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We describe a method to automatically extract symbolic compositional rules from music
corpora that can be combined with each other and manually programmed rules for
algorithmic composition, and some preliminary results of applying that method. As
machine learning technique we chose genetic programming, because it is capable of
learning formula consisting of both logic and numeric relations. Genetic programming was
never used for this purpose to our knowledge. We therefore investigate a well understood
case in this pilot study: the dissonance treatment in Palestrina9s music. We label
dissonances with a custom algorithm, automatically cluster melodic fragments with
labelled dissonances into diûerent dissonance categories (passing tone, suspension etc.)
with the DBSCAN algorithm, and then learn rules describing the dissonance treatment of
each category with genetic programming. As positive examples we use dissonances from a
given category. As negative examples we us all other dissonances; melodic fragments
without dissonances; purely random melodic fragments; and slight random
transformations of positive examples. Learnt rules circumstantiate melodic features of the
dissonance categories very well, though some resulting best rules allow for minor
deviations compared with positive examples (e.g., allowing the dissonance category
suspension to occur also on shorter notes).
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ABSTRACT13

We describe a method to automatically extract symbolic compositional rules from music corpora that

can be combined with each other and manually programmed rules for algorithmic composition, and

some preliminary results of applying that method. As machine learning technique we chose genetic

programming, because it is capable of learning formula consisting of both logic and numeric relations.

Genetic programming was never used for this purpose to our knowledge.
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We therefore investigate a well understood case in this pilot study: the dissonance treatment in

Palestrina’s music. We label dissonances with a custom algorithm, automatically cluster melodic frag-

ments with labelled dissonances into different dissonance categories (passing tone, suspension etc.)

with the DBSCAN algorithm, and then learn rules describing the dissonance treatment of each category

with genetic programming. As positive examples we use dissonances from a given category. As neg-

ative examples we us all other dissonances; melodic fragments without dissonances; purely random

melodic fragments; and slight random transformations of positive examples.
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Learnt rules circumstantiate melodic features of the dissonance categories very well, though some

resulting best rules allow for minor deviations compared with positive examples (e.g., allowing the disso-

nance category suspension to occur also on shorter notes).

26
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INTRODUCTION29

Artificial intelligence methods have been used for decades to model music composition (Fernández and30

Vico, 2013). Two general approaches have attracted particular attention, as they mimic two aspects of31

how humans learn composition. Firstly, rules have been used for centuries for teaching composition.32

Algorithmic composition methods model symbolic knowledge with rule-based approaches, formal gram-33

mars, and related methods. Secondly, composers learn from examples of existing music. Machine learn-34

ing (ML) methods to algorithmic composition include Markov chains, and artificial neural networks.35

We aim at combining these two approaches by automatically learning compositional rules from music36

corpora. We use genetic programming (Poli et al., 2008) for that purpose.37

The resulting rules are represented symbolically, and can thus be studied by humans (in contrast to,38

say, artificial neural networks), but the rules can also be integrated into algorithmic composition systems.39

Extracting rules automatically is useful, e.g., for musicologists to better understand the style of certain40

corpora, and for composers who use computers as a creative partner (computer-aided composition). For41

computer scientists, it is a challenging application domain.42

The resulting rules can be used in existing rule-based approaches to algorithmic composition where43

multiple rules can be freely combined, e.g., constraint-based systems (Anders and Miranda, 2011). Rules44
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derived by ML and rules programmed manually can be freely combined in such systems, and rules45

can address various aspects (e.g., rules on rhythm, melody, harmony, voice leading, and orchestration).46

Potentially, ML can be used to derive rules from a given corpus of music for aspects where we do not47

have rules yet, e.g., how to rhythmically and melodically shape the development of a phrase in a certain48

style.49

This paper describes a pilot project within the research programme described above. In this pilot,50

we automatically extract rules on the treatment of dissonances in Renaissance music using a corpus of51

movements from Palestrina masses. The treatment of such tones is rather well understood, which helps52

evaluating results. Nevertheless, this task is far from trivial, as it has to take various musical viewpoints53

into account (e.g., melodic interval sizes and directions, note durations, and metric positions). Results54

can be interesting and useful not only for musicologists and composers, but also for the commercially55

relevant field of music information retrieval to advance the still unsolved problem of automatic harmonic56

analysis of polyphonic music.57

BACKGROUND58

Inductive logic programming59

Symbolic compositional rules have been extracted by machine learning before, specifically with induc-60

tive logic programming (ILP). ILP (Muggleton et al., 2012) combines logic programming with ML in61

order to learn first-order logic formulas from examples. Background knowledge expressed in logic pro-62

grams can be taken into account.63

ILP has been used for several musical applications. Closely related to our goal is the work of Morales64

and Morales (Morales and Morales, 1995). Their system learnt standard counterpoint rules on voice65

leading, namely how to avoid open parallels. Other musical applications of ILP include the learning66

of harmonic rules that express differences between two music corpora, specifically Beatles songs (pop67

music) and the Real Book (jazz) (Anglade and Dixon, 2008), and music performance rules for piano68

(Tobudic and Widmer, 2003) and violin (Ramirez et al., 2010).69

Numeric relations are difficult to deduce with ILP, as logic programming in general is very restricted70

in expressing numeric relations. We are specifically interested in also learning numeric relations besides71

logic relations, because our experience with constraint-based modelling of music composition makes72

us aware of their importance for compositional rules. For example, the size of melodic and harmonic73

intervals is important, and such quantities are best expressed numerically. Besides, we want to use learnt74

rules later with constraint programming, a programming paradigm with very good support for restricting75

numeric relations.76

Genetic programming77

In this project we therefore use another approach. Genetic programming (GP) is a method of ML where78

a tree structure is learnt by repeated application of random changes (mutation and recombination) and79

the selection of the best structures among a set of candidates (a population). As such, it is a particular80

kind of evolutionary algorithm. The candidate tree can be the representation of a computer program or81

a mathematical equation among other possibilities. Early seminal work on GP has been published by82

Koza (1992), a more recent practical introduction can be found in Poli et al. (2008).83

A particularly important application of GP is symbolic regression. In symbolic regression, a math-84

ematical expression that describes best the given data is inferred. The mathematical expression is unre-85

stricted except that a specified set of building blocks is used – operators like +, or standard mathematical86

functions. The trees that genetic programming builds from these building blocks are representations of87

such mathematical expressions. Symbolic regression is a powerful method that has been used in various88

areas of science and engineering (Poli et al., 2008), including a high-profile study where is was used to89

automatically deduce physical laws from experiments (Schmidt and Lipson, 2009).90

GP has been used for music composition before. Spector and Alpern propose a system that auto-91

matically generates computer programs for composing four-measure bebop jazz melodies (Spector and92

Alpern, 1994). The generated programs combine a number of given functions, inspired by Jazz literature,93

that transform short melodies from Charlie Parker in various ways. The fitness of each program is eval-94

uated by a set of restrictions inspired by Baker (1988), which measure the balance of different aspects95

(e.g., tonal and rhythmic novelty).96
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Figure 1. Palestrina excerpt with several dissonances: several passing tones (p.t.), a neighbour tone
(n.t.), and a suspension (s.), from Agnus of missa De Beata Marie Virginis (II), measures 24-26

Johanson and Poli (1998) also propose a system that creates computer programs for transforming97

short melodies, but they allow users to interactively rate the quality of the generated music. This proved98

a tedious process for users. Therefore they complement the user-rating with automatic fitness raters that99

learn from the user ratings.100

Previous applications of genetic programming for music composition thus aimed at modelling the101

full composition process, where the fitness function had to judge the quality of the resulting music. Yet,102

the programs resulting from the evolutionary algorithm are rather short, and they are thus limited in the103

compositional knowledge they can represent. Previous work therefore composed music by transforming104

pre-existing music.105

Instead, we are interested in learning compositional rules with GP that describe only a certain aspect106

of the resulting music. Such rules are relevant in their own right as a representation of compositional107

knowledge that can be complemented with further musical knowledge, e.g., in music constraint program-108

ming systems with manually encoded musical rules.109

In this situation the fitness function does not need to judge musical quality, but instead only how well110

the resulting rule fits given positive examples and avoids negative examples.111

As far as we know, GP has not yet been used for learning symbolic compositional rules, and therefore112

in this pilot study we focus on a relatively well understood class of rules.113

Dissonances in Palestrina’s music114

This pilot project studies the dissonance treatment in Palestrina counterpoint with machine learning by115

automatically generating multiple symbolic rules that each constrain the treatment of a specific disso-116

nance category (passing tones, suspensions etc.).117

Jeppesen (1970), the seminal authority on Palestrina counterpoint, distinguishes three roles a disso-118

nance can play in his music. Some dissonances are hardly noticeable on an easy beat used for connecting119

notes in smooth melodic lines; others occur at an accented beat and are clearly heard; and – more rarely120

– dissonances can be used for an expressive effect.121

As an example, figure 1 shows an excerpt from a Palestrina mass movement1 with several dissonance122

categories in close proximity. All dissonances are marked with a crossed notehead, and are labelled with123

their dissonance category. Passing tones (p.t.) and neighbour tones (n.t.) are short notes on an easy beat124

that link melodic tones without getting noticed much. By contrast, suspensions (s.) stand out; they occur125

on a strong beat and typically at longer notes.126

The five standard dissonance categories taught in Palestrina counterpoint classes are passing tone,127

neighbour tone, suspension, anticipation and cambiata. An algorithm for automatically identifying dis-128

sonances in Renaissance counterpoint has been proposed (Patrick and Strickler, 1978), but it implements129

knowledge on the standard dissonance categories and therefore we instead developed a custom algorithm.130

1The excerpt is from the Agnus of missa De Beata Marie Virginis (II), which is Agnus_0.krn in the music21 corpus, and
stems from Humdrum.
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The actual music of Palestrina contains further dissonance categories, as shown by computational anal-131

ysis (Sigler et al., 2015), but these are irrelevant for the present study as they either do not occur in the132

chosen corpus, or they have been rejected by our algorithms.133

METHODS134

For learning symbolic compositional rules we use a novel methodology that combines multiple estab-135

lished approaches. At first, dissonant notes are automatically labelled in a corpus of music by Palestrina136

with a custom algorithm. These dissonances are then automatically clustered into different dissonance137

categories (passing notes, suspensions etc.) with the clustering algorithm DBSCAN (Ester et al., 1996).138

Finally, a rule is learnt for each of these categories with genetic programming. The rest of this section139

describes each of these steps in more detail.140

Annotation of dissonances141

A custom algorithm for dissonance detection in Renaissance music142

As a first step we automatically label dissonances in the music using a custom algorithm implemented143

with the music analysis environment music21 (Cuthbert and Ariza, 2010). For our purposes, the al-144

gorithm better leaves a few complex dissonance categories undetected than to wrongly mark notes as145

dissonances that are actually not. Note that this algorithm does not implement any knowledge of the146

dissonance categories known to occur in Palestrina’s music.147

The analysis first “chordifies” the score, i.e., it creates a homorhythmic chord progression where a148

new chord starts whenever one or more notes start in the score, and each chord contains all the score149

notes sounding at that time. The algorithm processes those chords and the original score.150

The algorithm loops through the chords. If a dissonant chord is found, then it tries to find which151

note(s) make it dissonant by testing whether the chord becomes consonant if these note(s) are removed.152

Dissonances are more likely to occur on short notes in Palestrina, and sometimes multiple dissonant153

tones occur simultaneously. The algorithm tests individual notes and pairs of simultaneously moving154

notes whether they are dissonant in an order depending on their duration and a parameter max_pair_dur,155

which specifies the maximum duration of note pairs tested (in our analysis max_pair_dur equaled to a156

half note). In order to minimise mislabelling dissonances, the algorithm first tests all individual notes157

with a duration up to max_pair_dur in increasing order of their duration; then all note pairs in increasing158

order of their duration; and finally remaining individual notes in order of increasing duration.159

Suspensions are treated with special care. If the dissonant note started before the currently tested160

chord, then that note is split into two notes, which are then tied, and only the second note starting with161

the current chord is marked as dissonant.162

In oder to avoid marking notes wrongly as dissonances, the algorithm does not test the following163

cases: any note longer than max_diss_dur, a given maximum dissonance duration (we set it to a whole164

tone); and any suspension where the dissonant part of the note would exceed the preceding consonant165

part, or it would exceed max_diss_dur.166

For this pilot we arbitrarily selected from the full corpus of Palestrina music that ships with music21167

the first 36 Agnus mass movements. All examples in that subcorpus happen to be in 2
4 meter, but our168

method does not depend on that.169

Evaluation of the dissonance detection algorithm170

We evaluated results by examining a sample of scores with marked dissonances. The dissonant detection171

works rather well, only very few notes are wrongly labelled as a dissonance. Sometimes a suspension is172

not correctly recognised and instead a wrong note labelled, where the voice proceeds by a skip in shorter173

notes. Note that such cases are later sorted into an ignored outlier category by the cluster analysis, so174

that the final clustered data used for the rule learning is near perfect.175

Figure 1 shows another example where dissonances are not correctly labelled. The first two passing176

tones (eighth notes) are correctly labelled in figure 1, but our algorithm would instead label the D in the177

soprano as a dissonance. The problem here is that when the two correct dissonances are removed, the178

resulting “chord” A-D is a fourth, which is still considered a dissonance in Renaissance music. Instead,179

if the soprano D is removed, the remaining chord C-A happens to be consonant.180

To be at the save side, the algorithm therefore does not label all dissonances. For example, occasion-181

ally more than two dissonances occur simultaneously in Palestrina, e.g., when three parts move with the182
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same short rhythmic values or in a counterpoint of more than four voices. If the algorithm does not find183

tones that, when removed, leave a consonant chord, then no note is labelled as a dissonance (though the184

chord is marked for proofreading). Excluding dissonances with the parameter max_diss_dur avoided a185

considerable number of complex cases and otherwise wrongly labelled notes.186

Data given to machine learning187

Instead of handing the ML algorithm only basic score information (e.g., note pitches and rhythmic val-188

ues), we provide it with background knowledge (like melodic intervals and accent weights as described189

below), and that way guide the search process. For flexibility, we considered letting the ML algorithm190

directly access the music21 score data with a set of given interface functions (methods), but extracting191

relevant score information in advance is more efficient.192

Once dissonances are annotated in the score, only melodic data is needed for the clustering and later193

the machine learning. For simplicity we only used dissonances surrounded by two consonant notes (i.e.,194

no consecutive dissonances like cambiatas).195

In order to control the differences in key between pieces in the corpus we automatically estimate the196

key of each composition using the Krumhansl-Schmuckler key determination algorithm with simple key197

correlation weightings (Sapp, 2011). With the key we compute “normalised pitch classes”, where 0 is198

always the root of the piece, 1 a semitone above the root and so forth.199

We determine accent weights using music21’s getAccentWeight, where the strongest beat on the first200

beat of a measure has the weight 1.0; strong beats within a measure (e.g., the third beat in 2
4 meter) the201

weight 0.5; the second and fourth beat in 2
4 meter the weight 0.25 and so on (Ariza and Cuthbert, 2010).202

Intervals are measured in semitones, and durations in quarter note lengths of music21, where 1 means203

a quarter note, 2 a half note and so on.204

For simplicity we left ties out in this pilot. Suspensions are simply repeated tones, they are not tied205

over.206

Cluster analysis of dissonance categories207

Analysis with DBSCAN algorithm208

For each dissonance, we provide the clustering algorithm with the following features: the sum of the209

durations of the previous, current, and next note (the reason for including this feature instead of including210

all note durations is explained in the following discussion section); the melodic interval from the previous211

note, and the interval to the next note; the normalised pitch class of the dissonance; and the accent weight212

of the dissonance. Before clustering, all data for each feature is normalised such that its mean is 0.0 and213

its standard deviation is 1.0.214

The data is clustered using the DBSCAN algorithm (Ester et al., 1996) as implemented in the scikit-215

learn library (Pedregosa et al., 2011). This clustering algorithm does not require setting the number of216

clusters in advance, and can find clusters of arbitrary shape as it is based on the density of points. Here,217

we set the minimum number of neighbours required to identify a point as a core cluster point to 10,218

and the maximum neighbour distance to 0.7 based on initial runs and the desire to keep the number of219

clusters in a reasonable range. Points that lie in low density regions of the sample space are recognised220

as outliers by DBSCAN, and are ignored in the subsequent rule learning step.221

Clustering results and discussion222

In order to evaluate the clustering results, we automatically labelled each dissonance in the score with223

its dissonance category (cluster number), and then created a new score for each cluster number into224

which all short melodic score snippets that contain this dissonance were collected (one-measure snippets,225

except where the dissonance occurs at measure boundaries). We then evaluated the clustering results by226

eyeballing those collections of score snippets.227

Initially, the importance of note durations for the clustering was rated too highly, because the clus-228

tering took more duration parameters into account (one for every note) than other parameters (e.g., pitch229

intervals between notes). As a result, one cluster contained primarily dissonances at half notes and an-230

other at shorter notes, which was not useful for our purposes. Therefore, we aggregated the duration231

information, and adjusted the DBSCAN parameters as described above, after which clustering worked232

very well.233

In the selected corpus only the following main dissonance categories are found: passing tones down-234

wards on an easy beat (863 cases); passing tones upwards on an easy beat (643 cases); suspensions on the235
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Table 1. The features of the automatically derived clusters match traditional dissonance categories

Cluster Dissonance category 1st interval 2nd interval metric position duration
C0 passing tones down step down step down easy beat up to half note
C1 passing tones up step up step up easy beat up to half note
C2 suspension on beat 3 repetition step down strong beat 3 quarter or half note
C3 suspension on beat 1 repetition step down very strong beat 1 quarter or half note
C4 lower neighbour tone step down step up easy beat up to half note

strong beat 3 in 2
4 meter (313 cases); suspensions on the strong beat 1 (265 cases); and lower neighbour236

tones on an easy beat (230 cases).237

Table 1 summarises the distinguishing features of the dissonance categories as found in the different238

clusters, for which we learnt rules. Each row in the table describes a separate dissonance category as239

recognised by the clustering algorithm. The first interval indicates the melodic interval into the disso-240

nance, and the second the interval from the dissonance to the next note. Metric position and duration are241

features of the dissonance note itself.242

Other dissonance categories like upper neighbour tones, anticipations and cambiatas do not occur243

in the ML training set. Either they do not exist in the first 36 Agnus mass movements of the music21244

Palestrina corpus that we used, or they were excluded in some way. We only use dissonances surrounded245

by consonances (which excludes cambiatas). Also, we did not use the set of outliers (189 cases), which246

as expected, has no easily discernible common pattern. Among these outliers are wrongly labelled247

dissonances, upper neighbour tones, and a few further cases of the above main categories. There are248

also two small further clusters with lower neighbour tones (25 cases), and passing tones upwards (11249

cases) that went through the subsequent rule learning step but were discarded afterwards as they were250

considered to be too small to be of much interest, and cover categories that are already covered by larger251

clusters. This simplification of the training set to a small number of dissonance categories was useful for252

our pilot study.253

Learning of rules254

Training set255

To initiate rule learning, our algorithm compiles a set of three-note-long learning examples with a disso-256

nance as middle note for each identified cluster (dissonance category). All dissonances that have been257

assigned to that particular cluster are used as positive examples.258

Then, four sets of negative examples are generated. Note that the generation of negative examples259

does not take any knowledge about the problem domain into account. A similar approach can also be260

used for learning rules on other musical aspects. The first set is a random sample of dissonances that261

have been assigned to other clusters. The second set is a random sample of three-tone-examples without262

any dissonance taken from the corpus. The third set consists of examples where all features are set to263

random values drawn from a uniform distribution over the range of possible values for each feature. The264

fourth set consists of slightly modified random samples from the set of positive examples. Two variations265

are generated for each chosen example. Firstly, either the interval between the dissonance tone and the266

previous note or the interval to the next note is changed by ±2 (with equal probabilities). Secondly, one267

of the three note durations is either halved or doubled (with equal probabilities). Both modifications are268

stored separately in the fourth set of negative examples.269

The algorithm aims to create 20% of the number of positive examples for each set of negative ex-270

amples, but will generate at least 200 examples (100 for the first set due to possible low availability271

of these examples) and at most 500. These numbers represent mostly a trade-off between accuracy of272

training/measurement and computation time, and we expect a similar performance if these values are273

changed within reasonable ranges.274

Once all example sets have been constructed, each example receives a weight such that the total275

weight of the positive examples is 1.0, and the total weight of each of the four sets of negative examples276

is 0.25 (within each set, the weights are the same for all examples). When measuring classification277

accuracy of a rule during the learning process, each positive example that is classified correctly counts278
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+1 times the example weight, whereas each negative example that is erroneously classified as positive279

example counts -1 times the example weight. Thus, the accuracy score is a number between -1.0 and 1.0,280

with 0.0 expected for a random classifier.281

Please note that a randomly generated negative example can be the same as a positive example with282

a low probability. Here, we consider this as a small amount of noise in the measurement, but for future283

experiments it is possible to filter these out at the expense of run time.284

Learning process285

We use strongly typed genetic programming as implemented in the Python library DEAP2 (Fortin et al.,286

2012) with the types float and Boolean (integers are translated to floats). The following functions can287

occur as parent nodes in the tree representing a learnt rule.288

Logical operators: * (or), ' (and), ¬ (not), ³ (implication), µ (equivalence)289

Arithmetic operators and relations: +, 2, · (multiplication), / (division), 2 (unary negation), =, <,290

>291

Conditional: if _then_else(�boolean�, �float�, �float�)292

Terminal nodes in a “rule tree” can be either input variables (like the duration of a note or the interval293

to its predecessor or successor) or constants. The following input variables can be used in the learnt rules:294

the duration of the dissonant note (durationi), its predecessor (durationi21) and successor (durationi+1);295

the normalised pitch class of the dissonance; the intervals3 between the dissonance and its predecessor296

(intervalpre) and successor (intervalsucc); and the accent weight of the dissonance (accentWeighti). Ad-297

ditionally, there are the Boolean constants true and false, as well as ephemeral random constants in the298

form of integer values between 0 and 13. The notation given here is the notation shown later in learnt299

rule examples.300

There are many choices of operators and parameters that can be used with genetic programming.301

Here, we follow standard approaches that are commonly used in the GP practitioners’ community, and/or302

are DEAP defaults, unless otherwise noted. The population is created using ramped half-and-half ini-303

tialisation, after which at each generation the following operators are applied. For selection, we use304

tournament selection with a tournament size of 3. For mutation, there is a choice between three opera-305

tors: standard random tree mutation (95% probability), a duplication operator that creates two copies of306

the tree and connects them using the ' operator (2.5%), and a similar duplication operator using the *307

operator (2.5%). For recombination, there is again a choice between standard tree exchange crossover308

(95%), an operator that returns the first individual unchanged, and a combination of the first and second309

individual using the ' operator (2.5%), and a similar operator using * (2.5%). While random tree muta-310

tion and tree exchange crossover are commonly used, we designed the other operators to encourage the311

emergence of rules that are conjunctions or disjunctions of more simple rules, which is a useful format312

for formal compositional rules. Without these operators, it would be extremely unlikely that a new sim-313

ple rule could be evolved without disrupting the already evolved one, or that different already evolved314

rules could be combined as a whole. A static depth limit of 25 is imposed on the evolving trees to avoid315

stack overflows and exceedingly long execution times.316

A population of 100 individuals is evolved for 1000 generations. The fitness assigned to an individual317

is 10 times its accuracy score (described above) plus 0.001 times the size of its tree. That way, among318

two rules with equal classification accuracy, the more compact rule has a slight fitness advantage. We319

introduced this as a measure to slow down the growth of the trees during evolution (known as “bloat320

control” in the field of genetic programming, although the effect of this particular measure is not very321

strong). We performed five runs for every cluster. They use the same set of learning examples, but find322

different rules nonetheless due to the stochastic nature of genetic programming.323

After a run is finished, the best rule evolved in that run is output together with its classification324

accuracy scores.325

2https://github.com/deap/deap
3A melodic interval is always computed as the interval between a given note and its predecessor and positive when the next

note is higher.
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Table 2. Greatest deviation found between features of positive examples (see table 1) and solutions to
best rule for each cluster

Cluster Category 1st interval 2nd interval metric position duration
C0 passing tones down none none none none
C1 passing tones up none none none none
C2 suspension on beat 3 none none none smalla

C3 suspension on beat 1 smallb none none smalla

C4 lower neighbour tone smallc none none none
a Can be eighth note. b Can be a minor second down. c Can be a repetition.

RESULTS326

Quantitative evaluation327

The quality of the rule learning process as implemented by genetic programming is evaluated by measur-328

ing the accuracies of the best evolved rules (see Fig. 2). It can be seen that the accuracies for positive329

examples are better than 98% in most cases, the accuracies on negative examples from other clusters330

are mostly better than 99%, the accuracies on negative examples without dissonances are mostly better331

than 94%, the accuracies on random counterexamples are close to 100%, and the accuracies for modified332

negative examples are mostly better than 94% but around 89% for the first cluster. When plotting overall333

accuracy scores against the sizes of the rules’ corresponding GP trees (Fig. 3), it can be seen that rules334

for the same cluster achieve similar accuracy scores despite different sizes. However, across clusters,335

there seems to be a negative correlation between accuracy and rule size. The most plausible explanation336

seems to be that larger clusters are more difficult to describe, resulting both in larger rule sizes and lower337

accuracy scores (Fig. 4).338

Qualitative evaluation339

We evaluated the suitability of the evolved rules for describing dissonances by using them as melodic340

constraints in small constraint problems implemented with the music constraint system Cluster Engine,4341

which is a revision of the solver PWMC (Sandred, 2010). Both these solvers are libraries of the visual342

programming and composition environment PWGL (Laurson et al., 2009). The constraint problems343

consist of only three notes with the middle note as the dissonance and surrounding rests as padding so344

that these notes can occur freely on any beat.345

For each learnt rule (5 per cluster resulting from the 5 runs reported above) we generated 15 random346

solutions (an arbitrary number). We examined these solutions in common music notation, and appraised347

how well they complied with the respective dissonance category. Specifically, we checked whether the348

metric position and duration of the middle note (the dissonance) and the melodic intervals into and from349

this note are appropriate.350

For each cluster (dissonance category) at least one learnt rule constrains the treatment of the dissonant351

middle note in a way that either fully complies with the features of the corresponding positive examples352

(see table 1 again), or is at least very close. In other words, this “best rule” per cluster works either353

perfectly or at least rather well when used as a constraint for its dissonance category. For the best rule354

per dissonance category, table 2 reports the greatest deviation found in any solution among a set of 15355

random solutions.356

Examples of learnt rules357

To give a better idea of the kind of rules learnt, figures 5 and 6 show two examples. The rule of figure358

5 constrains passing tones upwards and that of figure 6 suspensions on beat 1. These specific rules have359

been selected, because they are relatively short. Both rules are the best out of their set of 5 in the sense360

just discussed above, and their results are included in table 2.361

The rules generated by DEAP were slightly simplified manually and with Mathematica, and trans-362

lated into standard mathematical notation for clarity. The names of the input variables, and their possible363

4http://sandred.com/Downloads.html
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Figure 2. Accuracies achieved by the champions of the genetic programming runs on the various parts
of the training sets. The means are indicated by blue bars. C0 - C6 denotes the clusters found by
DBSCAN.
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Figure 3. Accuracy score versus tree size for the evolved solutions from all runs. Red dots: cluster 0
(C0); blue lower triangles: C1; green upper triangles: C2; cyan diamonds: C3; magenta right triangles:
C4; yellow squares: C5; black stars: C6.

Figure 4. Accuracy and tree size versus cluster size. Clusters are denoted as in Fig. 3.
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durationi21 < durationi + 3 (1)

' accentWeighti < 0.5 (2)

' 6 ·accentWeighti < durationi21 (3)

' accentWeighti < intervalpre (4)

' accentWeighti < intervalsucc (5)

' durationi < 3 (6)

' accentWeighti ·durationi+1 < durationi (7)

' intervalpre < 3 (8)

' intervalsucc < 3 (9)

Figure 5. Learnt rule example: passing tones upwards

2 g |intervalsucc|

' accentWeighti g 1

' 2 < durationi*durationi21 g 2

' 2 g durationi*durationi21 < 2

' intervalpre < accentWeighti

' intervalpre > intervalsucc

Figure 6. Learnt rule example: suspension on beat 1

values, have been explained above, but we will briefly revise them below for the reader’s convenience.364

As an example, let us analyse the first rule, which constraints upwards passing tones (figure 5).365

Remember that for this dissonance category both intervals lead upwards stepwise, the dissonance occurs366

on an easy beat, and its duration is up to a half note (table 1). This rule constrains all those aspects367

exactly (table 2).368

The rule enforces that both the melodic interval into the dissonance and out of it, intervalpre and369

intervalsucc, are positive (upwards): they are both greater than accentWeighti, see equations (4) and (5),370

and accentWeighti is always greater than 0 by its definition. Intervals are integers measured in semitones.371

Both intervals are less than 3, see equations (8) and (9). So, in summary the intervals are positive372

(upwards), but at most 2 semitones (steps).373

The rule constrains dissonances to an easy beat. For the first beat of a measure accentWeighti is 1.0,374

for the third beat in 2
4 it is 0.5, of the second and forth beat it is 0.25 and so on. The rule constrains the375

accent weight of the dissonance to less than 0.5, i.e., an easy beat.376

The duration must be a half note or shorter. Durations are measured in music21’s quarterlengths,377

where 1 represents a quarter note. The duration of the dissonance must be less than 3, which corresponds378

to a dotted half note (6), hence it can be a half note at most.379

Other expressions in this rule happen to be less meaningful, and could be considered bloat.380

The other rule in Figure 6 can be analysed similarly. We leave that to the reader.381

DISCUSSION382

In the present paper we describe a method based on genetic programming that extracts symbolic composi-383

tional rules from a music corpus so that resulting rules can be used in rule-based algorithmic composition384

systems. In this pilot study we extracted rules that detail the dissonance treatment in compositions by385

Palestrina. We derived rules for the following five dissonance categories (automatically derived clusters):386

passing tones on an easy beat upwards and downwards; lower neighbour tones on an easy beat; and387

suspensions on the strong beat one and beat three in 2
4 meter. Learnt rules are typically able to recognize388
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between 98% and 99% of the positive training examples, while excluding between 89% and 100% of389

the counterexamples depending on counterexample category and cluster, with better results for smaller390

clusters.391

Multiple rules learnt for the same cluster differ in their accuracy when used as a constraint for music392

generation: the music generated with these rules can be more or less close to the features of the positive393

examples (see table 1). Table 2 only reports the accuracy of the best rule per cluster. Some other rules394

for the same cluster are much less accurate, but nevertheless obtain a very similar overall weighted score395

in the learning process. Currently, we lack an algorithm for measuring the accuracy of a rule in terms of396

how similar generated music restricted by that rule is to its positive examples. Such an algorithm would397

be very useful to contribute to the fitness calculation of rules during the learning process.398

The accuracy of resulting rules can also be improved by taking further background knowledge into399

account. For example, some resulting rules allow for syncopations in dissonance categories where these400

would not occur in Palestrina, e.g., at a passing tone. Providing the rule learning algorithm with an extra401

Boolean feature whether the dissonant note is a syncope or not will likely avoid that.402

The negative examples in the training set for the rule learning have a great impact on the accuracy403

of resulting rules. For example, the inclusion of slightly modified transformations of positive examples404

clearly improved the accuracy as compared to preliminary experiments. A closer investigation into the405

impact of automatically generated negative examples on the accuracy of resulting rules could lead to406

further improvement. For example, so far we only used slight random variations of the note durations407

and melodic intervals to generate negative examples, but variations of further parameters could also be408

useful (e.g., negative examples with shifted metric positions could also restrict syncopations).409

A further improvement could probably be obtained by post-processing large clusters generated by410

DBSCAN with another clustering algorithm that is not based on density alone, or by DBSCAN with411

a smaller setting for maximum neighbour distance, to split them up into smaller clusters, for which412

learning a suitable rule should be easier.413
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