The key genes involved in herpes simplex virus-1 corneal infection-induced acute hepatitis

Kai Hu Corresp., Equal first author, 1, Jinlong Li Equal first author, 2, Xianwen Yuan 3

1 Department of Ophthalmology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
2 Department of Laboratory Medicine, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
3 Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China

Corresponding Author: Kai Hu
Email address: dahu0210@163.com

Background: Viral keratitis is mainly induced by herpes simplex virus (HSV). HSV-1 infection-induced acute hepatitis associates with immunodeficiency. Related biomarkers have not been systemically identified till now. This study was designed to explore the molecular mechanisms and potential biomarkers of HSV-1 infection-induced acute hepatitis. Methods: Microarray dataset GSE35943, including the liver tissues infected by HSV-1 (1, 3, 5, and 7 days post infection) and the corresponding control tissues, was extracted from Gene Expression Omnibus database. The differentially expressed genes (DEGs) were identified using and were clustered using time series expression analysis. DEG-associated KEGG pathways were called using online DAVID tool. Using Cytoscape software, protein-protein interaction (PPI) network was built and significant network modules were identified. Results: A total of 2909 DEGs grouping into 3 clusters with similar gene expression profiles were obtained. The DEGs were involved in immune-associated functional terms and pathways like natural killer cell mediated cytotoxicity and antigen processing and presentation. DEGs including PIK3R1, PIK3CD, PLCG2, PTPN6, LCK, RAC2, and PLK1 had higher degrees in the PPI network and 8 significant modules. Conclusion: PIK3R1, PIK3CD, PLCG2, PTPN6, LCK, RAC2 and PLK1 were identified to be associated with HSV-1 corneal infection-induced hepatitis, and might be potential clinical biomarkers for the diagnosis of HSV-1-induced hepatitis.
The key genes involved in herpes simplex virus-1 corneal infection-induced acute hepatitis

Running title: Genes in HSV-1 hepatitis

Kai Hu1,2,*, §, Jinlong Li3, §, Xianwen Yuan4

1 Department of Ophthalmology, Nanjing Drum Tower Hospital, Medical Collage of Nanjing University, Nanjing, 210008, P. R. China
2 Nanjing Ningyi Eye Center, Nanjing, P. R. China
3 Department of Laboratory Medicine, the Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing 210003, P. R. China
4 Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Medical Collage of Nanjing University, Nanjing, 210008, P. R. China

§equal contribution.

Corresponding author: Dr. Kai Hu.
E-mail: dahu0210@163.com;
Address: Department of Ophthalmology, Nanjing Drum Tower Hospital, Medical Collage of Nanjing University, No. 321 Zhongshan Road, Gulou District, Nanjing, 210008 Jiangsu, China.

Highlights:
1. There an overall 2909 dysregulated genes in different groups.
2. Cluster 4, 6, and 8 showed similar expression trends.
3. PIK3R1, PIK3CD, PLCG2, PTPN6, LCK, RAC2, and PLK1 were key network nodes.

Abstract

Background: Viral keratitis is mainly induced by herpes simplex virus (HSV). HSV-1 infection-induced acute hepatitis associates with immunodeficiency. Related biomarkers have not been systemically identified till now.

This study was designed to explore the molecular mechanisms and potential biomarkers of HSV-1 infection-induced acute hepatitis.
Methods: Microarray dataset GSE35943, including the liver tissues infected by HSV-1 (1, 3, 5, and 7 days post infection) and the corresponding control tissues, was extracted from Gene Expression Omnibus database. The differentially expressed genes (DEGs) were identified using and were clustered using time series expression analysis. DEG-associated KEGG pathways were called using online DAVID tool. Using Cytoscape software, protein-protein interaction (PPI) network was built and significant network modules were identified.

Results: A total of 2909 DEGs grouping into 3 clusters with similar gene expression profiles were obtained. The DEGs were involved in immune-associated functional terms and pathways like natural killer cell mediated cytotoxicity and antigen processing and presentation. DEGs including PIK3R1, PIK3CD, PLCG2, PTPN6, LCK, RAC2, and PLK1 had higher degrees in the PPI network and 8 significant modules.

Conclusion: PIK3R1, PIK3CD, PLCG2, PTPN6, LCK, RAC2 and PLK1 were identified to be associated with HSV-1 corneal infection-induced hepatitis, and might be potential clinical biomarkers for the diagnosis of HSV-1-induced hepatitis.

Introduction

Keratitis is a condition of inflamed cornea (Furlanetto et al. 2010). Keratitis is usually characterized by pain, photophobia, visual impairment, gritty sensation and red eye (Zapp et al. 2018). According to the sources of infection, keratitis can be divided into viral, bacterial, fungal, amoebic and parasitic keratitis (Clarke et al. 2012; Ritterband 2014; Tang et al. 2009). Infectious keratitis often deteriorates rapidly and needs urgent antiviral, antibacterial or antifungal therapy (Morén et al. 2010). Without proper and timely treatment, infectious keratitis may lead to impaired eyesight, corneal perforation, or even loss of vision (Hassairi et al.
Among viral sources of keratitis, ophthalmic herpes simplex virus (HSV) is an important leading cause of ocular manifestations, including corneal opacification and stromal keratitis and indication of penetrating keratoplasty (Knickelbein et al. 2009; M et al. 2016). HSV is the earliest isolated herpes virus in the 1930s, and humans are the only natural reservoir of this virus (Wald & Ashleymorrow 2002). HSV is a double-stranded DNA virus, which can be divided into HSV-1 and HSV-2 (Kolb et al. 2013). Brain is one of the HSV-1-affected organ in human. HSV-1 causes encephalitis in immune-suppressed hosts and human herpes simplex encephalitis (HSE) is the most frequent form of viral sporadic encephalitis (Pasieka et al. 2011). With the increase in the incidence of immunodeficiency diseases and the increase in the resistance of HSV to antiviral drugs, the treatment for HSV-1-induced acute diseases becomes more difficult and the disease begins to receive attention.

Previous studies commonly focused on HSE, and rarely on liver HSV-1 infection (Katzenell et al. 2014; Kurt-Jones et al. 2004; Pasieka et al. 2011; Thaís et al. 2014). The liver is another major organ affected by HSV-1 (Pasieka et al. 2011). The first HSV hepatitis was reported in 1969 (FLEWETT et al. 1969). Since then, HSV hepatitis has been gradually diagnosed. Hepatitis refers to the inflammation derived from the liver, which is divided into acute (continuing for under six months) and chronic hepatitis (lasting for over six months) (Maasoumy & Wedemeyer 2012). Hepatitis is usually induced by virus infection (including hepatitis B virus), toxins, some medications, autoimmune diseases and other factors (Ayako et al. 2017; Pianko et al. 2010). It has been reported that the HSV infection rarely induces hepatitis, and often occurs after liver transplantation and leads to acute liver failure (Liebau et al. 1996; Norvell et al. 2010). Impaired immunity resulting from immunosuppression after liver transplantation, inhalational anesthetics, pregnancy and malignancy may be
predisposing factor of HSV hepatitis (Kaufman et al. 1997). It has been reported in vivo in animal experiments that HSV-1 infection in Stat1-knockout mice from eyes reduced the survival time significantly with significant liver lesions (Katzenell et al. 2014; Pasieka et al. 2011).

In immune-suppressed hosts, HSV-1 causes acute hepatitis (Pasieka et al. 2011). The main clinical presentations of HSV-induced hepatitis were fever, encephalopathy, coagulopathy and rash (Norvell et al. 2010), which commonly lead to the misdiagnosis of HSV hepatitis. The high mortality of HSV hepatitis could be reduced if being diagnosed expeditiously and treated properly. Therefore, diagnostic biomarkers on presentation the course of HSV hepatitis would be of great value for clinicians.

Through analyzing the dynamic change of gene expression levels in liver tissues from mice infected corneally by HSV-1, the key genes acting in HSV-1 corneal infection-induced hepatitis were screened. This study might contribute to revealing the mechanisms of HSV-1 corneal infection-induced hepatitis in immunodeficient mice and providing the basis for the clinical diagnosis of HSV-1-induced hepatitis.

Materials and Methods

Microarray data and data pretreatment

The gene expression profile under GSE35943, which was sequenced on the platform of GPL7202 Agilent-014868 Whole Mouse Genome Microarray 4x44K G4122F (Probe Name version), was obtained from Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) database. In the dataset, the liver tissues from immunocompetent mice (Stat1−/− strain) infected corneally by HSV-1 (KOS and an attenuated recombinant virus lacking the vhs function, Δvhs) for 1, 3, 5 and 7 days (each time point contained 4 samples) and the liver tissues from control mice (129S6 strain) with normal growth on the corresponding days (each time point included 2 samples) were selected as the analysis objects. The microarray dataset GSE35943 was
extracted from public database, therefore, ethical review and patient consent were not needed.

Using the R package limma (Ritchie et al. 2015) (version 3.34.0, https://bioconductor.org/packages/release/bioc/html/limma.html), the original data in TXT format was conducted with log2 conversion and data normalization.

Differential expression analysis

According to the time points of sample collection, the samples were divided into four time point groups (D1, D3, D5 and D7). Based on the R package limma (Ritchie et al. 2015), the differentially expressed genes (DEGs) between HSV-1 infected samples and control samples were analyzed for each time point group. The false discovery rate (FDR) < 0.05 and |log2 fold change (FC)| > 0.263 were used as the thresholds for screening DEGs. Combined with Venn diagram (Shamansky & Graham 2010), the DEGs of the four time point groups were compared and their union were obtained for further analyses.

Time series expression analysis and enrichment analysis

Short Time-series Expression Miner (STEM, version 1.3.11, http://www.cs.cmu.edu/~jernst/stem/) is the first software program specifically designed for the analysis of short time series microarray data, which clusters, compares and visualizes these data (Ernst & Bar-Joseph 2006). Using STEM software (Ernst & Bar-Joseph 2006), the union of the DEGs were conducted with time series expression analysis under the significant criteria of FDR < 0.05 and similarity > 0.6.

Then, the clusters with significantly similar expression trends were conducted with Gene Ontology (GO) (Balakrishnan et al. 2013) and Kyoto Encyclopedia of Genes and Genomes (KEGG) (H et al. 2000) enrichment analyses using DAVID tool (Da Wei et al. 2009) (version 6.8, https://david.ncifcrf.gov/). The FDR < 0.05 was selected as the screening threshold.
Protein-protein interaction (PPI) network construction and analysis

Combined with STRING database (Damian et al. 2011) (version 10.0, http://string-db.org), the PPIs among the protein products of the DEGs were searched. Subsequently, the PPI network was visualized by Cytoscape software (Lopes et al. 2010) (version 3.6.1, http://www.cytoscape.org/). Using the Molecular Complex Detection (Mcode; parameters: Degree cutoff = 2, Node score cutoff = 0.2, K-core = 2) plug-in (Hwang et al. 2006) in Cytoscape software, network modules were divided and identified.

The vast majority of biological networks are subject to scale-free network property, that is to say a few nodes (hub nodes) in the network have a large number of connections, and most nodes only have a small number of connections (Jeong et al. 2001). The topology of the constructed PPI network was analyzed, and four important network topology parameters (including degree; betweenness centrality, BC; closeness centrality, CC; and path length) were calculated.

Results

Data pretreatment and differential expression analysis

The original data was pretreated, and the box plots before and after normalization was presented in Figure 1. There were 430 (83 up-regulated genes and 347 down-regulated genes), 1198 (414 up-regulated genes and 784 down-regulated genes), 989 (378 up-regulated genes and 611 down-regulated genes), and 628 (214 up-regulated genes and 414 down-regulated genes) DEGs between HSV-1 infected samples and control samples in D1, D3, D5 and D7 time point groups, respectively (Figure 2A). A total of 2909 non-overlapping DEGs were acquired (Figure 2B). The DEGs in each time point are listed in Table S1.

Time series expression analysis and enrichment analysis

Time series expression analysis was performed based on the expression levels of the 2909 DEGs. Three
clustering with significantly similar expression trends (p<0.05) were obtained, including cluster 4 (involving 345
DEGs), cluster 6 (involving 295 DEGs), cluster 8 (involving 759 DEGs) (Figure 3).

Enrichment analysis indicated that these DEGs were implicated in 8 GO terms (including immune
response, and antigen processing and presentation of exogenous peptide antigen) and 7 KEGG pathways
(including natural killer cell mediated cytotoxicity, and antigen processing and presentation; Table 1). Detail
information of pathways and genes are shown in Table S2.

PPI network analysis

In the PPI network constructed for the DEGs in the three clusters, there were 502 nodes (gene
productions) and 1505 edges (interactions; Figure 4). Enrichment analysis was conducted for the 502 nodes. A
total of 15 GO terms (including immune response, defense response, and cell activation) and 13 KEGG
pathways (including natural killer cell mediated cytotoxicity, antigen processing and presentation, and
cytokine-cytokine receptor interaction) were enriched (Table 2). The topology parameters of the top 10
network nodes (including phosphatidylinositol 3-kinase regulatory subunit 1, PIK3R1 (down, D1);
phosphoinositide-3 kinase, catalytic subunit delta, PIK3CD (up, D3); phospholipase C gamma-2, PLCG2 (up,
D3); protein tyrosine phosphatase nonreceptor type 6, PTPN6 (down, D3); lymphocyte-specific protein
tyrosine kinase, LCK (up, D5); Ras-related C3 botulinum toxin substrate 2, RAC2 (up, D3); polo-like kinase 1,
PLK1 (up, D3)) are listed in Table 3. Importantly, PIK3R1 had interactions with PIK3CD, PLCG2, PTPN6,
LCK, and RAC2 in the PPI network. Detail with gene information is seen in Table S3.

Eight significant modules were obtained from the PPI network (Table 4, Figure 5). Moreover, the genes
involved in module 1, 2, 3, 4, 5, 6, 7, and 8 were separately enriched in 17 (including sensory perception of
smell), 11 (such as G-protein coupled receptor protein signaling pathway), 23 (including immune system
process), 8 (such as response to wounding), 11 (such as protein modification by small protein conjugation), 10 (such as mRNA metabolic process), 9 (such as protein transport), and 10 (such as cellular process) GO terms.

Discussion

In this study, 430, 1198, 989, and 628 DEGs were separately identified in D1, D3, D5 and D7 time point groups, overall 2909 non-overlapping DEGs. These DEGs were clustered into 3 clusters (cluster 4, 6, and 8) with similar expression profiles. Enrichment analysis showed DEGs were involved in immune-associated GO terms and KEGG pathways. Further analysis using the PPI network showed key nodes like PIK3R1, PIK3CD, PLCG2, PTPN6, LCK, RAC2, and PLK1 might be key candidates in HSV-1. These results showed that the HSV-1 infection in eyes in immunodeficient mice induced acute liver disease.

Among these DEGs, key candidates including RAC2, and PLK1 showed interesting roles in HSV-1 infection-related hepatitis. These genes, like PLCG2 and RAC2 had been reported to be associated with immunity and inflammation directly or indirectly. Through mediating the tyrosine phosphorylation of PLCG2, epidermal growth factor (EGF) promotes the activity of PLCG1 in corneal epithelial cells of rabbit (Islam & Akhtar 2000). The tyrosine kinase PLCG2 acts in the early stage of innate immunity, and is implicated in cytokine production and Ca^{2+} flux in corneal epithelial cells infected by Aspergillus fumigatus (Di et al. 2016; Peng et al. 2018). In addition, PLCG and focal adhesion kinase (FAK) are implicated in mediating hepatic stellate cell (HSC) adhesion and motility (Carloni et al. 1997). RAC1 correlates with inflammatory and fibrotic stress response in the liver of mice receiving doxorubicin (Bopp A 2013). Through conducting transforming growth factor β1 (TGF-β1) signaling to PI3Kγ/AKT/RAC1 pathway, 14 kDa phosphohistidine phosphatase (PHP14) mediates the migration of HSCs and functions in liver fibrosis (Choi et al. 2010; Xu et al. 2017). The cell division cycle protein 42 (Cdc42)/Rac pathway is influenced by the HSV-2-produced unique short region...
3 (US3) protein kinase (PK), which inhibits the activation of c-Jun N-terminal kinase (T et al. 2010). Upregulated \textit{Rac2}, as well as down-regulated \textit{paxillin}, \textit{RhoA} and \textit{CD18} in peripheral blood may play critical roles in corneal graft rejection (M-C et al. 2009; Ortega et al. 2016). Moreover, The guanosine triphosphatase \textit{RAC2} acts in the mediation of reactive oxygen species (ROS) and is important for carbon tetrachloride (CCl4)-associated acute liver injury (Zou et al. 2017). Both \textit{PLCG2} and \textit{RAC2} were upregulated in liver tissues at day 3 post corneal HSV-1 infection. These results showed that \textit{PLCG2} and \textit{RAC2} were correlated with and might have crucial roles in HSV-1 corneal infection-induced liver lesion.

Other DEGs, including \textit{PIK3R1}, \textit{PIK3CD}, \textit{PLCG2}, \textit{PTPN6} and \textit{LCK} showed interest roles in HSV-1 corneal infection-induced hepatitis. Based on \textit{LCK} activation, hepatitis C virus (HCV) envelope protein E2 binds to \textit{CD81} and exerts costimulatory roles on T cells and results in increased T cell antigen receptor (TCR) signaling (Soldaini et al. 2010). \textit{C1q} (a ligand of complement component C1q (gC1qR)) inhibits proliferation of T cells through binding to them, and damaged T-cell function and Lck/Akt activation are induced by the direct binding of HCV core to gC1qR (Zhi Qiang et al. 2004). The nonstructural protein 5A (NS5A) phosphokinase \textit{PLK1} indirectly mediates the RNA replication of HCV and plays differential roles in host cell growth and HCV replication, indicating that \textit{PLK1} can be a promising target for anti-HCV treatment (Yung-Chia et al. 2010). As a proviral host factor, \textit{PLK1} can be used for the therapies of hepatitis B virus (HBV) infection and HBV-induced carcinogenesis (Diab et al. 2017). Via activating the PLK3 pathway, hyperosmotic stress (increased extracellular solute concentration) enhances the phosphorylation of activating transcription factor-2 (\textit{ATF-2}) in human corneal epithelial cells (Wang et al. 2011b). In addition, Plk3 gene is upregulated in liver biopsies of HBV-infected patients in inactive carrier status phase relative to active chronic hepatitis phase.
(Liu et al. 2018). *PLK3* and c-Jun can be activated by hyperosmotic and oxidative stresses (Wang et al. 2011a; Zhong et al. 2017), and c-JUN promotes HBV-related hepatocellular carcinoma (HCC) tumorigenesis and autophagy in mice (Trierweiler et al. 2013; Zhong et al. 2017). These results revealed the crucial roles of LCK, *PLK1* and *PLK3* in HBV and HCV-induced liver diseases. The present study found LCK and PLK1 were upregulated in livers tissues at day 5 and day 3, respectively, post HSV-1 corneal infection. The dysregulated expression of both genes suggested that they might play important roles in HSV-1 corneal infection-induced hepatitis.

Through suppressing *PIK3*, adenosine 3′,5′-monophosphate (*cAMP*) regulates the expression of *p27* and cyclin-dependent kinase 4 (*CDK4*) and represses corneal endothelial cell proliferation (Lee & Kay 2003). Pseudopodia formation and membrane fusion are critical steps for HSV-1 entry into cells, and PIK3 signaling may have influences on these steps by affecting RhoA activation (Kai et al. 2014; Tiwari & Shukla 2010). *PIK3-γ* plays a critical role in the activation and recruitment of inflammatory cells, and the selective *PIK3-γ* inhibitor AS605240 may be applied for the therapy of concanavalin A (ConA)-induced liver damage (Zhen-Ling et al. 2009). Deficiency in small heterodimer partner (*SHP*, also named *PTPN6*)/Src homology region 2 domain-containing phosphatase 1 (*SHP1*) is related to human inflammatory diseases and is bad for controlling bacterial infection (Zakia et al. 2013). Via targeting the *SHP/PTPN6* phosphatase, sorafenib significantly represses the hepatitis B X (HBx)-enhanced androgen receptor activity and may be applied for the chemoprevention of HBV-correlated HCC (Wang et al. 2015). Mutations in the *PIK3R1* and *PIK3CD* gene cause human immunodeficiency (Dorman et al. 2017; Marie-Céline et al. 2014). Marie-Céline et al showed *PIK3R1* mutations inhibited p110 activity, decreased naive T and memory B cell counts in blood, promoted T
cell blasts activation-induced cell death. Therefore, PIK3, PIK3R1, PIK3CD, and PTPN6 were associated with the mechanisms of HSV-1 corneal infection-induced liver diseases. In the present study, PIK3R1 was downregulated in liver on day 1 post HSV-1 infection, which might correlate with the Stat1 knockout-induced immunodeficiency in mice. We found PIK3R1 interacted with PIK3CD (up on day 3), PLCG2 (up on day 3), PTPN6 (down on day 3), LCK (up on day 5), and RAC2 (up on day 3) in the PPI network were mostly dysregulated in livers on day 3 post HSV-1 infection, and all interacted with each other and PIK3R1 in PPI network and modules. These results indicated that PIK3R1 and its interacting genes PIK3CD, PLCG2, PTPN6, LCK and RAC1 took crucial roles in HSV-1 infection-induced hepatitis or liver hepatitis.

Conclusions

In conclusion, 2909 DEGs in the HSV-1 corneal infection-induced hepatitis were obtained. Among them, PIK3R1, PIK3CD, PLCG2, PTPN6, LCK, RAC2, and PLK1 might correlate with the pathogenesis and development of HSV-1 infection-induced hepatitis and human immunodeficiency. Experimental researches may support the roles of these key genes in HSV-1 infection-induced acute hepatitis. Clinics trials may testify whether these genes could be used as the clinical biomarkers for diagnosis of HSV-1-induced hepatitis or not.

Supplementary files

Table S1. The DEGs list.

Table S2. Enrichment analysis for the DEGs involved in the three clusters.

Table S3. The result of enrichment analysis for the nodes in the protein-protein interaction (PPI) network.

References

Pianko S, Patella S, Ostapowicz G, Desmond P, and Sievert W. 2010. Fas-mediated hepatocyte apoptosis is increased by hepatitis C virus infection and alcohol consumption, and may be associated with hepatic fibrosis: mechanisms of liver cell injury in chronic hepatitis C virus infection. *Journal of Viral Hepatitis* 8:406-413.

Zhi Qiang Y, Audrey EV, Waggoner SN, Cale EM, and Hahn YS. 2004. Direct binding of hepatitis C virus core to gC1qR on CD4+ and CD8+ T cells leads to impaired activation of Lck and Akt. *Journal of Virology* 78:6409-6419.

Figure 1. The box plots before (left) and after (right) normalization.

Figure 2. The histogram (A) and Venn diagram (B) of the differentially expressed genes (DEGs) identified for the four time point groups (D1, D3, D5, and D7). In the histogram, red and green separately represent up-regulated genes and down-regulated genes.

Figure 3. The significant clusters (cluster 1, 2, 3, 4, 5, 6, 7, and 8) obtained from time series expression analysis. The squares represent different clusters. The number at the upper left of the square indicates the serial number of each cluster. The black broken line in the square indicates the overall expression trend of the genes in the cluster. The number in the lower left of the square indicates the significant p-value of gene expression similarity in the cluster. The number in the lower right of the square indicates the number of genes involved in the cluster.

Figure 4. The protein-protein interaction (PPI) network. The size of the network node indicates the degree of the node. The larger the node, the higher the degree of the node is.

Figure 5. The eight significant modules identified from the protein-protein interaction (PPI) network. M1, M2, M3, M4, M5, M6, M7, and M8 represent module 1, module 2, module 3, module 4, module 5, module 6, module 7, and module 8, respectively.
Table 1. The results of enrichment analysis for the differentially expressed genes (DEGs) involved in the three clusters.
Table 1. The results of enrichment analysis for the differentially expressed genes (DEGs) involved in the three clusters.

<table>
<thead>
<tr>
<th>Term</th>
<th>Count</th>
<th>P-value</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>GO:0006955~immune response</td>
<td>70</td>
<td>1.41E-09</td>
<td>3.96E-06</td>
</tr>
<tr>
<td>GO:0002478~antigen processing and presentation of exogenous peptide antigen</td>
<td>11</td>
<td>1.13E-06</td>
<td>1.06E-03</td>
</tr>
<tr>
<td>GO:0048002~antigen processing and presentation of peptide antigen</td>
<td>13</td>
<td>1.97E-06</td>
<td>1.39E-03</td>
</tr>
<tr>
<td>GO:0019884~antigen processing and presentation of exogenous antigen</td>
<td>12</td>
<td>1.11E-06</td>
<td>1.56E-03</td>
</tr>
<tr>
<td>GO:0001775~cell activation</td>
<td>36</td>
<td>3.15E-05</td>
<td>1.76E-02</td>
</tr>
<tr>
<td>GO:0019221~cytokine-mediated signaling pathway</td>
<td>14</td>
<td>8.30E-05</td>
<td>3.29E-02</td>
</tr>
<tr>
<td>GO:0045321~leukocyte activation</td>
<td>32</td>
<td>9.64E-05</td>
<td>3.34E-02</td>
</tr>
<tr>
<td>GO:0050778~positive regulation of immune response</td>
<td>23</td>
<td>1.42E-04</td>
<td>4.35E-02</td>
</tr>
<tr>
<td>mmu04650:Natural killer cell mediated cytotoxicity</td>
<td>26</td>
<td>2.14E-06</td>
<td>1.80E-04</td>
</tr>
<tr>
<td>mmu04612:Antigen processing and presentation</td>
<td>22</td>
<td>1.91E-06</td>
<td>3.21E-04</td>
</tr>
<tr>
<td>mmu04514:Cell adhesion molecules (CAMs)</td>
<td>27</td>
<td>5.16E-05</td>
<td>2.17E-03</td>
</tr>
<tr>
<td>mmu04660:T cell receptor signaling pathway</td>
<td>21</td>
<td>3.58E-04</td>
<td>8.56E-03</td>
</tr>
<tr>
<td>mmu04060:Cytokine-cytokine receptor interaction</td>
<td>34</td>
<td>4.61E-04</td>
<td>9.64E-03</td>
</tr>
<tr>
<td>mmu04630:Jak-STAT signaling pathway</td>
<td>24</td>
<td>7.18E-04</td>
<td>1.33E-02</td>
</tr>
<tr>
<td>mmu04662:B cell receptor signaling pathway</td>
<td>15</td>
<td>1.96E-03</td>
<td>3.25E-02</td>
</tr>
</tbody>
</table>

Note: GO, Gene Ontology; FDR, false discovery rate.
Figure 1

Figure 1. The box plots before (left) and after (right) normalization.
Figure 2

Figure 2. The histogram (A) and Venn diagram (B) of the differentially expressed genes (DEGs) identified for the four time point groups (D1, D3, D5, and D7).

In the histogram, red and green separately represent up-regulated genes and down-regulated genes.
Figure 3

Figure 3. The significant clusters (cluster 1, 2, 3, 4, 5, 6, 7, and 8) obtained from time series expression analysis.

The squares represent different clusters. The number at the upper left of the square indicates the serial number of each cluster. The black broken line in the square indicates the overall expression trend of the genes in the cluster. The number in the lower left of the square indicates the significant p-value of gene expression similarity in the cluster. The number in the lower right of the square indicates the number of genes involved in the cluster.
Table 2. The results of enrichment analysis for the nodes in the protein-protein interaction (PPI) network.
Table 2. The results of enrichment analysis for the nodes in the protein-protein interaction (PPI) network.

<table>
<thead>
<tr>
<th>Term</th>
<th>Count</th>
<th>P-value</th>
<th>FDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>GO:0006955~immune response</td>
<td>51</td>
<td>1.55E-14</td>
<td>2.71E-11</td>
</tr>
<tr>
<td>GO:0006952~defense response</td>
<td>42</td>
<td>4.54E-10</td>
<td>7.93E-07</td>
</tr>
<tr>
<td>GO:0001775~cell activation</td>
<td>30</td>
<td>5.80E-10</td>
<td>1.01E-06</td>
</tr>
<tr>
<td>GO:0045321~leukocyte activation</td>
<td>28</td>
<td>8.55E-10</td>
<td>1.49E-06</td>
</tr>
<tr>
<td>GO:0002684~positive regulation of immune system process</td>
<td>24</td>
<td>1.01E-07</td>
<td>1.77E-04</td>
</tr>
<tr>
<td>GO:0006793~phosphorus metabolic process</td>
<td>57</td>
<td>1.05E-07</td>
<td>1.84E-04</td>
</tr>
<tr>
<td>GO:0006796~phosphate metabolic process</td>
<td>57</td>
<td>1.05E-07</td>
<td>1.84E-04</td>
</tr>
<tr>
<td>GO:0046649~lymphocyte activation</td>
<td>22</td>
<td>4.71E-07</td>
<td>8.23E-04</td>
</tr>
<tr>
<td>GO:0006468~protein amino acid phosphorylation</td>
<td>45</td>
<td>5.40E-07</td>
<td>9.44E-04</td>
</tr>
<tr>
<td>GO:00010941~regulation of cell death</td>
<td>41</td>
<td>8.01E-07</td>
<td>1.40E-03</td>
</tr>
<tr>
<td>GO:0016310~phosphorylation</td>
<td>48</td>
<td>8.77E-07</td>
<td>1.53E-03</td>
</tr>
<tr>
<td>GO:0043067~regulation of programmed cell death</td>
<td>40</td>
<td>1.82E-06</td>
<td>3.17E-03</td>
</tr>
<tr>
<td>GO:0042981~regulation of apoptosis</td>
<td>39</td>
<td>3.39E-06</td>
<td>5.92E-03</td>
</tr>
<tr>
<td>GO:0009611~response to wounding</td>
<td>29</td>
<td>3.58E-06</td>
<td>6.25E-03</td>
</tr>
<tr>
<td>GO:0006954~inflammatory response</td>
<td>22</td>
<td>6.69E-06</td>
<td>1.17E-02</td>
</tr>
<tr>
<td>mmu04650:Natural killer cell mediated cytotoxicity</td>
<td>26</td>
<td>2.09E-09</td>
<td>3.26E-07</td>
</tr>
<tr>
<td>mmu04612:Antigen processing and presentation</td>
<td>19</td>
<td>7.11E-07</td>
<td>5.55E-05</td>
</tr>
<tr>
<td>mmu04060:Cytokine-cytokine receptor interaction</td>
<td>33</td>
<td>9.03E-07</td>
<td>4.69E-05</td>
</tr>
<tr>
<td>mmu04514:Cell adhesion molecules (CAMs)</td>
<td>25</td>
<td>1.04E-06</td>
<td>3.25E-05</td>
</tr>
<tr>
<td>mmu04660:T cell receptor signaling pathway</td>
<td>21</td>
<td>2.25E-06</td>
<td>5.84E-05</td>
</tr>
<tr>
<td>mmu04662:B cell receptor signaling pathway</td>
<td>15</td>
<td>5.34E-05</td>
<td>9.26E-04</td>
</tr>
<tr>
<td>mmu04630:Jak-STAT signaling pathway</td>
<td>21</td>
<td>1.05E-04</td>
<td>1.63E-03</td>
</tr>
<tr>
<td>mmu04620:Toll-like receptor signaling pathway</td>
<td>16</td>
<td>1.61E-04</td>
<td>2.28E-03</td>
</tr>
<tr>
<td>mmu04670:Leukocyte transendothelial migration</td>
<td>17</td>
<td>4.02E-04</td>
<td>4.82E-03</td>
</tr>
<tr>
<td>mmu04664:Fc epsilon RI signaling pathway</td>
<td>13</td>
<td>9.95E-04</td>
<td>1.03E-02</td>
</tr>
<tr>
<td>mmu04062:Chemokine signaling pathway</td>
<td>21</td>
<td>1.15E-03</td>
<td>1.05E-02</td>
</tr>
<tr>
<td>mmu04621:NOD-like receptor signaling pathway</td>
<td>11</td>
<td>1.22E-03</td>
<td>1.05E-02</td>
</tr>
<tr>
<td>mmu04510:Focal adhesion</td>
<td>22</td>
<td>1.38E-03</td>
<td>1.13E-02</td>
</tr>
</tbody>
</table>

Note: GO, Gene Ontology; FDR, false discovery rate.
Figure 4

Figure 4. The protein-protein interaction (PPI) network.

The size of the network node indicates the degree of the node. The larger the node, the higher the degree of the node is.
Table 3. The topology parameters of the top 10 nodes in the protein-protein interaction (PPI) network.
Table 3. The topology parameters of the top 10 nodes in the protein-protein interaction (PPI) network.

<table>
<thead>
<tr>
<th>ID</th>
<th>Average Shortest Path Length</th>
<th>Betweenness Centrality</th>
<th>Closeness Centrality</th>
<th>Degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pik3r1</td>
<td>3.276</td>
<td>0.157</td>
<td>0.305</td>
<td>47</td>
</tr>
<tr>
<td>Pik3cd</td>
<td>3.534</td>
<td>0.049</td>
<td>0.283</td>
<td>31</td>
</tr>
<tr>
<td>Plcg2</td>
<td>3.557</td>
<td>0.146</td>
<td>0.281</td>
<td>29</td>
</tr>
<tr>
<td>Pttn6</td>
<td>3.589</td>
<td>0.064</td>
<td>0.279</td>
<td>28</td>
</tr>
<tr>
<td>Lck</td>
<td>3.697</td>
<td>0.050</td>
<td>0.270</td>
<td>27</td>
</tr>
<tr>
<td>Rac2</td>
<td>3.744</td>
<td>0.060</td>
<td>0.267</td>
<td>27</td>
</tr>
<tr>
<td>mCG_125315</td>
<td>3.559</td>
<td>0.138</td>
<td>0.281</td>
<td>26</td>
</tr>
<tr>
<td>Plk1</td>
<td>4.414</td>
<td>0.041</td>
<td>0.227</td>
<td>26</td>
</tr>
<tr>
<td>Vav2</td>
<td>3.562</td>
<td>0.035</td>
<td>0.281</td>
<td>26</td>
</tr>
<tr>
<td>Vav1</td>
<td>3.581</td>
<td>0.039</td>
<td>0.279</td>
<td>25</td>
</tr>
</tbody>
</table>
Figure 5

Figure 5. The eight significant modules identified from the protein-protein interaction (PPI) network.

M1, M2, M3, M4, M5, M6, M7, and M8 represent module 1, module 2, module 3, module 4, module 5, module 6, module 7, and module 8, respectively.
Table 4. The parameter information of the eight significant modules identified from the protein-protein interaction (PPI) network.
Table 4. The parameter information of the eight significant modules identified from the protein-protein interaction (PPI) network.

<table>
<thead>
<tr>
<th>Module</th>
<th>Score</th>
<th>Node</th>
<th>Edges</th>
<th>Node IDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9.5</td>
<td>20</td>
<td>190</td>
<td>Olfr578, Olfr1260, Olfr73, Olfr1444, Olfr1153, Olfr382, Olfr930, Olfr668, Olfr430, Olfr1393, Olfr571, Olfr1218, Olfr684, Olfr177, Olfr1048, Olfr780, Olfr355, Olfr77, Olfr1006, Olfr1225, Cxcl13, Ccr5, Ccr3, Sstr4, Bdkrb1, Ppyr1, Fpr1, P2ry13, Ccl5, Gpr44, Cxcl11, Cxcl9, Fpr2, Cxcl10, Oprl</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>15</td>
<td>105</td>
<td>Cenpe, Plk1, Synj2, Mcm5, Psme4, Ncapg, Cd3g, H2-D1, Lcp2, Tyrobp, Vav1, Cenpf, Tec, Aurka, Il2rb, Csfl2rb2, Cd8b1, H2-Ab1, Cd3d, Prcl1, Bub1, Pten, Pdpk1, H2M3, Csfl2ra, Kif23, Pik3cd, Klr1, Psma3, Psme3, Fbxo5, Cd8a, H2-Aa, Top2a, Csfl2rb, H2-T22, Il2rg, Lck, Oerl, Egfr, Ferm3, Srgn, Orm2, Tor4a, Serpin3a, orml, Fam49b, Gtbp2</td>
</tr>
<tr>
<td>3</td>
<td>3.55</td>
<td>40</td>
<td>142</td>
<td>Uba5, Fbxw13, Wbs1, Uba6, Mylpp, Lonrf1, Fbxo32, Atg7, Mrps2, Rsl24d1, Magoh, Plec, Smg8, Smg1, Rps24, Pabpc2, Rpl21, Rps28, Rps4x, Cd59b, Spnb4, Folr1, Kdelr1, Cd55, Cog2</td>
</tr>
<tr>
<td>4</td>
<td>3.5</td>
<td>8</td>
<td>28</td>
<td>Ncf2, Btk, Ncf4, Plcg2, B2m, Vav2, Cybb, Itk, Blnk</td>
</tr>
<tr>
<td>5</td>
<td>3.5</td>
<td>8</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3.182</td>
<td>11</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2.5</td>
<td>6</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>9</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>