Quantifying the impact of protected areas on near-global waterbird
population trends

PRE-ANALYSIS PLAN

Hannah Wauchopel*, Julia P G Jones?, Tatsuya Amano"**, Jonas Geldmann', Daniel Blanco®, Richard A.
Fuller’, Tom Langendoen’, Taej Mundkur’, Benno 1. Simmons', Nagy Szabolcs’, William J. Sutherland'.

'Conservation Science Group, Department of Zoology, University of Cambridge, David Attenborough Building, Cambridge, UK
?College of Environmental Science and Engineering, Bangor University, Bangor, UK
3School of Biological Sciences, University of Queensland, Brisbane, Australia
“Centre for the Study of Existential Risk, University of Cambridge, Cambridge, UK
SWetlands International, Horapark 9, Ede, Netherlands

*Corresponding Author: hsw34(@cam.ac.uk.

1. Summary

There is increasing interest in the effectiveness of protected areas (PAs) for supporting populations of
wildlife. While there are a number of association studies showing a relationship between protected areas
and abundance or trends in wild species, studies with an appropriate counterfactual (what would have
happened in the absence of protection) are rare. We use the world’s largest database on waterbird counts
(covering 587 species at 21,989 sites globally) to answer three questions: 1) Do PAs have a positive impact
on waterbird population trends relative to a counterfactual (this includes cases where a PA has lessened,
but not halted, a population decline)?; 2) are PAs performing successfully by maintaining or increasing
populations? and 3) what factors contribute to PA impact and performance? We selected 9,650 waterbird
populations (here defined as a site species combination), consisting of 262 species at 546 protected sites,
where PA designation occurred at least 5 years after the first survey date, and 5 years before the last. We
will use this to compare trends before PA designation to those afterwards. We then matched these sites to
unprotected sites with similar covariates in the years before PA designation, resulting in a matching dataset
of 3,677 populations consisting of 94 species at 514 pairs of protected and unprotected sites. We will use
this to compare trends both before and after PA designation and inside and outside of PAs. Our results will
shed light on the impact of PA on hundreds of waterbird species, providing much needed evidence regarding
PA effectiveness. As PA performance is a sensitive subject and it is important to develop hypotheses before
knowing the results (especially for the relatively complex data analysis used in matching protected and
unprotected sites), we present a pre-analysis plan. This will ensure that the final paper’s analyses are
hypotheses testing, rather than generating, and avoids the risk of, or perception of, data dredging.

currently stands at 14.9%; UNEP-WCMC & IUCN

2. Introduction
and NGS, 2018). However, a number of studies

Protected Areas (PAs) are receiving increasing

attention, both being held up as the solution to high
levels of species’ extinctions and being subject to
increasing  debate over their real-world
effectiveness (Barnes et al., 2018). The Convention
on Biological Diversity (CBD)’s Strategic Plan for
Biodiversity 2011-2020 set out Aichi Biodiversity
Targets, #11 of which dictated that by 2020 at least
17% of terrestrial and inland water areas will be
conserved through effectively managed Protected
Areas (Convention on Biological Diversity, 2011).
As a result, the global PA network has been
expanding, with many countries on track to meet the
target (global terrestrial protected areas coverage

show that some PAs are not managed effectively
(Blom et al., 2004; Leverington et al., 2010; Gill et
al., 2017; Geldmann et al., 2018) and question the
ultimate effectiveness of PAs (Baillie et al., 2016;
Pringle, 2017). Comprehensive data on PA
effectiveness is still lacking (Geldmann et al.,2013)
and calls have been made to establish whether PAs
positively impact biodiversity and whether they are
achieving what they set out to achieve: preserving
habitat and supporting wildlife populations (Watson
etal.,2014,2016). Understanding the effectiveness
of one of the most important conservation
approaches (Protected Areas) implemented to date
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is greatly needed as the CBD prepares a post-2020
Biodiversity Framework (IUCN, 2018; CBD,
2019).

Studies assessing the impact of PAs need an
estimate of the counterfactual (what would have
happened in the absence of the intervention; Ferraro
2009). There are robust, counterfactual studies
attesting to the effectiveness of PAs at averting
forest clearance (Bruner er al., 2001; Nelson &
Chomitz, 2009; Scharlemann et al., 2010; Joppa &
Pfaff, 2011; Geldmann et al., 2013, though see
Clark et al., 2013). However, studies considering
the effectiveness of PAs in maintaining populations
of species are in their infancy (Geldmann et al.,
2013). A number of recent large-scale studies have
considered wildlife population trends within PAs
(Laurance et al., 2012; Barnes et al., 2016, Amano
et al.,2018), however studies including appropriate
counterfactuals either in comparisons to trends of
populations before PAs were designated, or to
comparable trends of suitably matched populations
outside of PAs are lacking (Geldmann et al., 2013).
Association studies cannot determine whether a PA
directly benefits a population or is simply more
likely to be designated at sites where a population is
doing well (de facto protection).

Ways of describing PA impact and success are
explored in Figure 1. A PA has a positive impact if
the trend of the protected population is more
positive than the counterfactual (blue and green
lines, Figurela,b; to the left of diagonal line Figure
1c). It is performing successfully if the trend of the
protected population is stable or positive (green and
yellow lines, Figure 1a,b; above the horizontal line,
Figure 1c). There can be cases where the PA is
having a positive impact, but is not performing
successfully (blue in Figure 1) and also cases where
the PA has had a negative impact, but is still
performing successfully (yellow in Figure 1). Note
that by this definition PA impact is defined relative
to a counterfactual, while performance does not
need counterfactuals to be determined — it is simply
a measure of the absolute trend of the protected
population.

We use a near-global, though European and North
America focused, dataset of waterbird population
trends from 1966 — 2014 (Amano et al.,2018) to test
PA impact and performance. Though these data

have been used to assess population trends in PAs at
a coarse scale (Amano et al., 2018), it was not the
main aim of the study and counterfactuals, either
before/after or inside/outside, were not established.
We have filtered Amano et al’s dataset to our final
dataset of protected sites consisting of 9,650
waterbird populations (here defined as a site species
combination) and 262 species at 546 protected sites,
where PA designation occurred at least 5 years after
the first survey date, and 5 years before the last.

We aim to answer three questions:

1) Do PAs have a positive impact on waterbird
population  trends  (relative to a
counterfactual; this includes cases where a
PA has lessened, but not halted, a
population decline)?

2) Are PAs performing successfully by
maintaining or increasing populations (i.e.
population trends are stable or increasing)?

3) What factors contribute to PA impact and
performance?

To answer Question 1 we use two approaches to
estimate the counterfactual. We will compare trends
before and after designation for all populations in
the dataset (Before After Analysis), and, where
appropriate matches between protected and
unprotected sites are available, compare trends
inside and outside PAs, as well as before and after
designation (Before After Control Intervention
[BACI] analysis, McDonald et al., 2000). Each
analysis has advantages and disadvantages. The
Before After analysis makes use of the full dataset
while the BACI dataset is biased towards common
species as it was not possible to find matches for all
species at all protected sites. The benefit of a BACI
study is that it allows us to account for
counterfactuals in both space and time, while with
just a Before After comparison, we cannot know if
the change was due to wider changes in the
population generally (although the fact that
designation date of PA varied substantially across
the dataset is helpful here). By combining space and
time counterfactuals, we can come close to knowing
the true impact of PA designation. To answer
Question 2 we need only the trends of protected
populations in the years after designation.

To answer Question 3, we will see how the impact
and performance of PAs, derived from Questions 1

2
Peer] Preprints | https://doi.org/10.7287/peerj.preprints.27741v1 | CC BY 4.0 Open Access | rec: 17 May 2019, publ: 17 May 2019



& 2, varies with covariates that might influence PA
effectiveness. We make three hypotheses. First, that
well-managed, large PAs in countries with better
governance will have a more positive
impact/perform better (the latter being found by
association in Amano et al.,2018). Second that non-
migrant, large-bodied species will respond best to
PAs, the former because they are not affected by
outside influences and the latter because they are
more susceptible to exploitation outside PAs
(Barnes et al., 2016). Third, that PAs in more
remote regions will benefit less from protection as
they are likely to be experiencing less human
pressure.

Here, we present a pre-analysis plan. There is
growing interest in improving the quality of impact
evaluations in conservation (Baylis et al., 2016),
and in reducing the impacts of human bias on post-
hoc statistical analysis. A risk in all such analyses is
HARKing (Hypothesizing After Results are

a) Before/After counterfactual

i) PA designated i)

Population Size

Known; Kerr, 1998) and it is therefore important to
draw a clear distinction between generating
hypotheses with existing observations and testing
hypotheses with new observations. This is
especially important in matching studies: there is
high variability in matching procedures (Stuart,
2010) and it is important to avoid the risk of trying
many and selecting the one which gives a more
desired result. Preregistering of analysis has been
proposed as a way to address this (Hardwicke &
Ioannidis, 2018; Nosek et al., 2018). We have
therefore divided our analysis into two stages: Stage
1) obtaining a dataset, selecting protected sites and
matching these to unprotected sites, and Stage 2)
analysis of PA impact and performance on
population trends (Qs 1 & 2) and factors affecting
these trends (Q3). Stage 1 is complete and we report
results from it, but these simply tell us the quality of
the datasets to be used for Stage 2. Stage 2 has not
been carried out, and we propose our methods for
how Qs 1-3 will be assessed.

b) Control/Intervention counterfactual

c) Results Schematic

+

Population Size

i)

=+ Impact
— Performance

Protected population slope

3

Time

Time

— Impact
+ Performance

Counterfactual population slope
Figure 1. The impact of a PA (vertical dotted line) is assessed relative to a counterfactual while
performance refers simply to the absolute trend. a) Comparing trends after protection to before protection
(a Before After counterfactual) can show a positive impact and positive performance (green lines), a
negative impact but positive performance (yellow lines) a positive impact but negative performance (blue
lines), a negative impact and negative performance (orange lines) b) Comparing trends inside PAs with
matched, non-protected sites (a BACI counterfactual). ¢) The categories when comparing the protected
population slope (y axis) to a counterfactual population slope (x axis).
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3. Methods Stage 1

So far we have completed the following steps:

— Obtained count data for waterbirds from sites
across the world

— Determined which sites are inside PAs

— Established a clean dataset of populations (i.e.
site-species combinations) within PAs.

— We term this the Full Protected dataset,
and it allows us to do before-after
comparisons of PA effectiveness

— Matched each population from the Before After
dataset to a population from the unprotected
sites that was of the same species, surveyed over
the same period, displayed a similar trend and
was similar in habitat according to a number of
climate, land-type and human impact criteria
(Table 2). This created a second dataset
consisting of pairs of matched protected and
unprotected populations.

- We term this the “BACI”
(before/after/control/intervention)
dataset, as it allows us to do before-
after-control-intervention comparisons
of PA effectiveness.

3.1 Count Data

We took site-specific annual counts from two long
term surveys: the International Waterbird Census
(IWC), coordinated by Wetlands International, and
the Christmas Bird Count (CBC), run by the
National Audubon Society (see Amano et al., 2018
for the full methods). Our initial dataset consisted of
587 species at 21989 sites. We removed
populations (i.e. site-species combinations) with
zero counts in all years of the time series. We then
restricted our data to only sites surveyed in
December to February, that covered at least 10
survey years (but did not require every year in that
period to be surveyed, in accordance with
Wauchope et al., 2019).

As Christmas Bird Count data is not standardized
for effort, we required that species taken from CBC
data showed a log-linear relationship with effort
(i.e. the rate of new individuals detected slows with
increased effort). For each species, we ran a simple
negative binomial generalized linear model in R,
using the glm.nb function from package MASS

(Venables & Ripley, 2002), using all available CBC
data for that species:

log (E(Count;)) = B log(e;) ey

var(Count;) = vyg(E(Count;)) 2)

Where Countis all counts of a species and e; is the
number of survey hours for each count. The
variance of the counts is negative binomial (Eq. 2).
We retained CBC data for all species where there
was a significant positive relationship between
count and effort (i.e. B was significant and greater
than 0).

3.2 Protected (and Unprotected) Area Data
We took our protected area data from the World
Database on Protected Areas (UNEP-WCMC &
IUCN, 2019). We downloaded the full dataset of all
protected areas globally, and overlaid our sites to
determine which fell in protected areas. We
removed any sites where the PA designation status
was proposed, and any UNESCO biosphere
reserves as these are often not afforded formal
protection (Coetzer et al., 2014). We next removed
any sites where there was no information about the
designation date of the PA. In some cases, there
were multiple PA data for a site, in these cases we
took the earliest designation year given. Finally, we
reduced the dataset to only those cases where the
designation date of the PA occurred at least 5 years
after the first survey date of the population, and at
least 5 years before the last survey date, with data
taken in at least 3 years before and after (Wauchope
et al., 2018). This gave us a Full Protected dataset
of counts for 9,650 populations, consisting of 262
species at 546 protected sites (Figure 3, blue points,
Table 1).

We next created a dataset of unprotected sites and
counts at those sites, by taking only those sites that
did not interact with any protected areas in the
WDPA (not only our cleaned set of PAs, to avoid
including, for example, sites that were protected but
without a designation date). We then restricted this
dataset to only the species present in the Full
Protected dataset. This gave us an unprotected
dataset of 182,180 populations consisting of 262
species and 8925 sites (Figure 3, green points, Table

1y
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Figure 3. The Full Protected dataset of 546 protected sites in blue, as well as the 8925 unprotected sites
that were available for matching in green, with zoomed inset for Western Europe.

3.3 Site Matching

As we also want to compare trends of populations
inside and outside of protected areas (the BACI
analysis), we needed to establish a reasonable
counterfactual through which to compare protected
and unprotected sites. If the sites we compare are
not well matched in terms of other covariates that
influence protected area designation and population
trends, then it is not possible to fairly compare them
(Gelman & Hill, 2006). In other words, as closely as
possible, sites should differ only in whether they
have PAs or not, to test the effect of PA designation
per se.

We use statistical matching to achieve this, by
selecting control sites that have similar covariate
(Table 2) distributions to treated sites in the years
before treatment (See Stuart, 2010 for a
comprehensive summary of matching methods).
For this analysis, it was necessary to develop a novel
matching method because we needed to match on
covariates relating only to the years prior to
designation for each protected area (see
https://github.com/hannahchoppie/PAlmpact  for
code). The covariates we used for matching, how we
prepared them and justification for their use are
given in Table 2. We removed highly correlated
variables by first calculating the variance inflation

factor (using the usdm package in R; Naimi et al.,
2014) of all covariates, and iteratively removing
variables with a VIF greater than four until none
were over four (Salmerén Gémez et al., 2016). We
next removed variables with a Pearson’s Correlation
Coefficient of over 0.7. The reduced set of
covariates is denoted in Table 2 as any covariates
with at least one asterisk (*).

We used Mahalanobis distance matching to evaluate
how similar protected and unprotected sites were.
Though Mahalanobis distance has been criticized in
the past for performing poorly when matching on
many covariates (Gu & Rosenbaum, 1993; Stuart
2010), recent criticisms of the most commonly used
matching method, Propensity Score Matching
(King & Nielsen 2019), meant we were interested to
test other options and found Mahalanobis distance
matching to perform markedly better in
comparisons.

Mahalanobis Distance (MD) computes the distance
between points in multivariate space. The
Mahalanobis distance between two sets of points is
calculated as follows:

mdg,, = J(x—y)7S(x —y) 3
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Where x and y are vectors containing values for
each covariate (in our case, therefore, the list of
covariate values for sites x & y) and S is the
covariance matrix of the covariates.

We needed to match only on covariates in the years
prior to designation, as we would expect and hope
for protected and unprotected sites to vary in the
years after PA designation, especially in covariates
related to human impact. Further, mahalanobis
distance requires each site to have one value for
each covariate, whereas in our dataset we have
values for each year, meaning we need to take
means of the values for the years pre-designation.
Because designation year varies, we created a series
of mahalanobis distance matrices for each year that
protected areas were designated, finding the

distance, md(unprotected site, protected site)s between
protected and unprotected sites using covariate
means from the years before the relevant
designation year (See Figure 44i, ii for an example).
For each species, these were then combined into a
larger distance matrix containing all the sites that
species occurred in (Figure 4iii)

We then required that sites were exactly matched on
a number of criteria. For each protected site, we
removed unprotected sites not of the same anthrome
category and geographic region (which roughly
equates to continent) and only retained those where
the PA was designated at least 5 years after the first
year of surveys and at least 5 years before the last
year, with counts taken in at least 3 years before and
after (Wauchope et al., 2019) (Figure 4iv). To
satisfy assumptions in the proposed models in Stage
2, we required potential matches to have the same
population trend in pre-designation years (Figure
4iv). We calculated trends using a simple negative
binomial glm (glm.nb, R package MASS, Venables
& Ripley, 2002):

log(E(Count,)) 4)

D, = IWC
= athl; { D, = CBC
=

+ log(e,)
Where the count of the population in year z is
predicted by the Year, and an effort term if the data
was taken from the CBC. Variance is expressed by
Eq. 2. The 3, coefficient gives the slope of the
population. If over 6 years of data were available,

the population trend was classified as positive or
negative according to the slope as this has an 80%
chance of being a good estimate of the 10 year slope
of the population even if not significant (Wauchope
et al., 2019, supp. material), if under 6 years of data
were available the slope was classified as either
stable or, if the slope was significant at p < 0.05,
positive or negative.

If no unprotected sites met the exact match criteria,
the protected site did not have a match and was
excluded (e.g. Figure 4iv, Site E).

Next, we ran an optimized greedy nearest-
neighbour algorithm to select, from the exact
matched subset, the unprotected site with the closest
distribution of covariates to each protected site. We
ran this without replacement, meaning each
protected site could be matched to only one
protected site, to ensure no pseudoreplication. A
greedy algorithm works through the dataset, picking
the best match for each successive protected site and
removing the matched unprotected site from the
potential matching pool as it goes. However, greedy
algorithms have a tendency to get stuck in local
optima (Simmons et al., 2019), so to account for
this, we ran the greedy algorithm 1000 times, each
time randomizing the order of protected sites that
the greedy algorithm would work through. We
found the global distance for each iteration and used
the set with the smallest global distance (Figure 4v,
e.g. with randomisations in the figure a smaller
global distance would be detected, with the column
order FBACD).

Once our matched sets were obtained for each
species, we finally needed to ensure that the
matches were of a high enough quality to be used.
This was done by assessing the covariate balance
between matched and unmatched sites for each
species using the ‘standardised difference in means’
(SDiM), which is calculated using the following
formula (Austin, 2009):

Tcov - Ecov (5)
\/var(Tcov) —var(Ceop)
2

deoy =

Where T.. is the values of covariate cov for
protected sites (mean from the years before and
equal to designation), C.v is the same for
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unprotected sites, var is the variance of each of these  dataset for that species (Figure 4vi). If this point was

and d.., is the standardized mean difference between  never reached, the species was removed.

protected and unprotected sites. We assessed the

SDiMs to see whether they was below 0.25 for all  The final matched dataset contains 94 species,

covariates (Rubin, 2001; Stuart, 2010). If they were =~ 3677 population pairs and 514 protected sites

not, the matched pair with the greatest distance was  paired to 1286 unprotected sites (Figure 5, Table

removed and the SDiM checked again. Once all ~ 2). There are more unprotected than protected sites

covariates had a SDiM of <0.25, the remaining as matching was done by species and a protected

matched pairs were considered the ‘final’ matched  site may contain multiple species each matched to
different unprotected sites.

We have 6 protected sites, A

to F, varying in their A B C D E F
designation year from 1999 [ § J [ § J | R
to 2004, and 3 unprotected

sites, X, Y & Z. 1999 2002 2004

i. Get covariate values. Each
cell is the average value of
each covariate for all years
that are less than or equal to
the designation year.

ii. Create a mahalanobis
distance (M) matrix. Each
cell is the distance in
multivariate space between
sites based on the covariate
means, a greater value
means greater distance.

ifi. Combine into a full M
matrix of distances, using
the values from each
designation year matrix.

N <

iv. Remove any sites that
are not an exact match
(e.g. in different anthrome,
population showing a
different trend direction).

E has no exact matches so
is excluded.

o N wlo
3‘(><§"”

MXw oo

N < x|z
X o N[>

v. Conduct matching from
left to right. Repeat 1000
times, randomising column
order. The order with the

A's closest match is X,
removing it as an option
for other sites. B takes Z,
removing that as an

For each protected site
(columns) we pick the
unprotected site (rows) with
the smallest M.

N < XX

smallest sum of distances (in option, etc.

this case 1+2+3=6) is used

for Step vi.

vi. Assess the distribution of . The SDiM of

covariates. If the _— M *SDIM climate is >0.25,

standardised difference in A X|2 0.3 X o the worst match

means (SDiM) is >0.25 for B Y1 ¥(0.24 / (C-2Z)is removed.

any covariate, the worst °

match is removed and the CZz[3 %(0.13 \/

SDiM calculated again. M SDIM Now the SDiM is
_ —_—— below 0.25 for all
A X|2 ®0.19 covariates, leaving
BY|1 ) ¥1(0.23 \/AXandBYasthe

i 0.14 final matched
dataset.

Figure 4. Example of the matching procedure for one species, using a toy dataset of 6 protected sites (A
to F) and 3 unprotected sites (X, Y and Z), with three dummy example covariates, climate (cloud), land
use (wheat) and human population (person).
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Figure 5. BACI dataset containing protected (blue, n=514) and unprotected (green, n=1286) sites, with
zoomed inset for Western Europe. Note that there are more unprotected than protected sites as matching
was done by species and a protected site may contain multiple species each matched to different

unprotected sites.

Table 1. Taxonomic distribution for our Before/After data (with the subset used in the BACI analysis in
brackets). Where families have no species present in the BACI dataset the row is greyed out. Note that the
number of ‘lost’ protected sites in the BACI dataset appear to be much higher than reported, but this is
because in many cases some taxa at a protected site were unable to be appropriately matched, while others

were, retaining the site in the overall dataset but not for that particular taxa.

Order Family Genera Species Protected Unprotected
Sites Sites
Anseriformes Anatidae 40 (32) 130 (76) 528 (468) 8501 (889)
Charadriiformes Alcidae 2 2 1 73
Charadriidae 8 (6) 44 (12) 169 (122) 4054 (167)
Haematopodidae 2(2) 12 (2) 65 (47) 624 (47)
Jacanidae 4 4 2 392
Laridae 18 (2) 70 (16) 196 (106) 5286 (117)
Recurvirostridae 6(2) 10 (2) 52 (25) 1305 (25)
Scolopacidae 22 (16) 84 (34) 177 (131) 4119 (228)
Stercorariidae 2 2 4 84
Ciconiiformes Ciconiidae 8 14 14 858
Gaviformes Gaviidae 2(2) 6(2) 19 (6) 1211 (6)
Gruiformes Aramidae 2 2 1 93
Gruidae 6 8 6 220
Rallidae 20 (8) 28 (10) 421 (232) 6246 (256)
Pelicaniformes Ardeidae 18 (10) 36 (16) 316 (167) 6284 (219)
Pelecanidae 2 10 16 797
Threskiornithidae 8 14 18 958
Phoenicopteriformes Phoenicopteridae 4 4 8 280
Podicipediformes Podicipedidae 10 (6) 20 (12) 374 (177) 5751 (202)
Suliformes Anhingidae 2 4 5 496
Phalacrocoracidae 4(2) 16 (4) 218 (22) 4973 (22)
Sulidae 2(2) 2(2) 8 (3) 169 (3)
All Orders All Families 96 (45) 261 (94) 546 (514) 8925 (1286)
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Table 2. Covariates used to perform site matching. First, the two categorical variables (anthrome and region) were used for exact matching (shown
by a + sign). Next, all continuous variables were assessed for collinearity and highly collinear variables were removed. Those with an asterisk
were retained, and were used in matching.

Rainfed crop land (rice; km?*gridcell)

Human presence.

Human population density
(inhabitants/km? pergridcell)

Category and reason for inclusion | Variable Used in Data Resolution Data transformation
Matching | source
Climate. Total annual precipitation (mm) * CRU 0.5°, monthly | Yearly sum of Jan-Dec
This is a key variable that can determine ", precipitation December — February | * T54.01 (1961-2016)  ['Sum of Dec previous year
suitability of a site for a species (mm) (Harris et and Jan & Feb current
(meaning it is good to balance on) and al.,2014)
also likelihood of being designated a PA. year -
Mean annual temperature (°C) Mean, min, max of
Minimum annual temperature (°C) months Jan-Dec
Maximum annual temperature (°C) *
Mean temperature December — February Mean, min, max of Dec
(°C) previous year and Jan &
Minimum temperature December — Feb current year
February (°C)
Maximum temperature December — *
February (°C)
Fertiliser input. Eutrophication can Nitrogen (g N/m? cropland/yr) * Lu & Tian, | 0.5° yearly NA
affect waterbird populations (Lehikoinen | Phosphorous (g P/m? cropland/yr) 2017 (1961-2013)
et al.,2016), and can also be a metric of
distance to farming land and therefore
human impact as well as a measure of
the potential value of land for uses other
than protection.
Land use. Anthrome (categorical) + HYDE 5', centennial | Pre-2000 data taken from
This is a direct measure of nearness to 3.2.001 (10,000BC- nearest decade
human impact, important for impacts to Grazing land (km¥gridcell) (Hurtt et 1600AD) Temporal linear
bird populations but also for likelihood Irrigated land (not rice; km?* gridcell) * al.,2011) decadal interpolation to obtain
of PA designation — PAs are less likely Irrigated land (rice; km?gridcell) * (1700-2000), | yearly data between
to be designated in areas suitable for -
agriculture and farming (Joppa & Pfaff, | Pasture land (km?*/gridcell) o yearly (2001- | decades of 1960-2000
2009). Rangeland (km? gridcell) * 2016)
Rainfed crop land (no rice; km?%gridcell) | *
*
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Protected areas are more likely to be
designated in areas far from humans
(Joppa & Pfaff, 2009), and human
presence can also affect waterbird

Total built up area (km? per gridcell)

Human population count
(inhabitants/gridcell)

numbers either directly through hunting Travel time to nearest city WorldPop 1km, yearly Spatial bi!inear o

or through habitat degradation (ref). (Lloyd et interpolation to 5” grid
al.,2017) cells

Governance. Mean of the six World Governance World By country, | Mean taken across all

Governance in a country is a significant | Index metrics (Control of Corruption, Bank 1996, 1998, | years because data is only

predictor of PA effectiveness (Amano e | Government Effectiveness, Political (Kaufmann | 2000, and available from 1996.

al., 2018), meaning it is important we Stability and Absence of & Kraay, yearly 2002- | Therefore just one value

compare PAs with similar governance. Violence/Terrorism, Rule of Law, 2019) 2016 per site for all years.

Regulatory Quality, Voice and
Accountability)

Water. Surface water (presence/absence) (Pekel et 30m, 1985- Converted to 5’ gridcells

Water presence is an important covariate al.,2016) 2005 by taking sum of

for waterbirds, which rely on it for ‘presence’ 30m? cells in

survival. each

Elevation. Elevation WorldPop 1km, NA Spatial bilinear

PAs are biased towards where they can (Lloyd et interpolation to 5’ grid

least prevent land conversion (Joppa & al.,2017) cells

Pfaff, 2009) which often results in them

being in high elevation regions. Higher

elevation sites are also likely to have less

pressure and thus have lower

biodiversity losses regardless of whether

they are PAs or not.

Global Region. Region (categorical) T™ World | NA NA

Because we are aiming to compare Borders

trends inside and outside protected areas, (Sandvik,

we wanted populations to at least be in 2009)

similar regions to reduce unknown
variance in comparisons.
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4. Methods Stage 2 (Proposal)

We aim to answer three questions: 1) Do PAs have
a positive impact on waterbird population trends
relative to a counterfactual (this includes cases
where a PA has lessened, but not halted, a
population decline)?; 2) are PAs performing
successfully by maintaining or increasing
populations? and 3) what factors contribute to PA
impact and performance?

Table 3. A brief summary of proposed analyses

Not all protected populations had suitable matches
and so the BACI dataset contains fewer protected
populations than the Full Protected dataset and is
biased towards common species (e.g. see Table 1 —
taxa occurring at few sites were less likely to be
included in the BACI dataset). As a result, the BACI
dataset can only estimate PA impact for common
species. To also assess PA impact on all species we
run all analyses on both the Full Protected and the
BACI datasets. A brief summary of the analysis
flow is give in Table 3.

Dataset Analysis Summary Report
Section
Question 1 (Do PAs have a | Full Model quantifying change in population trend 413
positive impact on Protected | directions from before PA designation to after.
population trends) BACI Model quantifying change in population trend 412
directions from before PA designation to after,
when compared to unprotected populations.
Question 2 (Are PAs Full Model quantifying trend of populations after 42
performing successfully by | Protected | designation of PAs.
maintaining or increasing
populations)
Question 3 (what factors QI output | How species and PA characteristics correlate to PA | 4.3.1
contribute to PA impact (Full impact (when quantified comparing trends before
and performance?) Protected) | and after designation ).
QI output | How species and PA characteristics correlate to PA | 4.3.2
(BACI) impact (when quantified comparing trends before
and after designation to those inside and outside
PAs).
Q2 output | How species and PA characteristics correlate to PA | 4.3.3
performance (absolute post designation trends).

4.1 Question 1. Do PAs have a positive impact
on waterbird population trends?

4.1.3 Full Protected Dataset

We will run mixed effects models that consider the
effect of protected areas on population trends, first
using the full dataset and accounting for the ‘before’
counterfactual. The models will be run using
glmer.nb function from the Ime4 (Bates et al.,2015)
package in R according to the following formula:

log (E(Countijz)) (6)

= a+ BiY, + B.Yij.BAij,
+ Bs.22CovA;j, + (1|Species)
+ (1|Site) + log(e;)

Where the count of species i in site j in year z is
predicted by the intercept (a), year (Y), the
interaction term between year and the before/after
term (BA; 0 in years before protection and 1 in years
after protection), the covariates used for matching
(CovA, shown by asterisks in Table 12), crossed
random effects for species and site, and finally the
log of the effort term (1 for IWC populations and 1
or >1 for CBC populations; see ‘Count Data’ in
Methods 1). Variance is defined by Equation 2.
Depending on model complexity, we may undertake
some model selection, comparing AICs between
models using different covariate combinations
tested. We may also need to rescale variables, or
recalculate collinearity between variables if there is
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higher collinearity in data subsets. All test
combinations, rescaling or collinearity issues will
be reported.

A positive 3 indicates that slopes are more positive
after protection than before (as displayed in Fig 1,
more positive doesn’t necessarily imply absolute
positive, just more positive than before protection).
The random effects in the model allow for there to
be different intercepts for each species and each site
(i.e. they can have different abundances), however
they do not allow for each species/site to have a
different slope and therefore assumes that each
population behaves in the same way. A model
allowing differing trends would be too complex for
this analysis, so we will subset the data into three
groups, those where populations are increasing,
decreasing or stable before protection, and run the
model on each. Interpretation of the results will then
depend on the group. For PAs to be having a
positive impact, we would expect:

— Where a population trend was non-significant
or increasing before designation; anything but a
significant negative B; coefficient. This is
because the goal of a PA is not to always
increase species populations, and so to maintain
a population, or to do anything but cause a
decline in a stable or increasing population, the
PA has had a positive impact.

— A significant positive 34 coefficient for species
decreasing before designation.

4.1.2 BACI Dataset

Next, to also account for control/intervention
counterfactuals we will run an updated version of
model 6 using the matched BACI dataset:

log (E(Countijz)) (N

= a+ piYi, + B.Yij,BAij,

+ BsYij2Clij,

+ B.Yi,BA,Clyy,

+ Bs.22CovA;j, + (1|Species)
+ (1|Site) + log(e;)

Where the count of species i in site j in year 7 is
predicted by the intercept (a), year (Y), the
interaction term between year and the before/after
term (BA; 0 in years before protection and 1 in years
after protection; unprotected sites assigned values
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according to the designation date of their matched
protected site), the interaction term between year
and the control/intervention term (CI; 0 for
unprotected sites and 1 for protected sites), the three
way interaction between year, before/after and
control/intervention, the covariates used for
matching (CovA, shown by asterisks in Table 12),
crossed random effects for species and site, and
finally the log of the effort term (1 for IWC
populations and 1 or >1 for CBC populations).
Variance is defined by Equation 2. Again, we may
undertake some model selection, rescaling and/or
collinearity tests.

As before, a positive [3, indicates that slopes are
more positive after protection than before. A
positive ;indicates more positive trends inside PAs
than outside. And a positive S indicates more
positive trends after protection AND inside
protected areas. The year term is included in all
interaction terms so that they represent slope rather
than abundance. f3,, can also tell us about the
estimated trend of populations, see Table 4. Also as
before, we will subset the data into three groups,
those where populations are increasing, decreasing
or stable before protection, and run the model on
each

Table 4. How to estimate trends of populations in
various states of protection, using the coefficients
output from Equation 9.

Before After

designation designation
Unprotected Bi Bi+ B
Protected Bi+ps Bi+B2+P5+pBs

4.2  Question 2. Are PAs performing
successfully by maintaining or increasing
populations?

The Question 1 analysis has the ability to detect
whether protected areas are having a positive
impact, but not whether they are performing
successfully by maintaining populations (i.e. if the
post protection trend is stable or increasing). For
this reason, we will conduct individual population
models in the Full Protected dataset to ascertain the
trend of each population after PA designation. The
models will be simple, structured as follows (using
function glm.nb, R package MASS, Venables &
Ripley, 2002)
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log(E(Count,)) = a + B,Y, + log(e,) ¢))
Where Count of the population in year z is
determined by the intercept term, the Year and the
log of the effort term (1 for IWC populations and 1
or >1 for CBC populations). Variance is defined by
Equation 2. As in the matching methods, and
following from the results of Wauchope et al
(2019), we will consider the slope of any data of 6
years or more, and significant slopes from data of
under 6 years. We will sensitivity check this by also
assessing only significant slopes.

We do not need to run this analysis on the BACI
dataset as counterfactuals are not required.

4.3 Question 3. What factors correlate to
protected area impact and performance?
Finally, we will examine what factors correlate to
protected area impact and performance. To do this,
we require a value of impact/performance for every
population (i.e. site species combination), however
for impact we so far only have only one overall
value (from Equations 6/7). How we obtain these
values is detailed in the sections below. Then, using
these population specific values we will run the
following mixed effects model (using function Imer,
R package Ime4, Bates et al., 2015):

E(By) = a+ Bs.10CovB + (1|Species)
+ (1|Country)
+ (1|Country: Site)

®

Where the 3. is the value of impact or performance
(either 3, 3. or 34 as detailed below) for protected
population 7, and is predicted by the covariates in
Table 5 (CovB), with a random effect of site nested
within country, crossed with a random effect for
species. We will check for any collinearity between
predictor variables before proceeding.

4.3.1 PA Impact by population — Full Protected
Dataset

To obtain a value of PA impact for every
population, when quantified only according to an
‘after’ counterfactual, will run the following model
for each population in the Full Protected Dataset:

log(E(Count,)) = a+ B,Y, + B,Y,BA, (10)

+ log(e,)

Where the count of the population in year z is
modelled by year (Y) and the interaction between
year and the before/after term (BA; Os in years
before protection and 1s in years after), plus the log
of the effort term (1 for IWC populations and 1 or
>1 for CBC populations). Variance is defined by
Equation 2. If the 3, coefficient is positive, trends
are more positive after PA designation. This [,
coefficient will then be used in model 9.

4.3.2 PA Impact by population - BACI Dataset

To obtain a value of PA impact for every
population, when quantified according to an ‘after’
and ‘control’ counterfactuals, will run the following
model on each matched population pair in the BACI
dataset:

log(E(Count,)) = a+ B,Yj, + B.Yj,BA;, (11)
+ ﬁSszCIjz + ﬁ4szBAjoIjz

+ log(e,)

Where the count of the population in site j (either
the protected or the unprotected site) in year z is
modelled by year (Y) and the interaction between
year and the before/after term (BA; Os in years
before protection and 1Is in years after), the
interaction term between year and the
control/intervention term (CI; 0 for unprotected
sites and 1 for protected sites) and the three way
interaction between year, before/after and
control/intervention), plus the log of the effort term
(1 for IWC populations and 1 or >1 for CBC
populations). Variance is defined by Equation 2. If
the fs coefficient is positive, trends are more
positive after PA designation, inside the PA. This S,
coefficient will then be used in model 9.

4.3.3 PA Performance by population
This is already quantified in Question 2 (section 4.2,

model 8). The f; value from this will be used in
model 9
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Table 5. Covariates used to assess what factors affect PA effectiveness

better to PAs (this was suggested in the study by
Amano et al which was based on associations).

Category | Variable and Reason for Inclusion Category/Levels | Source
Species Body Mass (g) Continuous Birdlife.org
We expect larger species to respond better to PAs
(Barnes et al). This is due to the fact that larger bodied
species are more vulnerable to hunting
Taxonomic group Categorical: Birdlife.org
Different taxonomic groups may respond differently Family
and so we intent to investigate this.
Species Migration Status. Categorical: Birdlife.org
(nested Because migrants are affected by other stressors than Non-migrant,
within just those in their wintering site, we expect migrants Migrant
Site) will show less responsiveness to PAs (and it beyond the
scope of this study to conside migratory networks).
Some species are migrants in parts of their range and
non-migrant in others, so we will categorise each
population at each site separately.
Site Anthrome. Categorical: HYDE (Hurtt
(nested in We expected that sites in more remote regions (i.c. Urban, Village, etal., 2011;
Country) semi-natural, wild) will show less responsiveness to Croplands, see Table 1)
protection, as these sites are less likely to have been Rangeland,
being exploited in the abser.lce qf protectlon'. HOWf':VCI', Semi-natural,
we also expect that populations in these regions will Wild
generally be more stable/increasing (i.e. above the
horizontal line of Fig 1b) because of increased distance
from possible impacts of mismanagement such as
poaching and habitat degradation.
PA Size. Continuous World
We expected larger PAs will perform better, because of Database on
reduced edge effects. Protected
Areas (UNEP-
WCMC &
IUCN, 2019)
PA Management. Continuous Global
This is not available for all PAs, but we will assess Database of
correlations for the PAs for which there are data. We Protected Area
expect that better managed PAs will perform better, as Management
they will succeed more in reducing hunting and habitat Effectiveness
degradation. We will assess the performance of PAs (UNEP-
using METT questions 12 -19, which relate to Capacity
and Resources (see Geldmann et al., 2018). WCMC &
IUCN, 2019),
Management
Effectiveness
Tracking Tool
(METT; WWF
International,
2007).
Country Governance. Continuous World Bank
We expect sites in better governed areas to respond (Kaufmann &

Kraay, 2019;
see Table 1)
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