1	How long should the fully hillside-closed forest protection be implemented on
2	the Loess Plateau, Shaanxi, China?
3	Lin Hou ¹ , Sijia Hou ²
4	1 College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China
5	2 College of Transportation, Southeast University, Nanjing, Jiangsu, 211189, China
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	Corresponding author
19	Lin Hou
20	3 Taicheng Road, Yangling, Shaanxi, 712100, China
21	E-mail: houlin1969@163.com

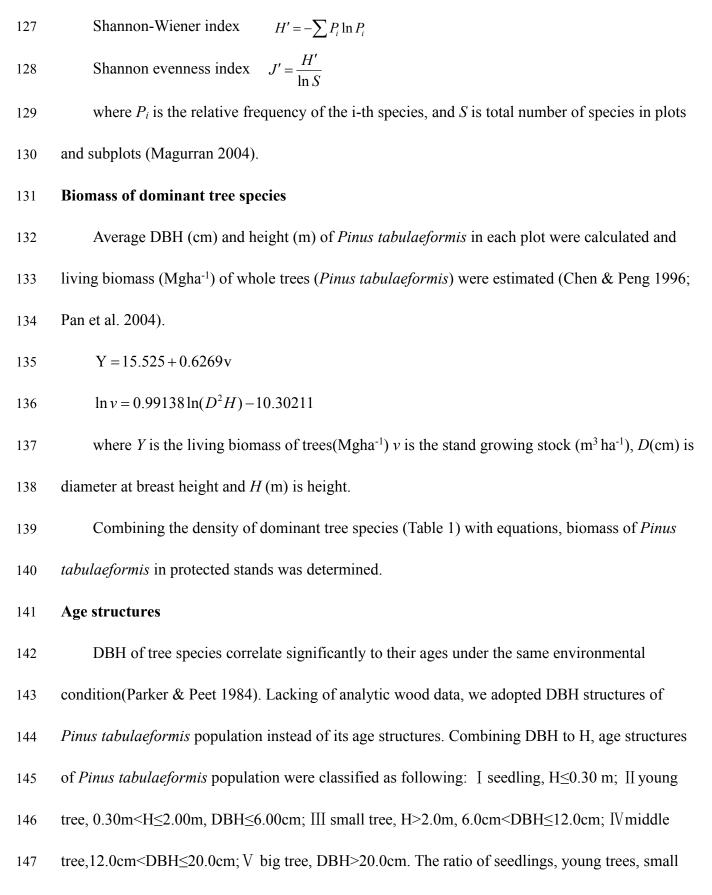
22 Abstract

23	Background. Restoration of degraded forest ecosystem is crucial for regional sustainable
24	development. To protect the country's fragile and fragmented environment, the Chinese
25	government has initiated an ecological engineering, the Natural Forest Protection Program in
26	seventeen provinces in China since 1998. Fully hillside-closed forest protection (vegetation
27	restoration naturally without any artificial disturbance) was one of vital measures of the Natural
28	Forest Protection Program applied national wide. Whether plant diversity, biomass and age
29	structure of dominant tree species and soil nutrients in protected stands may become better with
30	increase of protected period are still open problems.
31	Methods. We investigated community diversity, biomass of dominant tree species, age structures,
32	and analyzed soil chemical properties of a Pinus tabulaeformis population at protected sites
33	representing different protected ages at Huanglongshan Forest Bureau on the Loess Plateau, Shaanxi,
34	China.
35	Results. Plant species richness of Pinus tabulaeformis community was significantly affected
36	(p < 0.05) by forest protection and the effect attenuated with protection age. Shannon evenness index
37	of plant species generally increased with protection age. Stands protected for 45 years had the
38	highest tree biomass and considerable natural regeneration capacity. Contents of organic carbon,
39	available phosphorus and available potassium in top soil increased in protected stands less than 45
40	years, however decreased significantly thereafter. Long-term forest protection also decreased
41	content of mineral nitrogen in top soil.
42	Discussion. We found that richness of shrubs and herbs was significantly affected by forest

43	protection, and evenness indices of tree, shrub and herb increased inconsistently with protected
44	ages. Forest protection created more complex age structures and tree densities with increasing age
45	of protection. Content of soil mineral nitrogen at 0-20 cm soil depth showed a decreasing trend in
46	stands of up to 30 years. Soil available phosphorus and potassium contents were higher in stands
47	with greater proportions of big and middle trees. Long-term protection (> 45 years) of <i>Pinus</i>
48	tabulaeformisstand in southeast Loess Plateau, China, may be associated with decreasing plant
49	species richness, proportion of medium to large trees, dominant biomass of Pinus tabulaeformis
50	and soil nutrients.
51	
52	Keywords: Fully Hillside-closed Forest Protection, Optimal Protection Age, Pinus tabulaeformis,
53	the Loess Plateau, Restoration
54	
55	
56	
57	
58	
59	
60	
61	
62	
63	

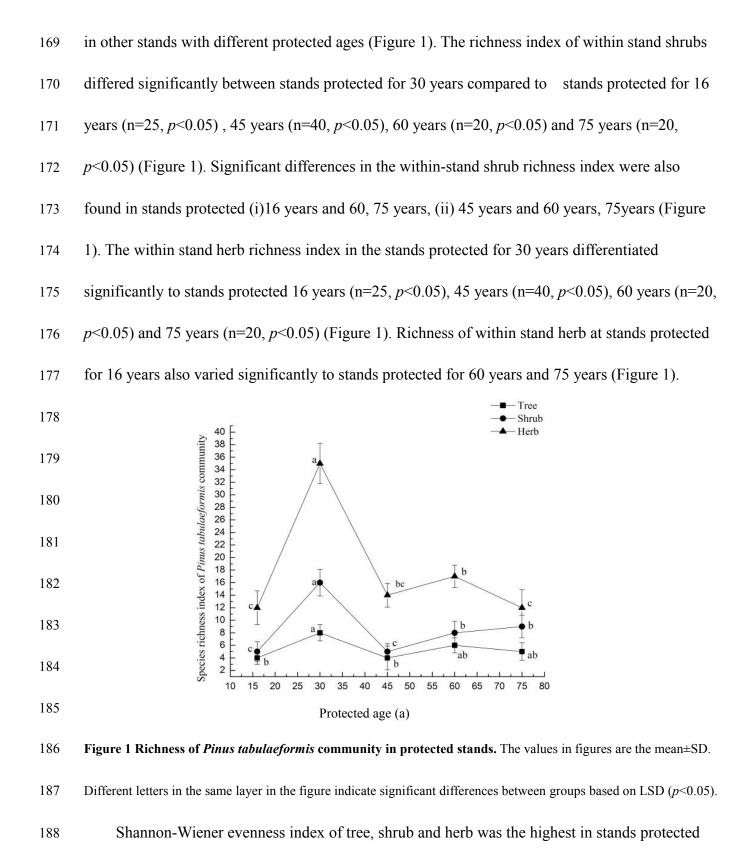
64 INTRODUCTION

Ecological restoration is being recognized as an international priority(Aronson & Alexander 2013; Wortley et al. 2013) and it plays a crucial role in rebuilding ecological equilibrium and reversing ecosystem degradation (Ma et al. 2013). As a part of ecological engineering (Mitsch 2012), the practice is being widely incorporated into natural resource strategies from the local to global level (Wortley et al. 2013).

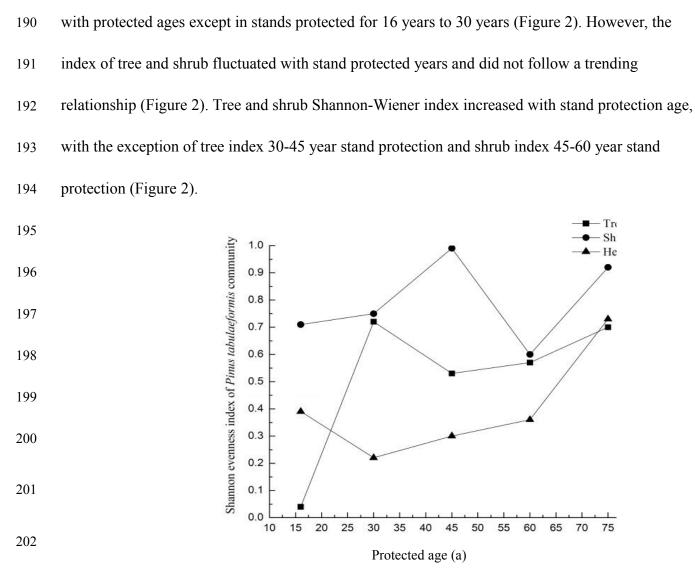

To protect the country's fragile and fragmented environment, the Chinese government has 70 initiated an ecological engineering, the Natural Forest Protection Program (NFPP) since 1998 (Xu 71 et al. 2006). Logging and harvesting of partial or full timber was prohibited in protected areas from 72 1998 to 2008(Xu et al. 2006). Fully hillside-closed forest protection (vegetation restoration 73 naturally without any artificial disturbance) was applied in national wide. Ecosystems have the 74 capacity to self-organize and the self-design or self-organizational properties of natural systems is 75 an essential component to ecological engineering(Bergen et al. 2001). It is obviously fully 76 hillside-closed forest protection is in accord with the ecological engineering principle self-design. 77 The previous studies regarding NFPP have mainly focused upon the introduction of the 78 related policy issues(Grumbine & Xu 2011; Li 2004; Wang et al. 2015), the spatial-temporal 79 80 succession of regional vegetation (Huang et al. 2014) and ecological restoration programs and payments (Yin & Zhao 2012). 81

However, a range of questions remain, particularly in relation to stand function and associated environmental parameters following stand protection. We hypothesize that fully hillside-closed forest protection may promote plant diversity, biomass and age structure of dominant tree species

85	and soil	nutrients	with	increase	of	protected	period.


86	The objectives of this study are to address a few of these key knowledge gaps, including : (i)
87	do the stands exhibit significant differences in plant assemblage; (ii) does soil fertility change with
88	stand age structure;(iii) can a functional relationship be defined regarding length of stand
89	protection and stand quality, i.e., are stands protected for longer timeframes "better" than other
90	stands; and (iv) based on findings of i-iii above, can a preliminary estimate regarding the optimal
91	time span for Pinus tabulaeformis stands be recommended to the Natural Forest Protection
92	Program?
93	MATERIALS AND METHODS
94	Site description
95	The study was conducted in Huanglong County (35°28'49"–36°02'01"N, 109°38'49"–
96	110°12'47"E) on the southeast Loess Plateau ,Shaanxi, China. Stands in this area (a part of NFPP
97	area) play key ecological roles in soil erosion abated and sand storm mitigated(Chen et al. 2014).
98	The vegetation type is a northern deciduous broad-leaved forest sub-region. Pinus tabulaeformis is
99	dominant tree species in the currently existing stands. The associated tree species are Quercus
100	liaotungensis, Syringa oblate, Populus davidiana, Prunus davidiana, Betula platyphylla and
101	Toxicodendron vernicifluum. Shrubs and herb species in understory are abundant. The altitude
102	ranges from 1100 to 1300 m. It is dominated by a warm temperate and semi-humid continental
103	climate. The annual average precipitation is 612 mm and the mean atmospheric temperature is
104	8.6 °C. Cinnamon soil is the main soil type in the forest region.
105	Due to poor communication and a small population in the past years, stands on some special

106	sites have not been disturbed since 1950, especially since 1998.
107	According to data from Huanglongshan Forest Bureau, Yanan, Shaanxi, China, stands with
108	protected age sequence were found in four forest farms (Table 1).
109	Field methods
110	The field investigation and sampling was conducted between June 5 to July 15, 2003. Each
111	plot of tree, shrub and herb was 20 m \times 20 m, 2m \times 2 m and 1 m \times 1 m respectively. Five sub-plots
112	of shrub, herb and regeneration seedlings were arrayed diagonally in each tree plot respectively.
113	The indices, species, number, Height (H), diameter at breast height (DBH) and canopy density of
114	trees, and species, height, cover ratio, number of shrub, herb and regeneration seedlings were
115	measured. All community data were collected from 27 tree plots spreading among the age cohorts
116	and 270 sub-plots (Table 1).
117	Three soil samples were obtained randomly by a special drill in each tree plot. Surface soils
118	(0-20cm depth) at all sites were assessed for soil properties including organic carbon, mineral N,
119	available phosphorous and potassium.
120	Community diversity
121	The importance of species richness and evenness in influencing diversity-associated
122	productivity has been demonstrated in a meta-analysis of 54 studies (Zhang et al. 2012). In this
123	study, we chose indices of richness and evenness to reflect characteristics of community. Species
124	richness index (S) was derived from field survey data. To characterize the diversity of the stand
125	community, the Shannon-Wiener index (H') and evenness index (J') were calculated as the
126	following:

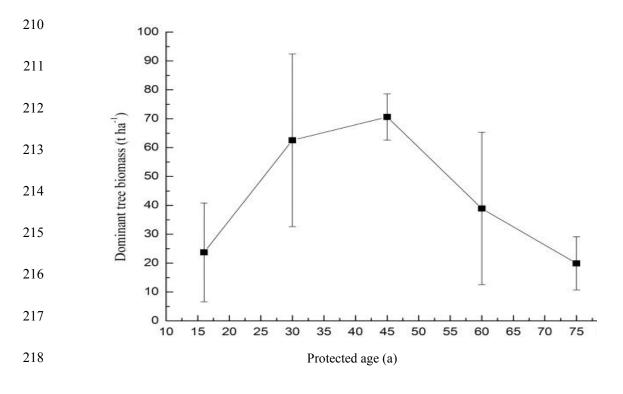

148	trees, middle trees and big trees in stand with same protecting age was used to illustrate age
149	structures. Probable age of individual was determined by their whorled branches.
150	Chemical analyses
151	Analyses were made on air-dry soil material that passed through a 2 mm sieve. Soil organic
152	carbon content (SOC) was determined by dry combustion with a TOC/TON analyzer
153	(TOC-VTH-2000A, Shimadzu Corporation, Japan). Soil mineral nitrogen (ammonium nitrogen,
154	NH ⁺ ₄ -N and nitric nitrogen, NO ⁻ ₃ -N) content was determined by the colorimetric method with
155	automatic flow injection (AA3, BRAN+LUEBBE,Germany). Available phosphorus content was
156	extracted in 0.5M NaHCO3 and determined by Mo-Sb colorimetry. Available potassium content
157	was determined by method of flame photometry(Bao 2000).
158	Data processing and analysis
159	SPSS 17.0 and Origin8.0 (OriginLab Corporation) software were used for statistical analysis
160	and plotting. A graphic check of the postulates was performed based on the residual distribution.
161	One-way analysis of variance (ANOVA) following by Fisher's least significant difference (LSD)
162	test ($p < 0.05$) was used to compare the protection age effects on diversity of plant community and
163	soil nutrients respectively.
164	RESULTS
165	Diversity of plants in protected stands
166	Richness index of tree, shrub and herb was highest in the stand protected for 30 years (Table
167	2). A significant difference in the tree species richness index was observed in the 30 year protected
168	stand compared to stands protected for 16 years (n=5, $p < 0.05$) and 45 years (n=8, $p < 0.05$), but not

Peer Preprints

189 for 30 years, 45 years and 75 years respectively (Figure 2). The index of herb generally increased

Peer Preprints

203


Figure 2 Shannon-Wiener evenness index of Pinus tabulaeformis community in protected stands

204 Biomass of *Pinus tabulaeformis* in protected stands

205 Biomass of *Pinus tabulaeformis* increased in stands until 45 years of forest protection;

206 however, for sites older than this protection age, stand biomass decreased (Figure 3). Peak biomass

- was 70.60 ± 8.00 t ha⁻¹ in the stand protected for 45 years, while biomass in the stand protected for
- 208 75 years $(19.90 \pm 9.2 \ 0 \ t^{-1})$ was lower than the stand protected for 16 years $(23.70 \pm 17.10 \ t^{-1})$
- 209 (Figure 3).

Figure 3 Biomass of Pinus tabulaeformis in protected stands

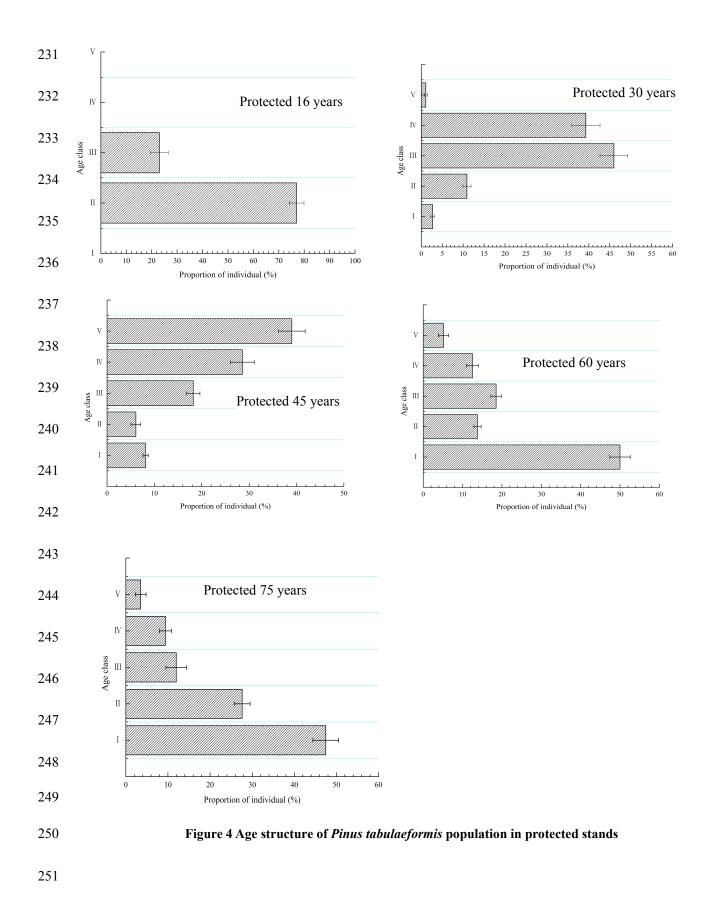
220 Age structure of *Pinus tabulaeformis* population in protected stands

221 Although age classes of *Pinus tabulaeformis* occurred in protected stands, they varied greatly

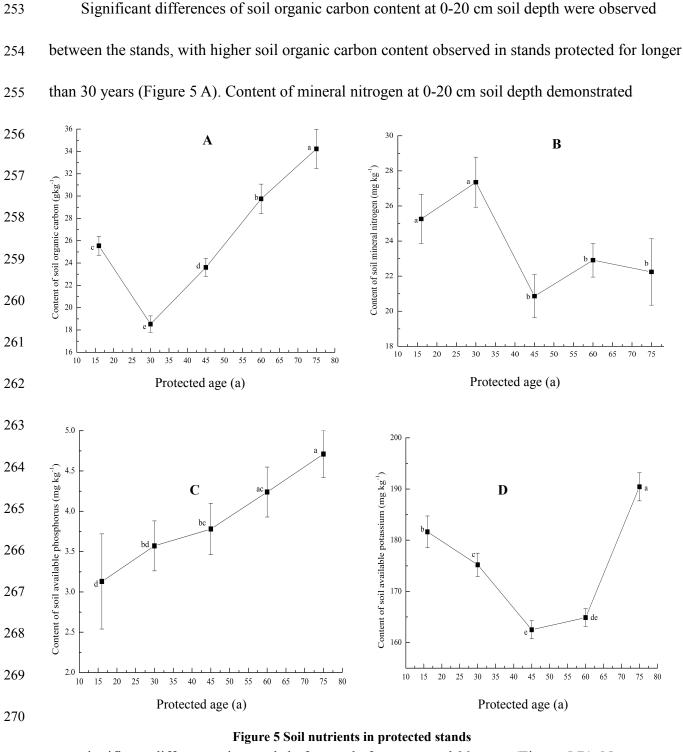
222 (Figure 4). Only young (II) and small trees (III) were found in the stand protected for 16 years,

small (III) and middle trees (IV) dominated the stand protected for 30 years (Figure 4). For the

stand protected for 45 years, big (V) and middle trees (IV) were main components, but seedlings


(I) and young trees were considerable also (Figure 4). In contrast, for stands protected for 60 and

226 75 years, seedlings (I) were the dominant component, followed by young (II) and small trees


227 (III), with big trees (V) lowest in distribution (Figure 4).

228

229

252 Soil nutrients

significant differences in stands before and after protected 30 years (Figure 5 B). No

significant differences were found between protected for 16 years and 30 years, and among stands

Peer Preprints

273	after protected for 30 years (Figure 5 B).Content of available phosphorus at 0-20 cm soil depth
274	increased as protection of stand age increased, with significant differences observed mostly at
275	youngest and oldest stand ages (Figure 5 C). No significant difference in available phosphorus was
276	observed in stands between 45 and 30 years protection age, and between 45 and 60 years
277	protection age (Figure 5 C).Content of available potassium at 0-20 cm soil depth decreased in
278	stands younger than 45 years forest protection and thereafter increased (Figure 5 D). Significant
279	differences were demonstrated among stands with different protection ages, except at 45 years and
280	60 years (Figure 5 D).
281	Discussion
282	Response of plant diversity to forest protection
283	Species richness is one measure of biodiversity and is very important for ecosystem
283 284	Species richness is one measure of biodiversity and is very important for ecosystem functioning, stability and integrity(Coroi et al. 2004). We found that richness of shrubs and herbs
284	functioning, stability and integrity(Coroi et al. 2004). We found that richness of shrubs and herbs
284 285	functioning, stability and integrity(Coroi et al. 2004). We found that richness of shrubs and herbs was significantly affected by forest protection, although richness (Figure 1) and evenness (Figure 2)
284 285 286	functioning, stability and integrity(Coroi et al. 2004). We found that richness of shrubs and herbs was significantly affected by forest protection, although richness (Figure 1) and evenness (Figure 2) indices of tree, shrub and herb increased inconsistently with protected age. The richness of plant
284 285 286 287	functioning, stability and integrity(Coroi et al. 2004). We found that richness of shrubs and herbs was significantly affected by forest protection, although richness (Figure 1) and evenness (Figure 2) indices of tree, shrub and herb increased inconsistently with protected age. The richness of plant species increased in stands protected for 16 years to 30 years, decreased in stands protected for 30
284 285 286 287 288	functioning, stability and integrity(Coroi et al. 2004). We found that richness of shrubs and herbs was significantly affected by forest protection, although richness (Figure 1) and evenness (Figure 2) indices of tree, shrub and herb increased inconsistently with protected age. The richness of plant species increased in stands protected for 16 years to 30 years, decreased in stands protected for 30 years to 45 years and remained fairly stable in stands protected for longer than 45 years (Table 2).
284 285 286 287 288 289	functioning, stability and integrity(Coroi et al. 2004). We found that richness of shrubs and herbs was significantly affected by forest protection, although richness (Figure 1) and evenness (Figure 2) indices of tree, shrub and herb increased inconsistently with protected age. The richness of plant species increased in stands protected for 16 years to 30 years, decreased in stands protected for 30 years to 45 years and remained fairly stable in stands protected for longer than 45 years (Table 2). Due to adequate sunlight and growing spaces, some pioneer tree species (<i>Populus davidiana</i> ,

293 trees, canopy density increased and some drought resistant plant species disappeared. The naturally

294	regenerating seedlings in stands protected for 45 years and older occupied a large proportion of the
295	species observed, impeding invasive plant species and stabilizing plant diversity of the community
296	assemblage. Inherent spatial variability within the landscape may provide a possible explanation
297	for this pattern observed, since Pinus tabulaeformis stands are distributed across variable site
298	conditions within the region. Soil moisture is considered to be the key limiting factor on the Loess
299	Plateau for differences in plant species growth and regeneration(Chen et al. 2014) and it is possible
300	that the differences in soil properties observed in this study reflect variation in plant-available
301	moisture.
302	Forest protection in Huanglongshan forest region, Yanan, Shaanxi, China was initiated in
303	1950. Stand structure within the protection area under the natural restoration condition differed.
304	Stands with age diversity generally were more species rich than stands with less age structure
305	(Thompson 2012). Findings in this study partly support this notion. Stands protected for great than
306	16 years had more diverse age structures and plant species richness (Figure 1). Age class structure
307	in stands protected for 30 years were generally simpler than stands protected for longer periods
308	(Figure 4). However, stands older than 30 years forest protection had lower richness index of tress
309	and understory species (Figure 2).
310	Our results suggest that sustainable forest protection can potentially contribute to plant
311	diversity conservation by increasing species richness generally (Table 2) and promoting
312	distribution of trees and herbs more even (Figure 2).
313	Response of age structure to forest protection
314	Forest protection created more complex age structures (Figure 3) and tree densities with

315	increasing age of protection (Table1). Seedlings, middle and big trees were absent in younger
316	stands (Figure 4) which indicated tree biomass was low (Figure 3) and lacked natural regeneration
317	capacity. Although plants species were most abundant in stands protected for 30 years (Figure 1),
318	this protection age contained the lowest proportion of big trees (V) among age classes (Figure 4)
319	limiting tree biomass. Both seedlings (Figure 4) and density of trees (Figure 1) in older (> 60 years)
320	stands protection were higher than younger stands, suggesting that a better natural regeneration
321	capacity. However, more seedlings and small trees without adequate big trees (Figure 4) in the
322	older stands also unveiled their insufficient productivity (Figure 3).
323	Our results support the widely accepted view that the rate of stand biomass accumulation
324	peaks in the early stage of development, usually at the time of canopy closure, and declines
325	thereafter (Acker et al. 2002; Mcmahon & Schlesinger 2010; Sarah Lesley Taylor 2005; Xu et al.
326	2012). The stand protected for 45 years had not only the highest canopy density (Table 1), but also
327	the highest proportion of big trees and tree biomass and considerable seedling density (Figure 4),
328	suggesting adequate regeneration capacity at this age.
329	Response of soil nutrients to forest protection
330	Vegetation plays a key role in maintaining the soils in which they grow (Mishra et al. 2003),
331	directly influencing soil nutrients accumulation and consequently soil development by above
332	ground inputs(Blazejewski et al. 2009; Drouin et al. 2011; Giese et al. 2000) . Litter fall and its

- decomposition is an important mechanism governing soil chemical properties (Mishra et al. 2003),
- especially the upper soil layer (Ma et al. 2007).
- 335 In the present study, *Pinus tabulaeformis* tree growth (Figure 3) and understory plant species

336	richness increased quickly for stands protected less than 30 years (Figure 1), however litterfall
337	input to soil was lower due to the absence of big trees in these stands (Figure 4). Tree and canopy
338	density (Table 1) decreased in stands protected for more than 30 years , with highest values
339	observed in stands protected for 45 years (Figure 3). Increased litterfall input, decomposition rate
340	and higher soil organic carbon contents were also observed at older forest sites (Figure 5A).
341	Content of soil mineral nitrogen at 0-20 cm soil depth showed an decreasing trend in stands of
342	up to 30 years protection although no significant differences were found among stands (Figure 5B).
343	This trend supports previous studies which have observed that young or developing stands
344	accumulate forest floor nitrogen, tending towards relatively stable conditions in undisturbed
345	mature forests (Johnson & Turner 2014; Miller 1981; Turner 1981).
346	The primary source of phosphorus and potassium in terrestrial ecosystems derives from
347	mineral materials in weathering parent rock (Filippelli 2008; Sheng 2005; Smeck 1985; Tiessen et
348	al. 1984). A proportion of there leased phosphorus and potassium, available in exchangeable and
349	soluble (available) fractions, can be assimilated by plants and soil microorganisms directly
350	(Schachtman et al. 1998; Sheng 2005). Soil phosphorus availability is also enhanced through
351	phosphorus solubilizing and mineralizing microbial biomass (Richardson & Simpson 2011). Many
352	soil microorganisms excrete organic acids to directly dissolve rock potassium to bring the
353	potassium into solution (Bennett 1998; Friedrich et al. 1991; Groudev 2010; Ullman et al. 1996).
354	In the present study, soil available phosphorus (Figure 5C) and potassium (Figure 5D)
355	contents were higher in stands with greater proportions of big and middle trees. We suggest that the
356	stands with greater biomass accumulated more litter and humic mineral in the top soil, which

357	provided a substantial energy source and favorable conditions for microbial activity (Fontaine et al.
358	2003). In younger stands, more nutrients may be taken up by the vegetation during intense tree
359	growth phase than can be replaced within the soil from mineral weathering and litter
360	decomposition (Brais et al. 1995) which may explain why soil available potassium decreased in
361	stands of up to 45 years protection in the present study (Figure 5D).
362	The optimal age for the fully hillside-closed forest protection
363	No restoration project is undertaken in a social vacuum (Knight et al. 2010). The goods and
364	services provided by forests are an important source of income for local people in the rural part of
365	China (Ma et al. 2013). Even when the intentions of ecological restoration are good and the
366	restoration strategy suitable for the environmental conditions (Ma et al. 2013), restoration action
367	will not be sustainable if it does not take into account the profit potential of local people
368	Our results showed that long-term protection (> 45 years) of <i>Pinus tabulaeformis</i> stand in
369	southeast Loess Plateau, China, may be associated with decreasing plant species richness (Table 2),
370	proportion of medium to large trees (Figure 4), dominant tree biomass(Figure 3) and soil nutrients
371	(Figure 5). We suggest that it is possible, based on the findings above, to couple forest
372	management policy without exacerbating the poverty of local people, through the promotion of
373	measured forest indices as evidence-based support for forest protection and use. For this region,
374	we suggest the optimum forest protection age of 45 years would encourage maximum plant
375	diversity and productivity, while supporting the socio-economic conditions of the local population
376	for sustainable land use.

377 Conclusions

Peer Preprints

378	The present study has reported differences of plant diversity, changes in forest age structure
578	The present study has reported unreferences of plant diversity, changes in forest age structure
379	and soil nutrients of Pinus tabulaeformis stands restoring in chronosequence on the southeast
380	Loess Plateau, China. The richness of plant species significantly differed with age of forest
381	protection, attenuating towards more even distribution with increasing age of forest protection.
382	Sustainable forest protection not only hindered from increased organic carbon content, available
383	phosphorus and potassium in top soil, but also abated tree biomass. Our findings have practical
384	implications. By using measured forest indices as evidence-based support for balancing forest
385	management policy, ecological restoration and local economy development including sustainable
386	timber harvesting, we conclude that the preliminary optimal age for forest protection in this area
387	should be not more than 45 years.
388	ACKNOWLEDGEMENTS
389	I thank Mr. Ren-he Wang, Ms. Fen-ling Zhang and other staff in Huanglongshan Forest
390	Bureau, Yanan, Shaanxi, China for their valuable assistance. I also thank Dr. Diane Allen for her
391	comments.
392	ADDITIONAL INFORMATION AND DECLARATIONS
393	Funding
394	This study was funded by the National Forest Management Basic Project (No. 1692016-07).

- **395 Competing Interests**
- 396 The author declares there are no competing interests.

397 Author Contribution

398 Lin Hou conceived and designed the experiments, performed the experiments, and wrote the

- 399 paper. Sijia Hou analyzed the data, prepared figures and tables, and reviewed drafts of the paper.
- 400 Data Availability
- 401 The following information was supplied regarding data availability. The summary data on
- 402 which these analyses are based are available in Table 1 and Table 2.

NOT PEER-REVIEWED

Forest farm	Plot No.	Altitude (m)	Direction	Gradient (°)	Position	Density of <i>P.tabulaeformis</i> (stems ha ⁻¹)	Canopy density	Protected age(a)	
	1	1170	Southeast	27	Upper	1025	0.30	uBe(u)	
	2	1150	Southeast	29	Middle	1075	0.35	16	
Shibu	3	1165	Northeast	24	Middle	1075	0.30		
	4	1135	Northeast	26	Lower	1100	0.30		
	5	1295	North	19	Middle	1050	0.30		
	6	1154	North	22.3	Middle	1050	0.60		
	7	1167	Northwest	24	Lower	675	0.50		
	8	1180	South	35	Upper	700	0.70	• •	
Guanzhuang	9	1165	South	35	Lower	1350	0.60	30	
	10	1180	South	22	Upper	1375	0.60		
	11	1163	South	25	Upper	1050	0.50		
	12	1170	North	24	Upper	750	0.60		
	13	1160	North	22.3	Middle	800	0.70		
	14	1175	North	21	Upper	625	0.60		
	15	1163	North	23	Middle	650	0.70		
Wazijie	16	1154	North	26	Lower	600	0.70	45	
	17	1120			Gully bottom	730	0.70		
	18	1130	North	10	Lower	760	0.60		
	19	1150	North	8	Ridge top	640	0.70		
	20	1200	Northeast	19	Middle	1525	0.60		
	21	1155	Northern	5	Ridge top	1550	0.40	60	
	22	1150	North	18	Upper	1725	0.40		
Caijiachuan	23	1130	North	16	Lower	1475	0.40		
	24	1205	Northeast	10	Middle	1900	0.30		
	25	1200	Northeast	5	Lower	1700	0.30	75	
	26	1185			Mesa	1425	0.30	15	
	27	1135	North	18	Middle	1400	0.40		

405

Protected age(a)	Tree	Shrub	Herb
	Pinus tabulaeformis	Lespedeza dahurica	Artemisia gmelinii
	Populus davidiana	Lespedeza floribunda	Astragalus kifonsanicus
	Syringa oblata	Rosa hugonis	Artemisia mongolica
		Sophora japonica	Bothriochloa ischaemum
			Bupleurum chinense
16			Kengia serotina
10			Lamium barbatum
			Patrinia heterophylla
			Rhaponticum uniflorum
			Scutellaria baicalensis
			Viola chaerophylloides
			Viola yedoensis
	Betula platyphylla	Acer ginnala	Adenophora potaninii
	Conus walteri wanger	Berberis dielsiana	Adenophora stricta
	Pinus tabulaeformis	Clematis brevicaudata	Agrimonia pilosa
	Prunus davidiana	Clematis fruticosa	Anaphalis margaritacea
	Prunus tomenosa	Cotoneaster multiflorus	Artemisia giraldii
	Xanthoceras sorbifolia	Lespedeza dahurica	Artemisia gmelinii
	Quercus Liaotungensis	Lonicera ferdinandii	Artemisia mongolica
	Syringa oblata	Ostryopsis davidiana	Aster tataricus
		Periploca sepium	Bothriochloa ischaemum
		Rhamnus davurica	Bupleurum chinense
		Rhamnus utilis	Carpesium divaricatum
30		Rosa hugonis	Discorea nippnica
		Rubus corchorifolius	Gentiana macrophylla
		Sophora japonica	Kengia serotina
		Spiraea fritschiana	Leontopodium leontopodioides
		Ziziphus jujube var.spinosus	Lilium pumilum
			Lysimachia barystachys
			Melissitus ruthenicus
			Patrinia heterophylla
			Pennisetum clandestinum
			Polygonatum odoratum
			Potentilla supina

Table 2 Richness of plant species in protected stands

			Sanguisorba officinalis
			Saussurea morifolia
			Saussurea nivea
			Saussurea petrovii
			Saussurea salsa
			Scutellaria baicalensis
			Spodiopogon sibiricus
			Thalictrum prezewalskii
			Urena lobata
			Vicia unijuga
			Viola chaerophylloides
			Viola selkirkii
			Viola yedoensis
	Betula platyphylla	Acer ginnala	Agrimonia pilosa
	Pinus tabulaeformis	Lespedeza dahurica	Anaphalis margaritacea
	Quercus Liaotungensis	Lonicera maccki	Artemisia mongolica
	Syringa oblata	Rubus corchorifolius	Aster tataricus
		Spiraea fritschiana	Bothriochloa ischaemum
			Kengia serotina
			Neottianthe cucullata
45			Potentilla discolor
			Spodiopogon sibiricus
			Urena lobata
			Viola chaerophylloides
			Viola japonica var. stenopetala
			Viola selkirkii
			Viola yedoensis
	Pinus tabulaeformis	Acer ginnala	Adenophora stricta
	Populus davidiana	Berberis dolichobotrys	Anaphalis margaritacea
	Prunus tomenosa	Cotoneaster zbakelii	Artemisia gmelinii
	Quercus Liaotungensis	Lespedeza dahurica	Artemisia mongolica
	Syringa oblata	Ostryopsis davidiana	Aster tataricus
60	Toxicodendron vernicifluum	Rosa hugonis	Bothriochloa ischaemum
		Rubus corchorifolius	Bupleurum chinense
		Spiraea fritschiana	Kengia serotina
			Neottianthe cucullata
			Polygonatum sibircum
			Potentilla discolor

			Scutellaria baicalensis
			Spodiopogon sibiricus
			Vicia cracca
			Viola chaerophylloides
			Viola selkirkii
			Urena lobata
	Pinus tabulaeformis	Acer ginnala	Anaphalis margaritacea
	Populus davidiana	Clematis fruticosa	Artemisia mongolica
	Quercus Liaotungensis	Cotoneaster zbakelii	Aster tataricus
	Syringa oblata	Indigofera amblyantha	Bothriochloa ischaemum
	Toxicodendron vernicifluum	Lespedeza dahurica	Kengia serotina
		Lonicera maccki	Sanguisorba officinalis
75		Ostryopsis davidiana	Spodiopogon sibiricus
		Rubus corchorifolius	Thalictrum prezewalskii
		Spiraea fritschiana	Urena lobata
			Viola chaerophylloides
			Vicia unijuga
			Viola selkirkii

406			
407			
408			
409			
410			
411			
412			
413			
414			
415			
416			

417 **REFERENCES**

- 418 Acker SA, Halpern CB, Harmon ME, and Dyrness CT. 2002. Trends in bole biomass accumulation,
- 419 net primary production and tree mortality in Pseudotsuga menziesii forests of contrasting
- 420 age. *Tree Physiology* 22:213-217.
- 421 Aronson J, and Alexander S. 2013. Ecosystem Restoration is Now a Global Priority: Time to Roll
 422 up our Sleeves. *Restoration Ecology* 21:293–296.
- 423 Bao SD. 2000. Soil and Agricultural Chemistry Analysis. Beijing: China Agriculture Press.
- 424 Bennett PC. 1998. Microbial Destruction of Feldspars. *Mineralogical Magazine* 62A:149-150.
- 425 Bergen SD, Bolton SM, and L. Fridley J. 2001. Design principles for ecological engineering.

426 *Ecological Engineering* 18:201-210.

427 Blazejewski GA, Stolt MH, Gold AJ, Gurwick N, and Groffman PM. 2009. Spatial distribution of

428 carbon in the subsurface of riparian zones. *Soil Science Society of America Journal*

- 429 73:1733-1740.
- Brais S, Camiré C, and Paré D. 1995. Impacts of whole-tree harvesting and winter windrowing on
 soil pH and. *Canadian Journal of Forest Research* 25:997-1007.
- 432 Chen C, and Peng H. 1996. Standing Crops and Productivity of the Major Forest-types at the
- Huoditang Forest Region of the Qinling Mountains. *Journal of Northwest Forestry College*11:92-102.
- 435 Chen Y, Cao Y, Chen Y, and Cao Y. 2014. Response of tree regeneration and understory plant
- 436 species diversity to stand density in mature Pinus tabulaeformis plantations in the hilly area
- 437 of the Loess Plateau, China. *Ecological Engineering* 73:238–245.

438	Coroi M, Skeffington MS, Giller P, Smith C, Gormally M, and O'Donovan G. 2004. Vegetation
439	diversity and stand structure in streamside forests in the south of Ireland. Forest Ecology &
440	Management 202:39-57.
441	Drouin A, Saint-Laurent D, Lavoie L, and Ouellet C. 2011. High-Precision Elevation Model to
442	Evaluate the Spatial Distribution of Soil Organic Carbon in Active Floodplains. Wetlands
443	31:1151-1164.
444	Filippelli GM. 2008. The Global Phosphorus Cycle: Past, Present, and Future. <i>Elements</i> 4:89-95.
445	Fontaine S, Mariotti A, and Abbadie L. 2003. The priming effect of organic matter: a question of
446	microbial competition? Soil Biology & Biochemistry 35:837-843.
447	Friedrich S, Platonova NP, Karavaiko GI, Stichel E, and Glombitza F. 1991. Chemical and
448	microbiological solubilization of silicates. Acta Biotechnologica 11:187-196.
449	Giese LA, Aust WM, Trettin CC, and Kolka RK. 2000. Spatial and temporal patterns of carbon
450	storage and species richness in three South Carolina coastal plain riparian forests.
451	Ecological Engineering 15:S157–S170.
452	Groudev SN. 2010. Use of heterotrophic microorganisms in mineral biotechnology. Engineering in
453	Life Sciences 7:299-306.
454	Grumbine RE, and Xu J. 2011. Creating a 'Conservation with Chinese Characteristics'. Biological
455	Conservation 144:1347–1355.
456	Huang XH, Yuan H, Yu FK, Li XY, Liang QB, Yao P, and Shao HB. 2014. Spatial-temporal
457	succession of the vegetation in Xishuangbanna, China during 1976–2010: A case study
458	based on RS technology and implications for eco-restoration. Ecological Engineering
	26

- 459 70:255–262.
- Johnson DW, and Turner J. 2014. Nitrogen budgets of forest ecosystems: A review. *Forest Ecology*& *Management* 318:370-379.
- 462 Knight AT, Cowling RM, Mark D, and Campbell BM. 2010. Mapping human and social
- dimensions of conservation opportunity for the scheduling of conservation action on
 private land. *Conservation Biology* 24:1348-1358.
- Li W. 2004. Degradation and restoration of forest ecosystems in China. *Forest Ecology & Management* 201:33-41.
- 467 Ma H, Lv Y, and Li H. 2013. Complexity of ecological restoration in China. *Ecological* 468 *Engineering* 52:75-78.
- 469 Ma X, Heal KV, Liu A, and Jarvis PG. 2007. Nutrient cycling and distribution in different-aged
- 470 plantations of Chinese fir in southern China. *Forest Ecology & Management* 243:61-74.
- 471 Magurran AE. 2004. *Measuring Biological Diversity*. Oxford: Blackwell Publishing.
- 472 Mcmahon SM, and Schlesinger WH. 2010. Evidence for a recent increase in forest growth.
- 473 Proceedings of the National Academy of Sciences of the United States of America
- 474 107:3611-3615.
- 475 Miller HG. 1981. Forest fertilization: some guiding concepts. *Forestry* 54:157-167.
- 476 Mishra A, Sharma SD, and Khan GH. 2003. Improvement in physical and chemical properties of
- sodic soil by 3, 6 and 9 years old plantation of Eucalyptus tereticornis : Biorejuvenation of
- 478 sodic soil. *Forest Ecology & Management* 184:115-124.
- 479 Mitsch WJ. 2012. What is ecological engineering? *Ecological Engineering* 45:5-12.

480	Pan Y, Luo T, Birdsey R, Hom J, and Melillo J. 2004. 'New Estimates of Carbon Storage and
481	Sequestration in China'S Forests: Effects of Age-Class and Method On Inventory-Based
482	Carbon Estimation'. Climatic Change 67:211-236.
483	Parker AJ, and Peet RK. 1984. Size and Age Structure of Conifers Forests. <i>Ecology</i> 65:1685-1689.
484	Richardson AE, and Simpson RJ. 2011. Soil Microorganisms Mediating Phosphorus Availability
485	Update on Microbial Phosphorus. Plant Physiology 156:989-996.
486	Sarah Lesley Taylor DAM. 2005. Rate and causes of decline of mature and overmature balsam fir
487	and spruce stands in New Brunswick, Canada. Canadian Journal of Forest Research
488	35:2479-2490.
489	Schachtman DP, Reid RJ, and Ayling SM. 1998. Phosphorus Uptake by Plants: From Soil to Cell.
490	Plant Physiology 116:447-453.
491	Sheng XF. 2005. Growth promotion and increased potassium uptake of cotton and rape by a
492	potassium releasing strain of Bacillus edaphicus. Soil Biology & Biochemistry
493	37:1918-1922.
494	Smeck NE. 1985. Phosphorus dynamics in soils and landscapes $36:185-199$.
495	Thompson I. 2012. Biodiversity, ecosystem thresholds, resilience and forest degradation. Unasylva
496	62:25-30.
497	Tiessen H, Stewart JWB, and Cole CV. 1984. Pathways of Phosphorus Transformations in Soils of
498	Differing Pedogenesis. Soil Science Society of America Journal 48:853-858.
499	Turner J. 1981. Nutrient cycling in an age sequence of western Washington Douglas-fir stands.
500	Annals of Botany 48:159-169.

501	Ullman WJ, Kirchman DL, Welch SA, and Vandevivere P. 1996. Laboratory evidence for
502	microbially mediated silicate mineral dissolution in nature a . Chemical Geology
503	132:11-17.
504	Wang Y, Sun M, Wang R, and Lou F. 2015. Promoting regional sustainability by eco-province
505	construction in China: A critical assessment. Ecological Indicators 51:127-138.
506	Wortley L, Hero J-M, and Howes M. 2013. Evaluating Ecological Restoration Success: A Review
507	of the Literature. Restoration Ecology 21:537-543.
508	Xu CY, Turnbull MH, Tissue DT, Lewis JD, Carson R, Schuster WSF, Whitehead D, Walcroft AS,
509	Li J, and Griffin KL. 2012. Age-related decline of stand biomass accumulation is primarily
510	due to mortality and not to reduction in NPP associated with individual tree physiology,
511	tree growth or stand structure in a Quercus -dominated forest. Journal of Ecology
512	100:428-440.
513	Xu J, Yin R, Li Z, and Liu C. 2006. China's ecological rehabilitation: Unprecedented efforts,
514	dramatic impacts, and requisite policies. Ecological Economics 57:595-607.
515	Yin R, and Zhao M. 2012. Ecological restoration programs and payments for ecosystem services as
516	integrated biophysical and socioeconomic processes-China's experience as an example.
517	Ecological Economics 73:56-65.
518	Zhang Y, Chen HYH, and Reich PB. 2012. Forest productivity increases with evenness, species
519	richness and trait variation: a global meta - analysis. Journal of Ecology 100:742-749.
520	