure similarity. Our methodology is given in Figure 6 and the pseudo-code in Algorithm 1.265

Data: A pair (p, l), a protein structure and ligand tructure in pdb format

Result: Decision, whether they will interact or not

1 for all proteins and ligands do

2 generate images & extract features

3 end

4 for each of the given pairs of protein-ligand do

5 NP± k-NEARESTPROTEINS(p) of the given protein

6 RL± k-RELATEDLIGANDS(NP)
7 dl ± distance between given ligand, l & RL

8 if dl < thresholdl then

9 vl ± vote for positive bind

10 else

11 vl ± vote for negative bind

12 end

13 NL± k-NEARESTLIGANDS(l) of the given ligand

14 RP± k-RELATEDPROTEINS(NL)
15 dp± distance between given protein, p & RP

16 if dp < thresholdp then

17 vp± vote for positive bind

18 else

19 vp± vote for negative bind

20 end

21 v± weighted majority voting between (vl ,vp)

22 end

23 return v

Algorithm 1: Similarity based clustering algorithm.

266

From the PDB dataset of proteins and ligands, firstly we have generated images and converted to267

128×128 images for each protein and ligand. From these images we have generated 2 different features.268
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Figure 6. Block Diagram of Similarity Based Clustering.
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Figure 7. Relation between given protein and related ligands.

Figure 8. Relation between given ligand and related proteins.

1. CoMOGrad and PHOG: CoMOGrad stands for Co-occurrence Matrix of the Oriented Gradient269

of Distance Matrices and PHOG stands for Pyramid Histogram of Oriented Gradient (Karim et al.,270

2015). This methodology also uses the α carbon distance matrix of protein. The dimension of271

all distance matrix is converted to 128×128. In CoMOGrad, the gradient angle and magnitude is272

computed from the distance matrix and the values are quantized. Quantization is a compressing273

technique which compresses a range of values to a single quantum value. In this methodology, the274

values are quantized to 16 bins which produce a co-occurrence matrix which is 16× 16 matrix.275

The matrix is converted into a vector of size 256. Quadtree from the distance matrix is created276

with the desired level in PHOG. Gradient Oriented Histogram of each node is calculated with the277

preferred number of bins and bin size. In gradient oriented histogram an image is divided into278

small sub-images called cells and histogram of edge orientations are accumulated within the cell.279

The combined histogram entries are used as the feature vector describing the object. Total features280

which are the multiplication of total nodes and number of bins are incorporated in the vector with281

the size of the total number of features. The vector is normalized by dividing it with the sum of its282

components.283

2. Hybrid Local Binary Pattern (Hybrid LBP): Local Binary Pattern (Ojala et al., 1994) is a284

procedure of local binary pattern histogram. We have used all the five feature groups described in285

the last section for structural class prediction problem.286

Distance can only be calculated between proteins or between ligands. We’ve used K-nearest neighbor287

and Clustering method to calculate these distances.288

1. RELATEDLIGANDS(NP): For a given Protein, find K-nearest proteins. The ligands those binds289

with the above nearest proteins, are the Related Ligands for the given protein (See Figure 7).290

2. RELATEDPROTEINS(NL): For a given Ligand, find K-nearest ligands. The proteins those binds291

with the above nearest ligands, are the Related Proteins for the given ligand (See Figure 8).292

To find the distances between pairs of ligands and proteins are calculated using Euclidean and293

Manhattan distances. Threshold is the boundary between similarity and dissimilarity in terms of distance.294

If distance is less than the threshold, then prediction in positive similarity, else the prediction is negative295
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similarity. Threshold of each category of distances is the average of minimum and maximum distance296

based on the number of nearest neighbors.297

For a given pair of Protein and Ligand, we want to predict if the will bind with each other or not. For298

measuring distance dl , from the given protein, we searched for k-nearest proteins and found the k related299

ligands accordingly. Then we’ve calculated the distance using above mentioned methods. Then we’ve300

taken the vote for the binding class by all categories of distances based their thresholds. Then finally,301

we’ve used weighted majority voting mechanism to predict the binding class.302

Hyperparameters303

There are a number of hyperparameters of our proposed method.304

1. Number of nearest neighbors: Our algorithm’s prediction accuracy is highly dependent on the305

number of nearest neighbors for finding both RELATEDLIGANDS(NP) and RELATEDPROTEINS(NL).306

We’ve used 5 nearest neighbors in this experiment.307

2. Threshold: This is the threshold of distance for determining whether two proteins or two ligands308

are similar or not. For a higher value of threshold, there is a higher possibility for our algorithm309

to predict positive binding class for the majority of the Protein-Ligand pairs. And the lower the310

threshold is, the higher is the possibility of negative binding class prediction. We’ve taken the311

average of distances among 5 nearest neighbors as our threshold for each category of the distances.312

RESULTS AND DISCUSSION313

This section is the description of our experiments performed in this study. Some of the experiments314

were carried out in a personal desktop computer having Intel Core i3 and 4 GB RAM and others were315

experimented in a Computing Machine provided by CITS, United International University which was316

equipped with 8 core processors each having a Dell R 730 Intel Xeon Processor (E5-2630 V3) with317

2.4 GHz speed and 18.5 GB memory. Java language was used for data preprocessing including feature318

generation using OpenCV software library, negative data generation and data merging using Eclipse IDE319

with Java 8 standard edition. Python language was used to implement our algorithm using the Spyder IDE.320

Weka tool was used to run the traditional classification algorithms for the comparison with our algorithm.321

We’ve used Leave-One-Out validation method to get the accuracy of our model.322

Analysis of Features323

A different set of parameters were used for each classifiers used in this research. A linear searching was324

used with no distance weighting for KNN. In case of the Naive Bayesian Classifier, SVM, a polynomial325

kernel was used with c = 1.0 and ε = 1.0w22. Data was normalized before supplying to the classifier.326

J48 decision tree classifier was used in Adaboost classifier as the weak base classifier. Classifier number327

of iterations was set to 100 for Random Forest.328

Results in terms of average accuracy in 3-fold cross-validation of protein images are given in Table 3.329

The highest percentage of correctly classified instances achieved for each of the classifiers are indicated330

by the boldly faced values of the table.331

After running the experiments for our five feature groups ABCDE classifies the highest percentage of332

correct instances in Random Forest, Adaboost and SVM among all other feature groups. Feature scaled B333

and D individually provides the highest accuracy in Naive Bayesian and KNN. As the whole combination334

of all feature groups accuracy gives the highest percentage than any other feature group, thus we conclude335

that the best performing feature group combination is ABCDE and the best classifier is Random Forest336

classifier.337

Effectiveness in structural class prediction338

In this section, we compare the performance of our proposed method with CoMOGrad and PHOG (Karim339

et al., 2015) along with our previous published literature Wavelet and Pyramid Histogram Features for340

Image Based Leaf Detection (Ahmed et al., 2019). For comparison with our methodology in this literature,341

we applied CoMOGrad and Phog techniques and Wavelet and Pyramid Histogram techniques in our342

dataset of 11052 instances and later applied SMOTE for reducing class imbalance problem. We conducted343

experiments with different classifiers using the same parameters as we did for feature analysis with the344

feature groups. The results are given in Table 4. From Table 4 it can be comprehended that our feature345
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Image

Type

Feature

Type

Classifiers

KNN
Naive

Baysian
SVM

Ada

Boost

Random

Forest

Non

Scaled
A 77.70 32.48 68.17 84.11 87.53

Scaled A 78.55 52.55 79.61 84.22 86.16

Non

Scaled
B 74.75 35.65 71.23 83.45 86.85

Scaled B 76.90 60.04 79.26 82.80 84.74

C 66.96 21.79 44.49 62.26 69.92

Scaled D 84.11 51.23 71.29 83.17 85.05

Scaled E 83.76 51.24 71.28 83.23 84.94

Non

Scaled
AB 76.70 33.53 78.39 85.87 88.43

Non

Scaled
ABC 68.27 34.12 82.50 86.74 88.61

Non

Scaled +

Scaled

ABCD 73.06 35.46 85.47 87.26 89.21

Non

Scaled +

Scaled

ABCDE 74.72 37.45 86.12 87.74 89.49

Table 3. Classifier accuracies for different types of feature and groups of features.

Feature

Type

Classifiers

KNN
Naive

Baysian
SVM

Ada

Boost

Random

Forest

Karim

et al.Karim et al. (2015)
87.41 59.50 87.67 84.19 85.49

Ahmed

et al.Ahmed et al. (2019)
69.36 36.22 67.30 79.92 84.58

this paper 74.72 37.45 86.12 87.74 89.49

Table 4. Comparison of the proposed features in this paper with Karim et al. (2015) and Ahmed et al.

(2019) for structural class prediction.

group ABCDE outperforms CoMOGrad and PHOG in Random Forest and in Adaboost. CoMOGrad346

and PHOG surpassed our feature groups in KNN, Naive Bayesian and SVM.It can be noted that the347

combination of our feature groups are three-fourths of CoMOGrad and PHOG. It also can be discerned348

that the accuracy percentage in Random Forest is higher than all the classifier results. Thus, our novel349

features can classify more instances than CoMOGrad and PHOG. We have also noticed that our feature350

groups outperform the features of our previous literatureAhmed et al. (2019) on all classifiers.351

We have revealed the precedence of our methodology over CoMOGrad and PHOG (Karim et al.,352

2015) and Wavelet and Pyramid Histogram Features for Image Based Leaf Detection(Ahmed et al., 2019).353

The same feature groups were used for leaf detection (Ahmed et al., 2019) with the dataset consisting of354

RGB images of leaves. Unlike only gray histogram used on this paper, blue, green and red histograms355

were used to generate features in each feature group and the accuracy result of each classifier was high.356

The distance matrix of α carbons or the protein images were black and white, thus only gray histogram357

was used as a feature.358

We also used Scale-invariant feature transform(SIFT)(Lowe, 2004) methodologies in our experiments.359

Each descriptor has a 128-dimensional feature vector. The number of the descriptors of SIFT from every360

image is not specific so we cannot use traditional machine learning techniques. Hence to apply traditional361

machine learning procedure and specify the feature vector, we split the image into 16 slices and took one362
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Figure 9. Barplot showing the performance of different algorithms on ligand-binding dataset.

descriptor from each of the slice images. Therefore we got 2048 number of attributes(8x16) from each363

image. We tested the dataset with the same classifiers mentioned in this paper. The results didn’t turn up364

to be better or close to our proposed methodology in this literature.365

Effectiveness in ligand-binding prediction366

Sensitivity is the true positive rate regarding the positive instances. As we had to generate the negative367

data artificially, sensitivity is the actual scale of performance measuring where positive data were the368

actual data. Using the thresholds gained using the negative data, sensitivity of our algorithm is very good369

comparing to other existing algorithms shown in Table 5 and Figure 9.370

Features AdaBoost KNN Random Forest SVM Naive Bayesian Our Method

LBP (random) 40.00% 43.50% 22.00% 36.80% 45.20% 91.33%

LBP (cluster) 51.90% 44.30% 52.20% 49.00% 43.70% 91.60%

CoMOGrad

& PHOG

(random)

95.20% 47.60% 16.10% 29.70% 11.30% 79.86%

Table 5. Sensitivity Comparison among different methods for ligand-binding prediction.

We have generated three different datasets based on three different features. Hybrid LBP gives 736371

long feature vectors from protein images and 677 long feature vectors from ligand images. So, for one372

protein-ligand pair we’ve got 1413 (736+677) attributes and one Binding Class value as one instance.373

The above mentioned two types of negative data (random and Clustering-Based Undersampling) were374

generated using Hybrid LBP for balancing the data. CoMOGrad and PHOG gives 1021 or 1020 long375

feature vectors from protein image, but for ligand images, it gives 1020 long feature vectors. We assumed376

“0” as the last feature in protein where features were 1020 long, to make it 1021 long feature. So, for377

one protein-ligand pair we’ve got 2041 (1021+1020) attributes and one Binding Class value as one378

instance. Random negative undersampling was used in CoMOGrad and PHOG but Clustering-Based379

Undersampling was not possible as some clusters couldn’t get any unseen pairs of protein and ligand. Our380

method was used based on 5 and 3 nearest neighbors and shown on the above table and chart.381

We can see that AdaBoost works better than our algorithm in terms of sensitivity in ComoGrad and382

PHOG dataset. Because, Ligand data were so small in terms of number of atoms that ComoGrad and383

PHOG gave zeros for most of the ligands. But our algorithm’s overall performance is better than other384

machine learning algorithms in the three different feature datasets.385

CONCLUSIONS386

In this paper, we showed how accurately we can detect protein classes using the combination of different387

image based feature groups generated from protein images. We also propose a simple similarity-based388
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clustering method to predict Protein-Ligand Binding without using deep-learning or neural-networks.389

This simple distance-based algorithm is quite effective compared to complex machine learning algorithms.390

Our main limitation was the missing negative data. If we had the actual negative data, we could’ve391

determined the perfect thresholds for each category of distances, and that would give us more accurate392

prediction. Another problem was dimensions of small Ligands as we’re using image-based features.393

As the advancement of deep learning, neural network, and many other deep learning techniques are394

being used to classify images, many remarkably interesting applications can be made. For our future395

advancement, we wish to introduce new features to improve accuracy, use new tools and explore other396

fields of computer vision such as human emotion detection. In addition, we will try to extract some unique397

features from the Ligand dataset so that the dimensionality problem doesn’t affect our Protein-Ligand398

binding prediction.399
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