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Abstract (max 250 words : currently 240) 28 

 29 

Randomized controlled trials (RCTs) analyzing serious adverse events often observe low 30 

incidence and might even observe zero events in either or both of the treatment and control 31 

arms. In the meta-analysis of RCTs of adverse events, it is unclear whether trials with zero 32 

events in both arms provide any information for the summary risk ratio (RR) or odds ratio 33 

(OR). Studies with zero events in both arms are usually excluded in both frequentist and 34 

Bayesian meta-analysis. We used a fully probabilistic approach—a Bayesian framework—for 35 

the meta-analysis of studies with rare events, and systematically assessed whether exclusion 36 

of studies with no events in both arms produced different results compared to keeping all 37 

studies in the meta-analysis. We did this by conducting a simulation study in which we 38 

assessed the bias in the point estimate of the log(OR) and the coverage of the 95% posterior 39 

interval for the log(OR) for different analytical decisions and choices in fixed effect and 40 

random effects meta-analysis. We used simulated data generated from a known fixed effect 41 

or random effects data scenario (each scenario with a 1000 meta-analysis data-set). We found 42 

that the uniform and Jeffrey’s prior on the baseline risk in the control group leads to biased 43 

results and a reduced coverage, and that setting the prior distribution on the log(odds) scale 44 

worked better. We also found nearly identical results regardless of whether studies with no 45 

events in both arms were excluded or not.   46 

 47 

Keywords: meta-analysis, Bayesian approach, rare events, fixed effect, random effects 48 

 49 

1 Introduction 50 

Meta-analysis (MA) combines the results obtained from individual studies, usually 51 

randomized controlled trials (RCTs). The main outcome in such trials is often a clinical 52 

event, and the studies are powered for comparing the occurrence of that clinical event in the 53 

treatment arms. When an MA addresses treatment-associated adverse events, which are 54 

usually rare, no events might be observed in one or both arms of an individual trial, and effect 55 

measures such as the odds ratio (OR) or relative risk (RR), are undefined for all trials, or are 56 

biased [1]. In addition, when events are rare, but not all zero, the standard errors of the effect 57 

measures based on normal approximation theory are not robust, which can lead to unreliable 58 

statistical inferences.  59 
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The problem can be approached in several ways in meta-analysis. One approach is to exclude 60 

trials with zero events in one or both arms, which makes it more likely that the magnitude of 61 

the pooled treatment effect will be inflated [2]. Some research has pointed out that from an 62 

ethical point of view patients in double-zero studies deserve to be included in the analyses 63 

[3], while others have argued that such studies may carry information of relative treatment 64 

effects through their sample size [4]. Also, using a simulation study [5] showed that 65 

excluding studies with no events in both arms for meta-analyses introduced bias into the 66 

pooled estimates when there was no true treatment effect.  67 

Another approach uses a continuity correction (CC) of 0.5 for each cell [6, 7]. Sweeting et al. 68 

[8] have proposed different CCs that perform better if the number of patients in the treatment 69 

and control groups are severely imbalanced. Based on simulation studies, [4] suggests that 70 

deleting trials with no events in either arm or adding CCs can introduce bias to the calculation 71 

of effect measure(s).  72 

Various statistical methods have been proposed for using and combining information from 73 

trials with no events. A principled approach is to assume that the number of events given n 74 

(the number of patients in a treatment group) and the true risk follows a binomial distribution. 75 

Kuss [4] used beta-binomial regression methods to make inferences about OR, RR, and risk 76 

difference. Kuss’s approach assumes that events in the treatment groups are binomially 77 

distributed, i.e. the likelihood for the observed events is the binomial distribution, and it can 78 

handle studies with no events. Cai et al. [9], proposed a method that uses the idea of 79 

conjugacy in the same way as the beta-binomial model. They used Poisson models for both 80 

fixed effect (FE) and random effects (RE) MA to make inferences about the RR between two 81 

treatment groups. Bohning et al. [10] proposed a Poisson model for RE and concluded that 82 

these techniques returned almost the same results as the Mantel-Haenszel (MH) method. 83 

Other methods along these lines can be found in serveral other publications [11-19]. 84 

Another approach to the MA of rare events is to take a fully probabilistic, Bayesian approach. 85 

Here, after the specification of prior distributions for all relevant parameters of the analysis 86 

model, the data and application of Bayes's theorem allows obtaining posterior distributions 87 

for all relevant parameters [20]. Smith (1995) and Warn [21, 22] showed how to implement a 88 

fully Bayesian FE and RE meta-analysis with exact binomial likelihood using WinBUGS. 89 

This of course needs a decision about the prior distributions to be used that could reflect 90 

expert opinion or be derived from external available information [23], or that could be set to 91 

reflect vague prior information. In an MA of rare events, the data contain limited information, 92 
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and the information of the prior distributions is expected to contribute to the posterior 93 

distribution. Sweeting et al. [8] investigated, among other approaches, Bayesian inference in 94 

the FE meta-analysis in situations with rare events, and concluded that the method provided 95 

good coverage in all scenarios investigated. However, they excluded a priori trials with no 96 

events in both arms from the MA.  97 

We used a Bayesian approach to conduct the MA of studies with rare events to estimate the 98 

odds ratio, more precisely the log of the odds ratio, and specifically assessed the importance 99 

of (1) excluding yes or no trials with zero events in both arms, and (2) the choice of priors for 100 

the true OR and τ for the heterogeneity in case of RE meta-analyses. We chose the OR as the 101 

target effect measure for ease of implementation because it is almost identical to the risk ratio 102 

in rare event situations and allows easier model implementation using the logit function. In 103 

Section 2, we define the statistical model and the different types of priors to be used both in 104 

FE and RE meta-analyses. In Section 3, we describe a simulation study and the range of 105 

scenarios in which we varied assumptions about true OR, the heterogeneity τ in RE standard 106 

deviation, the risk in the control group, the total number of patients in treatment and control 107 

groups, and the randomization ratio in the studies. In Section 4, we present the results of the 108 

simulation studies. In Section 5, we reanalyze studies on the cardiovascular risk of 109 

Rosiglitazone in the treatment of Type II diabetes. 110 

 111 

2 Bayesian approach to meta-analysis of studies with rare events 112 

Two approaches can be used to combine study findings: 113 

1) The FE MA assumes that the treatment effect is the same in all of the studies. For FE, we 114 

consider that observed variation is caused by sampling variation.  115 

2) The RE MA assumes that there is a variation of the true treatment effect across studies 116 

(heterogeneity). Therefore, one makes additional assumptions on how the study-specific 117 

treatment effects vary. In the binary case, one commonly assumes that the study-specific 118 

log(ORi) follow a normal distribution, which then implies that one also estimates the standard 119 

deviation τ of this normal distribution [24]. No less than 16 methods have been identified to 120 

estimate τ or τ-squared [25]. In situations with rare events, it is particularly challenging to 121 

estimate τ and the choice of the prior distributions for τ is expected to be important.   122 

  123 
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2.1 Model structure for the meta-analysis 124 

Throughout, we assume that data for each individual study � = (1, … ,�) in the MA come 125 

from a two-arm randomized trial comparing a new treatment (received by the treatment group 126 

t) with a control treatment (received by the control group c) and that the outcome assessed in 127 

the MA is a binary adverse event. The numbers of events for c and t groups in each study � 128 

then follow a binomial distribution  129 ��� ~ ��������(��� ,  ���)        (1) 130 ��� ~ ��������(��� ,  ���)    (2) 131 

where ��� and ��� are the total number of patients and ��� and ���  the true risks in study � in 132 

the control and treatment groups. For the OR of each study i, we then have  133 ��� = (
��������  /

�������� )         (3) 134 

which can be rewritten as �����(���) = ���(���) + �����(���), in which the logit function is 135 �����(�) = log(
���� ). In the FE model, the true treatment effect is assumed to be identical in 136 

all studies to be meta-analyzed, i.e. ���(���) = ���(��). 137 

For the Bayesian approach, prior distributions must be specified for all unknown parameters, 138 

i.e. ���(���) as well as the ��� in FE MA. We chose an extremely vague prior distribution for 139 

log(OR) in the form of normal distribution with mean of zero and standard deviation (SD) of 140 

10.141 

 142 

2.1.1 Prior distributions for a risk of the control group   143 

For ���, we studied three different ways of defining the prior distributions: (a) use of a prior 144 

distribution that is conjugate to the binomial likelihood, (b) use of independent weakly 145 

informative distribution on the $%&'(()'*), and (c) allowing for hierarchical structure among 146 

the ���.  147 

a. Conjugate prior on )'*: Due to mathematical convenience, one often chooses a prior 148 

distribution that is conjugate to the likelihood [26]. For the binomial likelihood, these are 149 

beta distributions with shape parameters a and b (defined in Table 1).  150 

b. Weakly informative prior on $%&'(()'*): Using normal prior distributions on the logit 151 

scale has been proposed and used in previous studies  [8, 21, 22, 27]. Therefore, we used a 152 
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normal distribution with a mean of zero and SDs of 10 and 100 (precisions of 0.01 and 153 

0.0001). To cover very small baseline risks, it seems reasonable to use these values for SDs. 154 

We also used uniform distribution with range of 20, which, when back transformed to the 155 

risk scale, has a substantial mass close to zero, but is bounded away from zero at 2 × 10-/. 156 

 157 

Table 1. List of prior distributions for )'* 

Parameter Prior distribution 

a.  )'* 01��(1, 1) 

 01��(0.5, 0.5)    

b.  $%&'(()'*) 4��5(−10, 10) 

 ��7���(0, 10) 

 ��7���(0, 100)   

c.  $%&'(()'*)* ��7���(8, 9)   where 

                8 ~ 4��5(−6,−3)  

        9 ~ 4��5(0, 1) 

* hierarchical structure on $%&'(()'*), ' = <,=, … , > 

 158 

c. Hierarchical structure on prior for $%&'(()'*): In the hierarchical model, we assume 159 

that multiple parameters of interest are drawn from the same common distribution. In this 160 

case, the �����(���) come from a normal distribution with an unknown mean (8) and 161 

standard deviation (9). In addition to this structural assumption, one needs to specify 162 

prior distributions for both the mean (8) and the standard deviation (9). To reflect a rare 163 

events situation, we chose a uniform distribution U(-6 to -3) for 8 and U(0 to 1) for 9. 164 

These specifications provide a 95% prior interval of 0.16% to 7.0% for the risk in the 165 

control group. 166 

 167 

2.2 Additional model structure and assumptions for the RE MA 168 

In the FE MA, we assumed a common true log(��) for all studies. In the RE MA we assume 169 

that the true log(���) from a normal distribution with mean log(��) and a standard 170 

deviation (?) which quantifies between-study heterogeneity [24]. We have   171 

log(���) ~ ��7���(�1��(log(��)) , ?),      � = 1, 2, … ,�               (5). 172 

We specified a ��7���(�1�� = 0, @A = 10) distribution as the prior distribution for 173 

log(��)  and investigated several prior distributions for ? as given in Table 2. Because it is 174 
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particularly challenging to estimate τ in situations with rare events, we expected the 175 

specification of the prior distributions for τ to be important. Working on the log(���) implies  176 

Table 2. List of prior distributions for ? 

Parameter Prior distribution Mean 

   ?  1��(2) 0.5 

  4��5(0, 2) 1 
 half-normal 0.5 
 �����7���(−4.07, 1.45D) −4.07 

that a ? of 0.5 to 1.0 already reflects large heterogeneity of the treatment effects across 177 

studies, as discussed in Spiegelhalter [26]. Therefore, we set two prior distributions to have a 178 

mean of 0.5,and a third, the uniform(0, 2), had a mean of 1. Finally, we used one of the prior 179 

distributions suggested by Turner et al. [28], �����7���(-4.06, 1.45D), for ?D. 180 

In the RE MA, we investigated a subset of the prior distributions for logit(���) we used in the 181 

FE MA. 182 

 183 

3 Simulations 184 

3.1 Data generation scenarios 185 

We conducted a simulation study to assess coverage of the 95% CIs and bias for log(��) 186 

estimates. For the data simulations, we defined the following scenarios:  187 

� Size of true $%&(EF): For both FE and RE scenarios, we assessed scenarios with log(1) 188 

and log(2).  189 

� Statistical heterogeneity (G): For RE scenarios, we used ? of 0.2 and 0.5 for both sizes 190 

of log(��).  191 

� The ratio of group sizes: In MA of rare events, the imbalance between study groups can 192 

make it hard to calculate effect measures. We therefore simulated data scenarios for 1:1 193 

randomization of treatment vs. control groups, and for 1:2 and 1:4 randomizations. To 194 

obtain higher proportions of zeros in both arms for ratios of 2 and 4, the values for ��� and 195 ��� were set to smaller values than in the 1:1 randomization. 196 

� Probability of control group ()'*): We let the event risk in the control group vary 197 

between 0.1% and 4%. Decreasing the probability of events in ��� increases the 198 

proportion of zeros in both arms. When more information is added to the control group 199 

(e.g., ratio 1:2) the probability of events and the total number of patients in the control 200 

group should be smaller to achieve trials with more zeros in both arms.  201 
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� Percentage of trials with no events in both arms: To assess the impact of the 202 

sparseness of data on coverage and bias for different specifications of the prior 203 

distributions, we varied the zeros in both arms from 5% to 65%. A high percentage of 204 

zeros in both arms indicates lower probability for ��� and a smaller total number of 205 

patients in the treatment group. 206 

� Number of studies per MA: We used a uniform distribution to vary the number of 207 

studies in each MA (Table 3).  208 

� Sample size of a single study: We also used a uniform distribution to simulate the209 

sample size of each study. Table 3 summarizes the values we used to simulate different 210 

scenarios of MA data sets.  211 

Table 3. Parameter values used in the simulation of MA data sets 

FE scenarios  

   log(��) 0 or 0.69 

   Number of patients in treatment group (���) [20, 60] 

   Risk of control group (���) [0.001, 0.04] 

   Number of trials in each MA 10, 20 or 50 

RE scenarios  

   log(���)*  

        log(��) 0 or 0.69 

        Random effects standard deviation (?) 0.2 or 0.5 

   Number of patients in treatment group (���) [10, 60] 

   Risk of control group (���) [0.001, 0.035] 

   Number of trials in each MA 20 or 50 

Both FE & REs scenarios  

   Ratio of group sizes** 1:1, 1:2 or 1:4  

   Number of simulated MA data sets 1000 
* follows a normal distribution with specified characteristics 
** We assigned treatment vs. control group for the ratio of group sizes 

 212 

When we combined all the above design factors, our simulation scenarios totaled 144 213 

(Supplementary Tables S2-S7). The simulations were carried out with 1000 data sets for MA 214 

per scenario. Then we appended scenarios with less than or equal to 30% zeros in both arms 215 

vs. scenarios with more than 30% zeros based on the randomization ratio to calculate bias 216 

(bias = median of the 1000 estimated log(��) – true log(��)). We obtained 95% CIs for the 217 

estimated log(��) from the 2.5 and the 97.5 percentile of the posterior distribution and 218 

calculated the 95% coverage of true log(OR) by the proportion of times the 95% CI included 219 

the true log(OR). We summarize the results in detail from different perspectives in the figures 220 

and tables. We excluded MA data sets where all the generated studies had no events in either 221 

treatment or control group, i.e. no events across all studies. As a comparator to frequentist 222 
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analysis methods, we used the MH method without any CC, which was identified in different 223 

publications as a robust method for sparse events MA [8] [10]. 224 

 225 

3.2 Software and implementation issues 226 

There are no closed solutions for calculuating the posterior distributions for the analysis of 227 

the models we defined. We therefore used numerical simulation methods, in particular the 228 

Markov chain Monte Carlo (MCMC) method, to approximate the posterior distributions of 229 

the parameters of interest as implemented in the “Just Another Gibbs Sampler” (JAGS) 230 

software package, another variant of the BUGS language [29].  231 

The necessary data simulations were implemented in R (R Core Team, http://www.R-232 

project.org/) and called JAGS (http://mcmc-jags.sourceforge.net/) from within R using the 233 

jags function of the R2jags package. We used 4 chains and set 15,000 iterations with the first 234 

5,000 simulated values as burn-in. We used Gelman and Rubin's diagnostic to check the 235 

convergence of multiple MCMC chains run in parallel. Details of the R and JAGS codes are 236 

provided in the supplementary documentation. 237 

 238 

4 Results 239 

We report simulation results separately for each effect measure and for the different standard 240 

deviations of RE. To avoid overloading this account, we present figures only of studies with 241 

no events in both arms that were included in the analyses. The results of FE for the conjugate 242 

family of priors and RE with 4��5(0, 2), 1��(2) for τ, and, ���-��7���(-4.06, 1.45D) for τD243

are in the supplementary documentation. 244 

1. For FE scenarios  245 

a. The family of conjugate priors showed increased bias and reduced coverage, but coverage 246 

improved when information in the control group increased (ratio 2,4), and estimates for 247 

true log(OR) were less biased (Table S8). Estimates of 01��(0.5, 0.5) in all the scenarios 248 

were less biased and had better coverage than 01��(1, 1). Excluding studies with zeros in 249 

both arms did not affect coverage or bias for true log(OR).  250 

b. The weakly informative priors reached an average coverage of 94.6%, and bias showed a 251 

small negative change of the true log(OR). Almost all priors performed similarly for null 252 

effect and log(2). For different ratios, when we increased the proportion of zeros in both 253 
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arms, bias increased slightly in a negative direction, but coverage was roughly the same. 254 

The uniform and normal distribution with SD of 100 behaved similarly with respect to 255 

both coverage and bias. Normal distribution with smaller SD (10) showed a small drop in 256 

coverage and an increase in bias (on average –0.05). 257 

c. For the hierarchical structure, coverage slightly increased to 94.8%, but the bias was the 258 

same. When we compared performance of Bayesian methods for log(2) to performance 259 

for log(1), we found very similar coverage and estimates. The Bayesian method showed a 260 

slight increase in estimates of true effect measures when there was an imbalance in the 261 

ratios for log(2). 262 

In general, for all the Bayesian methods, if studies with no events are excluded results for 263 

95% coverage and bias are almost identical. Bayesian methods provide good coverage on 264 

average of 94.5%, slightly less than MH 96%. However, these methods are slightly biased 265 

from true log(OR). For log(1), null effect, in all the scenarios, the Bayesian machinery ran 266 

into difficulty calculating true log(OR), especially for scenarios that only included 10 studies 267 

in each MA data set. By increasing the information in the control group, although coverage 268 

improved slightly we observed an increase in bias (Table 4). 269 

2. For RE scenarios 270 

a. For ? ~ unif (0,2) 271 

Average coverage for Bayesian methods was around 95% for both moderate and high 272 

heterogeneity, but for MH the coverage dropped for high heterogeneity to 92% on 273 

average. For the scenarios with under 30% zeros in both arms, the coverage decreased 274 

to 89.5% for MH, while for all the Bayesian methods it stayed around 94%. By 275 

increasing the information on the control group, the coverage dropped to 93% and the 276 

bias increased in the negative direction. For τ = 0.5, the observed coverage was lower 277 

for 1:1 randomization than τ = 0.2 but similar to the other randomization scenarios. 278 

In summary, uniform distribution is a poor choice to account for heterogeneity in RE 279 

MA due to high bias from true log(OR). 280 

 281 

b. For ? D ~ �����7���(−4.06, 1.45 D) 282 

The mean coverage for log(OR) was similar for all the specified priors for ��� , but 283 

different for scenarios with higher true heterogeneity τ = 0.5, on average 93.5% and 284 

85%, respectively. Bias was smaller for τ = 0.2 than τ = 0.5 for both true log(OR). 285 

Both mean coverage and bias were similar for low or high proportions of zeros in 286 

both arms irrespective of true log(OR). For different randomization scenarios (1:1, 287 
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Table 4. 95% coverage and bias for different scenarios of FE MA for log(OR) = 0 and log(OR) = 0.69 

Prior for     

     $%&'(()'*) 
Ratio a Deletion b Coverage Bias Coverage Bias Coverage Bias Coverage Bias 

Gel. & Rub. 

Statistic c 

   IJK(LM) = 0 IJK(LM) = 0.69 
 

normal(0, 10) ≤ 30% d >30% ≤ 30% >30% 

 1:1 0 0.941 -0.033 0.945 -0.071 0.952 0 0.949 -0.045 1.0015

 1:2 0 0.947 -0.047 0.942 -0.083 0.946 -0.015 0.942 -0.045 1.0013 

 1:4 0 0.942 -0.089 0.953 -0.093 0.951 -0.025 0.943 -0.044 1.0012 

 1:1 1 0.942 -0.032 0.944 -0.071 0.953 -0.002 0.950 -0.044 1.0015 

 1:2 1 0.942 -0.047 0.941 -0.082 0.946 -0.015 0.943 -0.045 1.0013 

 1:4 1 0.942 -0.088 0.952 -0.094 0.951 -0.026 0.943 -0.044 1.0012 

normal(0, 100) 
 1:1 0 0.939 0.002 0.939 0 0.942 0.057 0.940 0.062 1.0017 

 1:2 0 0.948 -0.019 0.945 -0.034 0.943 0.028 0.939 0.023 1.0013 

 1:4 0 0.945 -0.058 0.951 -0.063 0.951 0.006 0.939 0.015 1.0012 

 1:1 1 0.939 0.003 0.939 0.001 0.942 0.056 0.939 0.059 1.0017 

 1:2 1 0.948 -0.020 0.945 -0.033 0.944 0.027 0.940 0.023 1.0013 

 1:4 1 0.944 -0.058 0.953 -0.063 0.952 0.006 0.940 0.012 1.0012 

unif(-10, 10) 
 1:1 0 0.940 0.001 0.940 -0.004 0.945 0.056 0.942 0.051 1.0015 

 1:2 0 0.946 -0.020 0.946 -0.036 0.944 0.027 0.940 0.019 1.0013 

 1:4 0 0.945 -0.059 0.953 -0.064 0.952 0.006 0.940 0.010 1.0012 

 1:1 1 0.939 0.002 0.940 -0.004 0.944 0.054 0.944 0.053 1.0015 

 1:2 1 0.948 -0.020 0.946 -0.036 0.944 0.026 0.940 0.019 1.0013 

 1:4 1 0.944 -0.057 0.951 -0.064 0.952 0.004 0.939 0.009 1.0012 

Hierarchical 
 1:1 0 0.945 0.024 0.945 0.015 0.949 0.044 0.947 0.029 1.0128 

 1:2 0 0.950 -0.016 0.947 -0.032 0.946 0.017 0.941 0.010 1.0075 

 1:4 0 0.945 -0.057 0.954 -0.062 0.952 0.001 0.942 -0.008 1.0039 

 1:1 1 0.945 0.023 0.944 0.016 0.947 0.042 0.946 0.031 1.0129 

 1:2 1 0.949 -0.015 0.947 -0.032 0.946 0.019 0.942 0.009 1.0074 

 1:4 1 0.946 -0.057 0.953 -0.063 0.953 0.001 0.943 -0.006 1.0039 

Mantel-Haenszel 
 1:1 0 0.957 0.008 0.974 0.005 0.962 0.034 0.963 0.028 NA 

 1:2 0 0.962 -0.003 0.970 -0.037 0.959 0.005 0.962 0.008 NA 

 1:4 0 0.970 -0.063 0.963 -0.046 0.964 -0.017 0.961 -0.012 NA 
a We assigned treatment vs. control group for the ratio of group sizes 
b deletion is a logical argument; zero means trials with zero in both arms are excluded from the analyses. 
c The Gelman and Rubin diagnostic is used to check the convergence of multiple mcmc chains run in parallel. 
d Percentage of trials with no events in both arms. 

288 
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1:2, or 1:4), neither coverage nor bias changes for different priors for ���. When we 289 

excluded studies with zero events in both arms the results were almost identical. It is 290 

clear that lognormal as a prior for ? D returns better coverage and a less biased result 291 

than true log(OR), but the result can be further improved. 292 

 293 

c. For τ ~ half-normal(mean = 0.5) 294 

For all the scenarios with small to moderate heterogeneity for both true log(OR)s, 295 

coverage returned by the Bayesian methods was above 94% and there wass no 296 

specific pattern of increase or decrease when we had imbalanced randomization. In 297 

contrast, bias increased towards the negative by putting more information in the 298 

control group. The coverage was lower, 93% on average, for high heterogeneity (0.5) 299 

and the estimates were biased for true log(OR) with no specific direction. There was a 300 

clear pattern of increase in the coverage when we had more than 30% zeros in both 301 

arms for 0.5 heterogeneity scenarios (Table 5 and Table 6). 302 

 303 

Results for τ ~ exp(2) were very similar to τ ~ half-normal(mean = 0.5) in all the aspects 304 

(Figures S3 and S4, Tables S11 and S12). 305 

In general, for all the RE Bayesian methods in the different data scenarios, the average 306 

coverage and bias were almost identical whether studies with no events were included or 307 

excluded. Bayesian methods provide good coverage of 94% on average, slightly higher than 308 

coverage when using the MH method, 92.6%, but both methods have a slight bias of the point 309 

estimate for the true log(OR). For log(1), null effect, bias was surprisingly large, especially 310 

for the scenarios in which there was high heterogeneity (0.5). By increasing the information 311 

in the control group, we observed an increase in bias, but coverage remained similar. As the 312 

proportion of zeros in the data increased, the hierarchical model with half-normal prior for ? 313 

showed better coverage and gave a less biased estimate compared to using a uniform 314 

distribution for ?. Estimates from the MH method displayed evidence of bias and poor 315 

coverage because the method was unable to account for heterogeneity when the standard 316 

deviation in the RE data generation scenario was high (0.5).317 
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Table 5. 95% coverage and bias for different scenarios of REs MA log(OR) = 0 for N ~ half-normal (mean = 0.5)

Prior for     

     $%&'(()'*) 
Ratio a Deletion b Coverage Bias Coverage Bias Coverage Bias Coverage Bias 

Gel. & Rub. 

Statistic c 

   G = 0.2 G = 0.5  

   ≤ 30% d >30% ≤ 30% >30% 
 

normal(0, 10)     
 1:1 0 0.949 -0.014 0.953 -0.043 0.927 0.082 0.946 0.074 1.0065 

 1:2 0 0.945 -0.050 0.945 -0.111 0.935 0.038 0.935 -0.040 1.0074 

 1:4 0 0.939 -0.135 0.957 -0.162 0.937 -0.007 0.955 -0.052 1.0095 

 1:1 1 0.949 -0.010 0.954 -0.047 0.927 0.082 0.945 0.072 1.0066 

 1:2 1 0.945 -0.053 0.944 -0.109 0.935 0.038 0.935 -0.040 1.0070 

 1:4 1 0.942 -0.137 0.953 -0.160 0.938 -0.008 0.953 -0.051 1.0093 

normal(0, 100) 
 1:1 0 0.947 0.029 0.948 0.019 0.917 0.127 0.932 0.137 1.0067 

 1:2 0 0.949 -0.023 0.942 -0.057 0.933 0.065 0.934 0.020 1.0075 

 1:4 0 0.943 -0.107 0.954 -0.122 0.937 0.015 0.951 -0.011 1.0092 

 1:1 1 0.950 0.029 0.948 0.021 0.917 0.125 0.933 0.136 1.0066 

 1:2 1 0.949 -0.026 0.943 -0.060 0.933 0.065 0.934 0.022 1.0074 

 1:4 1 0.941 -0.103 0.956 -0.121 0.938 0.013 0.953 -0.012 1.0093 

Hierarchical 
 1:1 0 0.943 -0.023 0.950 -0.032 0.928 0.067 0.938 0.073 1.0187 

 1:2 0 0.942 -0.055 0.945 -0.093 0.932 0.025 0.936 -0.019 1.0140 

1:4 0 0.941 -0.127 0.953 -0.152 0.939 -0.016 0.953 -0.048 1.0121 

 1:1 1 0.943 -0.021 0.948 -0.031 0.930 0.071 0.939 0.072 1.0187 

 1:2 1 0.941 -0.053 0.941 -0.095 0.932 0.021 0.936 -0.019 1.0141 

 1:4 1 0.940 -0.128 0.955 -0.147 0.941 -0.017 0.957 -0.046 1.0119 

Mantel-Haenszel 
 1:1 0 0.955 0.027 0.959 0.031 0.902 0.125 0.946 0.129 NA 

 1:2 0 0.944 0.007 0.957 0 0.894 0.107 0.948 0.068 NA 

 1:4 0 0.955 -0.020 0.959 0.011 0.898 0.087 0.938 0.116 NA 
a We assigned treatment vs. control group for the ratio of group sizes 
b deletion is a logical argument; zero means trials with zero in both arms are excluded from the analyses. 
c The Gelman and Rubin diagnostic is used to check the convergence of multiple mcmc chains run in parallel. 
d Percentage of trials with no events in both arms. 
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Table 6. 95% coverage and bias for different scenarios of REs MA log(OR) = 0.69 for G ~ half-normal (mean = 0.5) 

Prior for     

     $%&'(()'*) 
Ratio a Deletion b Coverage Bias Coverage Bias Coverage Bias Coverage Bias 

Gel. & Rub. 

Statistic c 

   G = 0.2 G = 0.5  

   ≤ 30% d >30% ≤ 30% >30% 
 

normal(0, 10)     
 1:1 0 0.956 0.023 0.960 0.020 0.918 0.128 0.951 0.098 1.0084 

 1:2 0 0.947 0.002 0.948 -0.036 0.928 0.090 0.939 0.073 1.0071 

 1:4 0 0.946 -0.037 0.944 -0.085 0.933 0.042 0.934 0.027 1.0071 

 1:1 1 0.957 0.024 0.961 0.017 0.920 0.127 0.949 0.100 1.0087 

 1:2 1 0.948 0.003 0.947 -0.036 0.929 0.091 0.937 0.072 1.0070 

 1:4 1 0.944 -0.037 0.943 -0.085 0.933 0.043 0.939 0.028 1.0069 

normal(0, 100) 
 1:1 0 0.940 0.083 0.946 0.128 0.895 0.189 0.912 0.209 1.0087 

 1:2 0 0.943 0.038 0.944 0.039 0.912 0.132 0.920 0.150 1.0069 

 1:4 0 0.945 -0.006 0.945 -0.036 0.983 0.074 0.927 0.081 1.0073 

 1:1 1 0.940 0.086 0.941 0.130 0.896 0.192 0.914 0.216 1.0089 

 1:2 1 0.944 0.039 0.941 0.041 0.914 0.132 0.920 0.148 1.0067 

 1:4 1 0.944 -0.010 0.947 -0.034 0.928 0.073 0.925 0.080 1.0074 

Hierarchical 
 1:1 0 0.945 0.005 0.949 0.027 0.923 0.083 0.934 0.111 1.0390 

 1:2 0 0.939 -0.018 0.941 -0.025 0.929 0.059 0.930 0.079 1.0198 

 1:4 0 0.939 -0.056 0.942 -0.087 0.932 0.018 0.936 0.026 1.0120 

 1:1 1 0.948 0.004 0.949 0.026 0.922 0.087 0.933 0.111 1.0380 

 1:2 1 0.943 -0.017 0.942 -0.026 0.927 0.057 0.931 0.074 1.0195 

 1:4 1 0.939 -0.056 0.940 -0.086 0.933 0.019 0.935 0.020 1.0121 

Mantel-Haenszel 
 1:1 0 0.951 0.037 0.966 0.060 0.909 0.136 0.954 0.153 NA 

 1:2 0 0.934 0.024 0.959 0.027 0.895 0.121 0.937 0.131 NA 

 1:4 0 0.944 0.008 0.963 0.007 0.895 0.104 0.934 0.106 NA 
a We assigned treatment vs. control group for the ratio of group sizes 
b deletion is a logical argument; zero means trials with zero in both arms are excluded from the analyses. 
c The Gelman and Rubin diagnostic is used to check the convergence of multiple mcmc chains run in parallel. 
d Percentage of trials with no events in both arms. 
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Figure 1 Coverage probability of 95% CIs and bias for log(��) = 0 and log (��) = 0.69 estimate for 320 

FE method when trials with no events in both arms were included (bold icons in the graph are 321 

scenarios with more than 30% in both arms) 322 

 323 
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Figure 2 Coverage probability of 95% CIs and bias for  log (���) estimate for RE method with        τ~ 324 

half-normal (mean = 0.5) for different scenarios of log (���) ~ normal(0, 0.2) 325 

& normal(0, 0.5) (bold icons in the graph are scenarios with more than 30% in both arms) 326 

 327 
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Figure 3 Coverage probability of 95% CIs and bias for  log (���) estimate for RE method with τ~ 328 

half-normal (mean = 0.5) for different scenarios of log (���) ~ normal(0.69, 0.2) 329 

& normal(0.69, 0.5) (bold icons in the graph are scenarios with more than 30% in both arms) 330 

 331 
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5  Illustration of the methods: example of Rosiglitazone 332 

The Bayesian methods are illustrated with data from a meta-analysis of 48 comparative trials 333 

that examine the possible cardiac toxicity of Rosiglitazone in RCTs designed to study 334 

cardiovascular morbidity and mortality. Rosiglitazone, a Type II diabetes medicine, was 335 

introduced in 1999 and is known to reduce blood glucose and glycated hemoglobin levels. 336 

Adverse events of Rosiglitazone were studied and categorized as rare events. We used the 337 

MA data, which [27] also used. Events are rare for myocardial infarction (MI): 26 trials had 338 

zero in one arm, 10 trials had zero in both arms. The rare events problem is more pronounced 339 

for cardiovascular (CV) death since 25 studies had no events in both arms, and 17 had one 340 

arm with no event (the full data set is in supplemental Table S1). We illustrated the situation 341 

with this example using a selection of our Bayesian methods, and compared the results to the 342 

MH and Peto methods. We also compared our results with those reported by [11], and logistic 343 

regression (LR) by [27]. 344 

� For MI as a clinical outcome: Bayesian methods showed small sensitivity to the choice of 345 

priors (Figure 4).  346 

   Figure 4 Forest plot of an MA of Rosiglitazone for MI 347 

     348 
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In FE, when we used a normal distribution with SD of 100 for the prior distribution of the 349 

logit of ���, the estimated OR was higher (OR = 1.43) than in all the other Bayesian 350 

approaches, and results were in line with both the MH and Peto methods (OR = 1.429 and 351 

1.430) and logistic regression applied by [27]. For RE Bayesian, with the same prior for 352 

the logit of ��� and a half-normal distribution (mean = 0.5) for the prior distribution of ?, 353 

we observed an OR of 1.45, which also was higher than the estimates from the other 354 

Bayesian methods. However, when implementing hierarchical prior distributions for the 355 

logit of ��� for both FE and RE (? ~ half-normal [mean = 0.5]) the estimated summary OR 356 

was clearly smaller (for FE, OR = 1.30; for RE, OR = 1.33) than in all the other methods. 357 

Shuster’s RE model estimation is higher than our estimations with wider confidence 358 

interval than our CIs.  359 

 360 

� Results of a forest plot (Figure 5) for CV death: Bayesian methods showed high 361 

sensitivity to the choice of priors. 362 

Figure 5 Forrest plot of an MA of Rosiglitazone for CV death  363 

 364 

 365 
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� In FE, Bayesian approaches' highest OR was 1.62, which is estimated by norm(0, 100) on 366 

logit of ���, and the 95% CI is slightly wider than other priors on baseline risk. We 367 

observed the same results for RE Bayesian approaches with the same prior on the risk of 368 

control group with half-normal (mean = 0.5) as ?, but the CI is even wider for RE than for 369 

FE.  370 

The MH and Peto effect measures were in line with the FE Bayesian method where we 371 

put the normal distribution of SD at 100. RE methods drew the same conclusion, but 372 

hierarchical Bayesian for both FE and RE (? ~ half-normal(mean = 0.5)) seemed more 373 

robust for point estimate calculation, and showed more drastic change in the size of the 374 

effect measure than any other method. ORs of MH, and Peto and Lane’s LR are very 375 

similar to norm(0, 100) on logit of ���. Shuster’s RE model has the highest OR = 2.37 and 376 

also the widest 95% confidence interval.  377 

The high sensitivity to the choice of priors in CV death of Bayesian methods can be 378 

explained due to very low event rate, 0.5%, while for MI it is almost 2%.  379 

 380 

6 Discussion 381 

Conducting a meta-analysis of RCTs for rare but clinically relevant adverse events needs to 382 

be done with care. Different frequentist and fully probabilistic Bayesian approaches have been 383 

proposed and the results obtained seem to depend on the approach chosen [4, 8, 10, 14, 18, 384 

30]. In addition some computational difficulties might occur, especially if one attempts to use 385 

a random-effects model because the available information is low when analyzing rare events. 386 

Here we focused on assessing the variability of the results, in terms of bias and coverage, for 387 

Bayesian approaches to implementing the MA. The fully probabilistic (Bayesian) analysis via 388 

MCMC methods has the advantage that exact binomial likelihoods can be used, and that 389 

studies with zero events in both arms do not need to be excluded from the analysis. However, 390 

in this approach prior distributions have to be defined for all relevant parameters in the chosen 391 

analysis model. In this simulation study implementing realistic, real-life situations, we found 392 

that point estimates for the log(OR) and coverage varied by the choice of the prior 393 

distributions for the baseline risk and the standard deviation of the random effect in RE meta-394 

analysis. The results clearly showed that the uniform distribution and the Jeffrey’s prior for 395 

the baseline risks in the control group lead to biased results and reduced coverage. Weakly 396 

informative distribution on the logit of the baseline risks in the control group and hierarchical 397 
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structured prior distributions for the logit of the baseline risks provided similar results and 398 

coverage. Excluding studies with no events in both arms affected neither  coverage nor bias 399 

compared to keeping all studies in the Bayesian analysis. This result is in clear contrast to the 400 

findings of [4] for frequentist methods, but we do not clearly understand the reasons for these 401 

differing conclusions. 402 

For the simulated data scenarios with varying true log(OR) across the studies in the MA, the 403 

results of the Bayesian meta-analyses were also sensitive to the specification of the prior 404 

distributions for heterogeneity parameter ?. We found that using a uniform prior distribution 405 

from 0 to 2 resulted in high bias and lower coverage. Also, using lognormal distribution 406 

suggested by Turner et al. [28] for ?D resulted in slightly better results compared to uniform 407 

distribution but, using an informative prior exemplified by half-normal with mean = 0.5 for ? 408 

performed better.  409 

In summary, in Bayesian MA of rare events the bias for the point estimate for the log(OR) 410 

and the coverage of the Bayesian CIs were similar whether studies with no events in both 411 

arms were excluded or not. However, bias and coverage were sensitive to the specification of 412 

the prior distributions for risk in the baseline groups and for the between-study heterogeneity. 413 

Therefore, in concrete situations, as in the case of the Rosiglitazone review, it is important to 414 

assess whether obtained results are robust to the specification of prior distributions, or, more 415 

generally, to the chosen analytical strategy. 416 

 417 
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