
Python in proteomics

Python is a versatile scripting language that is widely used in industry and academia. In bioinformatics,
there are multiple packages supporting data analysis with Python that range from biological sequence
analysis with Biopython to structural modeling and visualization with packages like PyMOL and
PyRosetta, to numerical computation and advanced plotting with NumPy/SciPy. In the proteomics
community, Python began to be widely used around 2012 when several mature Python packages were
published including pymzML, Pyteomics and pyOpenMS. This has led to an ever-increasing interest in the
Python programming language in the proteomics and mass spectrometry community. The number of
publications referencing or using Python has risen eight fold since 2012 (compared with the same time
period before 2012), with multiple open-source Python packages now supporting mass spectrometric
data analysis and processing. Computing and data analysis in mass spectrometry is very diverse and in
many cases must be tailored to a specific experiment. Often, multiple analysis steps have to be
performed (identification, quantification, post-translational modification analysis, filtering, FDR analysis
etc.) in an analysis pipeline, which requires high flexibility in the analysis. This is where Python truly
shines, due to its flexibility, visualization capabilities and the ability to extend computation with a large
number of powerful libraries. Python can be used to quickly prototype software, combine existing
libraries into powerful analysis workflows while avoiding the trap of re- inventing the wheel for a new
project.

Here, we will describe data analysis with Python using the pyOpenMS package. An extended
documentation and tutorial can also be found online at https://pyopenms.readthedocs.io. To allow the
reader to follow all steps in the tutorial, we will also describe the installation process of the software. Our
installation is based on Anaconda, an open- source Python distribution that includes the Spyder
integrated development environment (IDE) that allows development with pyOpenMS in a graphical
environment.
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I. ABSTRACT

II. TEXT

Python is a versatile scripting language that is widely used in industry and academia. In

bioinformatics, there are multiple packages supporting data analysis with Python that range

from biological sequence analysis with Biopython [1] to structural modeling and visualization

with packages like PyMOL and PyRosetta [2], to numerical computation and advanced

plotting with NumPy/SciPy [3]. In the proteomics community, Python began to be widely

used around 2012 when several mature Python packages were published including pymzML

[4], Pyteomics [5] and pyOpenMS [6]. This has led to an ever-increasing interest in the

Python programming language in the proteomics and mass spectrometry community. The

number of publications referencing or using Python has risen eight fold since 2012 (compared

with the same time period before 2012), with multiple open-source Python packages now

supporting mass spectrometric data analysis and processing [4, 5, 7–14]. Computing and

data analysis in mass spectrometry is very diverse and in many cases must be tailored to

a specific experiment. Often, multiple analysis steps have to be performed (identification,

quantification, post-translational modification analysis, filtering, FDR analysis etc.) in an

analysis pipeline, which requires high flexibility in the analysis. This is where Python truly

shines, due to its flexibility, visualization capabilities and the ability to extend computation

with a large number of powerful libraries. Python can be used to quickly prototype software,

combine existing libraries into powerful analysis workflows while avoiding the trap of re-

inventing the wheel for a new project.

Here, we will describe data analysis with Python using the pyOpenMS package [6].

An extended documentation and tutorial can also be found online at https://pyopenms.

readthedocs.io. To allow the reader to follow all steps in the tutorial, we will also describe

the installation process of the software. Our installation is based on Anaconda, an open-

source Python distribution that includes the Spyder integrated development environment

(IDE) that allows development with pyOpenMS in a graphical environment.
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III. INSTALLATION

In order to install pyOpenMS, we recommend to use Anaconda and Spyder which pro-

vide a fully integrated environment for developing, running and debugging Python code.

You can download the latest Python version (currently 3.7) bundled with Anaconda from

https://www.anaconda.com/distribution/. After installation, you will have multiple

new applications available on your computer. To set up pyOpenMS, use the newly installed

Anaconda environment to install pyOpenMS (on Windows: go to the Start Menu and click

on the “Anaconda Powershell Prompt” application) and type:

pip install pyopenms

which will result in a message “Successfully installed pyopenms” including a version num-

ber. You should now be set up to use pyOpenMS and you can start the Spyder application

(on Windows: go to the Start Menu and click on the “Spyder” application) which will open

up and provide you with multiple windows (see Fig. 1).

In addition, we recommend that you install the OpenMS tool suite from https:

//www.openms.de/download/openms-binaries/ which will install the visualization tool

TOPPView as well as over 180 TOPP tools that are executables distributed with OpenMS

(see chapter YYY for more information on OpenMS and TOPPView).

IV. GETTING STARTED

After installation, you can use the full extent of the OpenMS library. There are mul-

tiple ways to get information about the available functions and methods. We can inspect

individual pyOpenMS objects through the help function:

from pyopenms import *

help(MSExperiment)

which will display an extensive help text and list all available functions, indicat-

ing that MSExperiment exposes methods such as getNrSpectra() and getSpectrum(id)

where the argument id indicates the spectrum identifer. It also points to the base class

ExperimentalSettings which can be investigated in the same manner for additional infor-

mation.
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pyOpenMS supports a variety of different files through the implementations in OpenMS.

In order to demonstrate the capabilities of pyOpenMS to read different mass spectrometric

data files, we will download two files that have been prepared for this chapter and are

available from Zenodo1:

from urllib.request import urlretrieve

from pyopenms import *

url = "https://zenodo.org/record/2653155/files/"

urlretrieve (url + "example.mzML", "example.mzML")

urlretrieve (url + "search.fasta", "search.fasta")

exp = MSExperiment()

MzMLFile().load("example.mzML", exp)

exp.getNrSpectra()

exp.getNrChromatograms()

which will load the content of the “example.mzML” file into the exp variable of type

MSExperiment. The file contains 3 spectra and 5 chromatograms, which we can see from

the output of the code above.

V. PLOTTING

pyOpenMS has basic functionality to plot spectra and chromatograms, which we can now

try out on our file:

from pyopenms import *

exp = MSExperiment()

MzMLFile().load("example.mzML", exp)

Plot.plotSpectrum(exp.getSpectrum(0))

Plot.plotChromatogram(exp.getChromatogram(0))

This will generally produce an interactive plot of the spectrum and the chromatogram,

which allows zooming, panning and detailed manual analysis of the data. When using

Spyder, by default an inline plot will be generated that is static and cannot be manipulated.

1 https://zenodo.org/record/2653155
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VI. CHEMISTRY

A. Elements

OpenMS has representations for various chemical concepts including molecular formulas,

isotopes, amino acid sequences and modifications. First, we look at how elements are stored

in OpenMS:

from pyopenms import *

edb = ElementDB()

sulfur = edb.getElement("S")

print(sulfur.getName())

isotopes = sulfur.getIsotopeDistribution()

for iso in isotopes.getContainer():

print (iso.getMZ(), ":", iso.getIntensity())

As we can see, OpenMS knows common elements like Sulfur as well as their isotopic

distribution. These values are stored in Elements.xml in the OpenMS share folder and

can, in principle, be modified. The above code outputs the isotopes of sulfur and their

abundance.

B. Molecular Formula

Elements can be combined to molecular formulas (EmpiricalFormula) which can be used

to describe small molecules or peptides. The class supports a large number of operations

like addition and subtraction. A simple example is given in the next few lines of code.

from pyopenms import *

methanol = EmpiricalFormula("CH3OH")

water = EmpiricalFormula("H2O")

ethanol = EmpiricalFormula("CH2" + methanol.toString())

wm = water + methanol

5PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27736v1 | CC BY 4.0 Open Access | rec: 16 May 2019, publ: 16 May 2019



print(wm.toString())

print(wm.getElementalComposition())

Note how in lines 5 and 6 we were able to make new molecules by adding existing molecules

(either by adding two EmpiricalFormula objects or by adding simple strings).

C. Isotopic Distributions

OpenMS can also generate theoretical isotopic distributions from analytes represented

as EmpiricalFormula. Currently there are two algorithms implemented, CoarseIsotopePat-

ternGenerator which produces unit mass isotope patterns and FineIsotopePatternGenerator

which is based on the IsoSpec algorithm[15]:

from pyopenms import *

wm = EmpiricalFormula("CH3OH") + EmpiricalFormula("H2O")

print("Coarse Isotope Distribution:")

gen = CoarseIsotopePatternGenerator(5)

isotopes = wm.getIsotopeDistribution(gen)

for iso in isotopes.getContainer():

print (iso.getMZ(), ":", iso.getIntensity())

print("Fine Isotope Distribution:")

gen = FineIsotopePatternGenerator(1e-5)

isotopes = wm.getIsotopeDistribution(gen)

for iso in isotopes.getContainer():

print (iso.getMZ(), ":", iso.getIntensity())

Note how the result calculated with the FineIsotopePatternGenerator contains the

hyperfine isotope structure with heavy isotopes of Carbon, Hydrogen and Oxygen clearly

distinguished while the coarse (unit resolution) isotopic distribution contains summed proba-

bilities for each isotopic peak without the hyperfine resolution. Also note how the differences

between the hyperfine peaks can reach more than 115 ppm (52.041 vs 52.047). Note that

6PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27736v1 | CC BY 4.0 Open Access | rec: 16 May 2019, publ: 16 May 2019



the FineIsotopePatternGenerator will generate peaks until the total probability not covered

by the current result reaches 1e-5.

D. Amino Acids

An amino acid residue is represented in OpenMS by the class Residue. It provides a

container for the amino acids as well as some functionality. The class is able to provide

information such as the isotope distribution of the residue, the average and monoisotopic

weight. The residues can be identified by their full name, their three letter abbreviation or

the single letter abbreviation. The residue can also be modified, which is implemented in

the Modification class.

An amino acid residue modification is represented in OpenMS by the class

ResidueModification. The known modifications are stored in the ModificationsDB ob-

ject, which is capable of retrieving specific modifications. It contains UniMod as well as PSI

modifications.

VII. PEPTIDES AND PROTEINS

A. Amino Acid Sequences

The AASequence class handles amino acid sequences in OpenMS. A string of amino

acid residues can be turned into a instance of AASequence to provide some commonly used

operations and data. The implementation supports mathematical operations like addition or

subtraction. Also, average and mono isotopic weight and isotope distributions are accessible.

Weights, formulas and isotope distribution can be calculated depending on the charge

state (additional proton count in case of positive ions) and ion type. Therefore, the class

allows for a flexible handling of amino acid strings.

A very simple example of handling amino acid sequence with AASequence is given in the

next few lines, which also calculates the weight of the (M) and (M+2H)2+ ions.

from pyopenms import *

seq = AASequence.fromString("DFPIANGER")

concat = seq + seq
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# weight of M

seq.getMonoWeight()

# weight of M+2H

seq.getMonoWeight(Residue.ResidueType.Full, 2)

mz = seq.getMonoWeight(Residue.ResidueType.Full, 2) / 2.0

concat.getMonoWeight()

print("Monoisotopic m/z of (M+2H)2+ is", mz)

B. Molecular Formula

Note howe we can easily calculate the charged weight of a (M+2H)2+ ion on line 11 and

computem/z on line 12 – simply dividing by the charge. We can now combine our knowledge

of AASequence with what we learned above about EmpiricalFormula to get accurate mass

and isotope distributions from the amino acid sequence:

from pyopenms import *

seq = AASequence.fromString("DFPIANGER")

seq_formula = seq.getFormula()

print("Peptide", seq, "has molecular formula", seq_formula)

print("="*35)

gen = CoarseIsotopePatternGenerator(6)

isotopes = seq_formula.getIsotopeDistribution(gen)

for iso in isotopes.getContainer():

print ("Isotope", iso.getMZ(), ":", iso.getIntensity())

suffix = seq.getSuffix(3) # y3 ion "GER"

print("="*35)

print("y3 ion :", suffix)

y3_formula = suffix.getFormula(Residue.ResidueType.YIon, 2) # y3++ ion

suffix.getMonoWeight(Residue.ResidueType.YIon, 2) / 2.0 # CORRECT
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suffix.getMonoWeight(Residue.ResidueType.XIon, 2) / 2.0 # CORRECT

suffix.getMonoWeight(Residue.ResidueType.BIon, 2) / 2.0 # INCORRECT

print("y3 mz :", suffix.getMonoWeight(Residue.ResidueType.YIon, 2) / 2.0 )

print(y3_formula)

print(seq_formula)

Note on lines 13 to 15 we need to remember that we are dealing with an ion of the x/y/z

series since we used a suffix of the original peptide and using any other ion type will produce

a different mass-to-charge ratio (and while “GER” would also be a valid “x3” ion, note that

it cannot be a valid ion from the a/b/c series and therefore the mass on line 15 cannot

refer to the same input peptide “DFPIANGER” since its “b3” ion would be “DFP” and not

“GER”).

C. Modified Sequences

The AASequence class can also handle modifications, modifications are specified using

a unique string identifier present in the ModificationsDB in round brackets after the

modified amino acid or by providing the mass of the residue in square brackets. For

example AASequence.fromString(".DFPIAM(Oxidation)GER.") creates an instance

of the peptide “DFPIAMGER” with an oxidized methionine. There are multiple

ways to specify modifications, and AASequence.fromString("DFPIAM(UniMod:35)GER"),

AASequence.fromString("DFPIAM[+16]GER") and AASequence.fromString("DFPIAM[147]GER")

are all equivalent).

from pyopenms import *

seq = AASequence.fromString("PEPTIDESEKUEM(Oxidation)CER")

print(seq.toUnmodifiedString())

print(seq.toString())

print(seq.toUniModString())

print(seq.toBracketString())

print(seq.toBracketString(False))

9PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27736v1 | CC BY 4.0 Open Access | rec: 16 May 2019, publ: 16 May 2019



print(AASequence.fromString("DFPIAM(UniMod:35)GER"))

print(AASequence.fromString("DFPIAM[+16]GER"))

print(AASequence.fromString("DFPIAM[+15.99]GER"))

print(AASequence.fromString("DFPIAM[147]GER"))

print(AASequence.fromString("DFPIAM[147.035405]GER"))

Note there is a subtle difference between AASequence.fromString(".DFPIAM[+16]GER.")

and AASequence.fromString(".DFPIAM[+15.9949]GER.") - while the former will try to

find the first modification matching to a mass difference of 16 +/- 0.5, the latter will try to

find the closest matching modification to the exact mass. The exact mass approach usually

gives the intended results while the first approach may or may not.

D. Proteins

Protein sequences can be accessed through the FASTAEntry object and can be read and

stored on disk using a FASTAFile:

from pyopenms import *

bsa = FASTAEntry()

bsa.sequence = "MKWVTFISLLLLFSSAYSRGVFRRDTHKSEIAHRFKDLGE"

bsa.description = "BSA Bovine Albumin (partial sequence)"

bsa.identifier = "BSA"

alb = FASTAEntry()

alb.sequence = "MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDLGE"

alb.description = "ALB Human Albumin (partial sequence)"

alb.identifier = "ALB"

entries = [bsa, alb]

f = FASTAFile()

f.store("example.fasta", entries)
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E. TheoreticalSpectrumGenerator

This class implements a simple generator which generates tandem MS spectra from a

given peptide charge combination. There are various options which influence the occurring

ions and their intensities.

from pyopenms import *

tsg = TheoreticalSpectrumGenerator()

spec1 = MSSpectrum()

spec2 = MSSpectrum()

peptide = AASequence.fromString("DFPIANGER")

# standard behavior is adding b- and y-ions of charge 1

p = Param()

p.setValue("add_b_ions", "false")

tsg.setParameters(p)

tsg.getSpectrum(spec1, peptide, 1, 1)

p.setValue("add_b_ions", "true")

p.setValue("add_a_ions", "true")

p.setValue("add_losses", "true")

p.setValue("add_metainfo", "true")

tsg.setParameters(p)

tsg.getSpectrum(spec2, peptide, 1, 2)

print("Spectrum 1 has", spec1.size(), "peaks.")

print("Spectrum 2 has", spec2.size(), "peaks.")

# Iterate over annotated ions and their masses

for ion, peak in zip(spec2.getStringDataArrays()[0], spec2):

print(ion, peak.getMZ())

The example shows how to put peaks of a certain type, y-ions in this case, into a spectrum.

Spectrum 2 is filled with a complete spectrum of all peaks (a-, b-, y-ions and losses). The
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TheoreticalSpectrumGenerator has many parameters which have a detailed description

located in the class documentation. For the first spectrum, no b ions are added. Note how

the add metainfo parameter in the second example populates the StringDataArray of the

output spectrum, allowing us to iterate over annotated ions and their masses.

VIII. DIGESTION

A. Proteolytic Digestion with Trypsin

OpenMS has classes for proteolytic digestion which can be used as follows:

from pyopenms import *

from urllib.request import urlretrieve

urlretrieve ("http://www.uniprot.org/uniprot/P02769.fasta", "bsa.fasta")

dig = ProteaseDigestion()

dig.getEnzymeName() # Trypsin

bsa = "".join([l.strip() for l in open("bsa.fasta").readlines()[1:]])

bsa = AASequence.fromString(bsa)

result = []

dig.digest(bsa, result)

print(result[4].toString())

len(result) # 82 peptides

B. Proteolytic Digestion with Lys-C

We can of course also use different enzymes, these are defined Enzyme.xml file and can

be accessed using the EnzymesDB

names = []

ProteaseDB().getAllNames(names)

len(names) # at least 25 by default

e = ProteaseDB().getEnzyme(’Lys-C’)
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e.getRegExDescription()

e.getRegEx()

Now that we have learned about the other enzymes available, we can use it to cut out

protein of interest:

from pyopenms import *

from urllib.request import urlretrieve

urlretrieve ("http://www.uniprot.org/uniprot/P02769.fasta", "bsa.fasta")

dig = ProteaseDigestion()

dig.setEnzyme(’Lys-C’)

bsa = "".join([l.strip() for l in open("bsa.fasta").readlines()[1:]])

bsa = AASequence.fromString(bsa)

result = []

dig.digest(bsa, result)

print(result[4].toString())

len(result) # 57 peptides

We now get different digested peptides (57 vs 82) and the fourth peptide is now

GLVLIAFSQYLQQCPFDEHVK instead of DTHK as with Trypsin (see above).

IX. SIMPLE DATA MANIPULATION

Here we will look at a few simple data manipulation techniques on spectral data, such as

filtering.

A. Filtering Spectra

We will filter the “example.mzML” file by only retaining spectra that match a certain

identifier:

from pyopenms import *

inp = MSExperiment()
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MzMLFile().load("example.mzML", inp)

e = MSExperiment()

for s in inp:

if s.getNativeID().startswith("scan="):

e.addSpectrum(s)

MzMLFile().store("test_filtered.mzML", e)

B. Filtering by MS level

Similarly, we can filter the example.mzML file by MS level, retaining only spectra that

are not MS1 spectra (e.g. MS2, MS3 or MSn spectra):

from pyopenms import *

inp = MSExperiment()

MzMLFile().load("example.mzML", inp)

e = MSExperiment()

for s in inp:

if s.getMSLevel() > 1:

e.addSpectrum(s)

MzMLFile().store("test_filtered.mzML", e)

Note that we can easily replace line 7 with more complicated criteria, such as filtering by

MS level and scan identifier at the same time:

if s.getMSLevel() > 1 and s.getNativeID().startswith("scan="):

C. Filtering by scan number

Or we could use an external list of scan numbers to filter by scan numbers, thus only

retaining MS scans in which we are interested in:
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from pyopenms import *

inp = MSExperiment()

MzMLFile().load("example.mzML", inp)

scan_nrs = [0, 2, 5, 7]

e = MSExperiment()

for k, s in enumerate(inp):

if k in scan_nrs and s.getMSLevel() == 1:

e.addSpectrum(s)

MzMLFile().store("test_filtered.mzML", e)

D. Filtering Spectra and Peaks

We can now move on to more advanced filtering, suppose we are interested in only a part

of all fragment ion spectra, such as a specific m/z window. We can easily filter our data

accordingly:

from pyopenms import *

inp = MSExperiment()

MzMLFile().load("example.mzML", inp)

mz_start = 6.0

mz_end = 12.0

e = MSExperiment()

for s in inp:

if s.getMSLevel() > 1:

filtered_mz = []

filtered_int = []

for mz, i in zip(*s.get_peaks()):

if mz > mz_start and mz < mz_end:

filtered_mz.append(mz)

filtered_int.append(i)
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s.set_peaks((filtered_mz, filtered_int))

e.addSpectrum(s)

MzMLFile().store("test_filtered.mzML", e)

Note that in a real-world application, we would set the mz start and mz end parameter

to an actual area of interest, for example the area between 125 and 132 which contains

quantitative ions for a TMT experiment.

Similarly we could change line 13 to only report peaks above a certain intensity or to

only report the top N peaks in a spectrum.

E. Memory management

On order to save memory, we can avoid loading the whole file into memory and use the

OnDiscMSExperiment for reading data.

from pyopenms import *

ondisc_exp = OnDiscMSExperiment()

ondisc_exp.openFile("example.mzML")

e = MSExperiment()

for k in range(ondisc_exp.getNrSpectra()):

s = ondisc_exp.getSpectrum(k)

if s.getNativeID().startswith("scan="):

e.addSpectrum(s)

MzMLFile().store("test_filtered.mzML", e)

Note that using the approach the output data e is still completely in memory and may

end up using a substantial amount of memory. We can avoid that by using the following

code:

from pyopenms import *

ondisc_exp = OnDiscMSExperiment()
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ondisc_exp.openFile("example.mzML")

consumer = PlainMSDataWritingConsumer("test_filtered.mzML")

e = MSExperiment()

for k in range(ondisc_exp.getNrSpectra()):

s = ondisc_exp.getSpectrum(k)

if s.getNativeID().startswith("scan="):

consumer.consumeSpectrum(s)

del consumer

Make sure you do not forget del consumer since otherwise the final part of the mzML

may not get written to disk (and the consumer is still waiting for new data).

X. EXAMPLE: PEPTIDE SEARCH

In MS-based proteomics, fragment ion spectra (MS2 spectra) are often interpreted by

comparing them against a theoretical set of spectra generated from a FASTA database.

OpenMS contains a (simple) implementation of such a “search engine” that compares ex-

perimental spectra against theoretical spectra generated from a chemical or enzymatic digest

of a proteome.

In most proteomics applications, a dedicated search engine (such as Comet, Crux, Mas-

cot, MSGFPlus, MSFragger, Myrimatch, OMSSA, SpectraST or XTandem; all of which

are supported by pyOpenMS) will be used to search data. Here, we will use the internal

SimpleSearchEngineAlgorithm from OpenMS used for teaching purposes. This makes it

very easy to search an (experimental) mzML file against a fasta database of protein se-

quences:

from pyopenms import *

SimpleSearchEngineAlgorithm().search("example.mzML",

"search.fasta", protein_ids, peptide_ids)
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This will print search engine output including the number of peptides and proteins in

the database and how many spectra were matched to peptides and proteins. We can now

investigate the individual peptide spectrum matches (PSM) using Python:

for peptide_id in peptide_ids:

# Peptide identification values

print (35*"=")

print ("Peptide ID m/z:", peptide_id.getMZ())

print ("Peptide ID rt:", peptide_id.getRT())

print ("Peptide scan index:", peptide_id.getMetaValue("scan_index"))

print ("Peptide scan name:", peptide_id.getMetaValue("scan_index"))

print ("Peptide ID score type:", peptide_id.getScoreType())

# PeptideHits

for hit in peptide_id.getHits():

print(" - Peptide hit rank:", hit.getRank())

print(" - Peptide hit charge:", hit.getCharge())

print(" - Peptide hit sequence:", hit.getSequence())

z = hit.getCharge()

mz = hit.getSequence().getMonoWeight(Residue.ResidueType.Full, z) / z

print(" - Peptide hit monoisotopic m/z:", mz)

print(" - Peptide ppm error:", abs(mz - peptide_id.getMZ())/mz *10**6 )

print(" - Peptide hit score:", hit.getScore())

We notice that the second peptide spectrum match (PSM) was found for the third spec-

trum in the file for a precursor at 775.38 m/z for the sequence RPGADSDIGGFGGLFDLAQAGFR.

tsg = TheoreticalSpectrumGenerator()

thspec = MSSpectrum()

p = Param()

p.setValue("add_metainfo", "true")

tsg.setParameters(p)

peptide = AASequence.fromString("RPGADSDIGGFGGLFDLAQAGFR")

tsg.getSpectrum(thspec, peptide, 1, 1)
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# Iterate over annotated ions and their masses

for ion, peak in zip(thspec.getStringDataArrays()[0], thspec):

print(ion, peak.getMZ())

e = MSExperiment()

MzMLFile().load("searchfile.mzML", e)

print ("Spectrum native id", e[2].getNativeID() )

mz,i = e[2].get_peaks()

peaks = [(mz,i) for mz,i in zip(mz,i) if i > 1500 and mz > 300]

for peak in peaks:

print (peak[0], "mz", peak[1], "int")

Comparing the theoretical spectrum and the experimental spectrum for

RPGADSDIGGFGGLFDLAQAGFR we can easily see that the most abundant ions in the

spectrum are y8 (877.452 m/z), b10 (926.432), y9 (1024.522 m/z) and b13 (1187.544 m/z).

We can now use the OpenMS tool TOPPView for visualization of the mzML file

(see chapter YYY for more information on OpenMS and TOPPView). When load-

ing the searchfile.mzML into the OpenMS visualization software TOPPView, we can

convince ourselves that the observed spectrum indeed was generated by the peptide

RPGADSDIGGFGGLFDLAQAGFR by loading the corresponding theoretical spectrum into the

viewer using “Tools”->”Generate theoretical spectrum” (see Fig. 2).

XI. PYOPENMS IN R

The R programming language is a powerful open-source statistical programming language

that is often used in Bioinformatics. While chapter XXX describes the available tools in R in

greater detail, here we will briefly discuss how one can use an existing Python library, such

as pyOpenMS, directly in R. Since there are no native wrappers for the OpenMS library

in R, we will use the “reticulate” package in order to get access to the full functionality of

pyOpenMS in the R programming language.
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A. Install the “reticulate” R package

In order to use all pyopenms functionalities in R, we suggest to use the “reticulate” R

package.

A thorough documentation is available at: https://rstudio.github.io/reticulate/

install.packages("reticulate")

Installation of pyopenms is a requirement as well and it is necessary to make sure that

R is using the same python environment.

In case R is having trouble to find the correct Python environment, you can set it by hand

as in this example (using miniconda, you will have to adjust the file path to your system to

make this work). You will need to do this before loading the “reticulate” library:

Sys.setenv(RETICULATE_PYTHON = "/usr/local/miniconda3/envs/py37/bin/python")

Or after loading the “reticulate” library:

library("reticulate")

use_python("/usr/local/miniconda3/envs/py37/bin/python")

B. Import pyopenms in R

After loading the “reticulate” library you should be able to import pyopenms into R

library(reticulate)

ropenms=import("pyopenms", convert = FALSE)

This should now give you access to all of pyopenms in R. Importantly, the convert option

has to be set to FALSE, since type conversions such as 64bit integers will cause problems.

You should now be able to interact with the OpenMS library and, for example, read and

write mzML files:

library(reticulate)

ropenms=import("pyopenms", convert = FALSE)

exp = ropenms$MSExperiment()

ropenms$MzMLFile()$store("testfile.mzML", exp)
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which will create an empty mzML file called testfile.mzML.
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FIG. 1: Spyder graphical interface for Python. The Spyder software is an open-source

integrated development environment (IDE) for Python which allows users to develop, run and

debug Python scripts. Here, a screenshot of the software is shown after executing the import

pyopenms command in the console (lower right, see In [1]). In the left window, a script that

is currently active is shown and its result is shown on the command window (see In [2]). On

the top, the variable explorer is active which shows the currently available variables, here the mz

variable is displayed that has the value 509.75 and is computed on line 14 of the script.
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FIG. 2: Peptide spectrum match, visualized with TOPPView. A theoretical spectrum

and an experimental spectrum are visualized together using the OpenMS software TOPPView.
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