
Digestiflow: from BCL to FASTQ with ease

Manuel Holtgrewe1,2, Mikko Nieminen1,3, Clemens Messerschmidt1,2,

Dieter Beule1,3

1 Berlin Institute of Health, Core Unit Bioinformatics, Charitéplatz 1, 10117 Berlin
2 Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin
3 Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Straße 10, 13125 Berlin

Corresponding Author:

Dieter Beule1,3

Charitéplatz 1, 10117 Berlin

Email address: dieter.beule@bihealth.de

Abstract

Management raw sequencing data and its preprocessing (conversion into sequences and

demultiplexing) remains a challenging topic for groups running sequencing devices. They face

many challenges in such efforts and solutions ranging from manual management of spreadsheets

to very complex and customized LIMS systems handling much more than just sequencing raw

data. In this manuscript, we describe the software package DigestiFlow that focuses on the

management of Illumina flow cell sample sheets and raw data. It allows for automated extraction

of information from flow cell data and management of sample sheets. Furthermore, it allows for

the automated and reproducible conversion of Illumina base calls to sequences and the

demultiplexing thereof using bcl2fastq and Picard Tools, followed by quality control report

generation.

1 Introduction

Laboratories operating modern sequencing facilities face a multitude of challenges. These

include sample tracking, raw data preprocessing (conversion of raw sequencer output into

sequences and demultiplexing of pooled experiments which is usually done in the same step),

quality control of sequencing results, and delivery to the requesting party. While there is no clear

consensus of what comprises a Laboratory Information Management System (LIMS), the term

LIMS is often used to describe systems supporting these step. Simple “pure peopleware”

implementations consist of spreadsheets on network shares while comprehensive commercial

packages such as Illumina BaseSpace Clarity LIMS offer highly adjustable but very expensive

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27717v4 | CC BY 4.0 Open Access | rec: 11 Nov 2019, publ: 11 Nov 2019

solutions. A number of academic and open solutions fall in between, offering a variable number

of features and degrees of customizability.

The general lack of agreement of what a LIMS should cover or not cover stems from the fact that

sequencing laboratories alone differ greatly. Areas of difference include the types of samples

accepted (tissues/blood, DNA/RNA, final libraries/pools, or a subset thereof), and the type of

data generated (raw base calls, sequences, aligned reads, or bioinformatics analytical reports). In

addition, the surrounding information technology (IT) infrastructure varies greatly as does the

degree of integration with such additional IT systems.

In this manuscript we present our approach DigestiFlow (DF) that addresses the different needs

of organizations by focusing on a small, well-defined subset of tasks: management of Illumina

flow cell and sample sheet information and orchestrating the step converting base calls to

sequences and demultiplexing pooled sequencing runs. To the best knowledge of the authors, in

this domain DF offers unparalleled functionality. Flow cells can be filled with an arbitrary

combination of libraries using any combination of index and molecular barcode reads. DF also

supports the barcode being part of the template sequence. DF provides extensive features for

sanity checking and comparison of expected indexing reads with those actually seen in the raw

base call data.

This is particularly important in an era where technologies such as single cell and low input

sequencing require an ever-growing complexity of barcoding and indexing schemes and the

amount of sequencer throughput is growing dramatically. We have encountered flow cells with

more than 600 libraries and expect this to grow with increasing sequencer throughput.

A fundamental link to central IT is the integration with existing authentication infrastructure via

directory servers, e.g., Microsoft ActiveDirectory (AD). DF supports linking accounts to central

AD instances as well as using user accounts that only exist within the system. Beyond this, the

system provides its functionality through a REST API (representational state transfer application

programmable interface application programming interface) such that other services can be

easily integrated. Instead of covering all possible functionality and sample tracking schemes, DF

avoids the complexity of a monolithic system and can be integrated as a part of a modular

system. However, it can also just be standalone without integration with any other system.

2 Methods

DigestiFlow (DF) consist of three major components. The architecture of the system is shown in

Figure 1. The figure also shows interaction with a minimal set of external systems.

2.1 Digestiflow Server

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27717v4 | CC BY 4.0 Open Access | rec: 11 Nov 2019, publ: 11 Nov 2019

DF Server is a web app implemented with the SODAR-Core (Nieminen, Stolpe, Schumann,

Holtgrewe, & Beule, n.d.) and Django frameworks in the Python programming language. It uses

a PostgreSQL database system. It allows for the curation of flow cells and libraries together with

arbitrarily complex index and barcoding schemes. Barcodes can be organized in barcode sets

such that their sequence can be entered once and subsequently be referred to by name.

Furthermore, sequencing machines can be registered with their main properties (e.g., whether the

second barcode read needs to be reverse-complemented, depending on the paired indexing

workflow used). DF Server allows the visualization of barcodes detected by DF Client in the

BCL files (see Figure 2) and compares them to the libraries and barcodes entered by the users

into the flow cell sample sheet. DF Server provides a number of sanity checks for both barcodes

from raw sequencing data, including a barcode frequency distribution and recognizing expected

spike-ins such as PhiX sequence. It can also cross check between sample sheets and barcodes in

the raw sequences, detecting barcodes present in one but missing in the other. Furthermore, users

can add comments to flow cells and attach arbitrary files, which is useful for exchanging

spreadsheets or concentration measurement reports from the wet lab.

2.2 DF Client

DF Client is meant to be called periodically via a cron job to monitor the storage volume where

sequencer(s) write output data. It reads the metadata files and registers any new flow cell with

DF Server (or alternately, flow cells can be pre-registered in DF Server and their properties are

then updated by DF Client). Once the barcodes have been sequenced completely, the DF Client

extracts and evaluates their sequences and posts this information to DF Server. The client also

detects when sequencing has succeeded (and various failure conditions) and updates the

information in the server. DF Client is written in the Rust programming language.

2.3 Digestiflow Demux

DF Demux is also meant to watch the storage volume where the sequencers write their output

data. Once sequencing of a flow cell is complete and marked as ready in DF Server, it starts the

preprocessing by first obtaining the flow cell information from DF Server. Flow cells can be

marked for delivery as base call (BCL) files, (possibly) demultiplexed sequences, or both. If raw

BCL files are to be delivered, DF Server simply creates a TAR (tape archive) file for each lane

that contains all the information required for demultiplexing this one lane.

For preprocessing, it first checks whether the flow cell can be processed by simply calling the

Illumina vendor software bcl2fastq (version 1 or 2, depending on the needs of the raw data) and

calls the program accordingly. Otherwise, it generates a series of calls to bcl2fastq and Picard

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27717v4 | CC BY 4.0 Open Access | rec: 11 Nov 2019, publ: 11 Nov 2019

Tools (http://broadinstitute.github.io/picard/) to perform the required preprocessing. An example

for this is the Agilent XT protocol where molecular barcode sequences are stored in the second

barcode read which bcl2fastq does not support. We refer to homogenous flow cell loads that can

be processed with the bcl2fastq as basic preprocessing while flexible preprocessing allows

arbitrary combination of library indexing and barcoding schemes.

Once preprocessing is complete, FastQC

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) is run on the results and the quality

control results are be collected with MultiQC (Ewels, Magnusson, Lundin, & Käller, 2016).

Finally, the MultiQC report is posted as a message to the flow cell in DF Server using the REST

API together with the log files as attachment. This then allows the sequencing staff to review the

results and react accordingly. DF Demux is implemented in the Python programming language

with a Snakemake (Köster & Rahmann, 2012) workflow using Bioconda (Grüning et al., 2018)

for software package management.

3 Results

3.1 The States of a Flow Cell

DF tracks three components of sequencing: (a) the sequencing process itself, (b) preprocessing,

and (c) data delivery. The possible state values differ for each of these three steps. See the

manual in the Supplemental Material for full details, but they can be summarized as follows.

Each step starts in the initial state. For preprocessing, an operator has to set the state of the

preprocessing step to ready which signals DF Demux to start. Once the client detects that the

sequencing of a flow cell has started the sequencing state changes to running. Similarly, once DF

Demux has started, the preprocessing state changes to running. If sequencing or demultiplexing

fails or succeeds, the corresponding state is updated accordingly (failed/success). For both, a

human operator can set a special confirmed failure/success state manually. For example, a

confirmed failure state will be set manually after they determine preprocessing failed due to

overall low sequencing quality and it is not possible to “rescue” preprocesisng by fixing a sample

sheet. Or a confirmed success state may be set after a human operator determines that QC passes

visual inspection. A special success with warning state allows users to flag situations such as

sequencing which succeeded for all but one lane due to technical issues.

For delivery, a human user has to set the state explicitly. This built-in system for keeping track of

the delivery state is particularly useful if more than one user is handling data delivery, especially

when used in conjunction with the message feature for leaving notes on flow cells.

3.2 Comparison with Existing Methods

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27717v4 | CC BY 4.0 Open Access | rec: 11 Nov 2019, publ: 11 Nov 2019

Existing methods include the following: openBIS ELN-LIMS (Barillari et al., 2016) which

builds on top of openBIS (Bauch et al., 2011) and has a high number of features for sample

submission and -tracking yet also has a large number of dependencies, MendeLIMS (Grimes &

Ji, 2014) which has basic sample tracking functionality yet is bound to a rigid data processing

workflow, MISO (Masella et al., 2019) which offers basic sample tracking functionality yet does

not include features for preprocessing, and Parkour LIMS (Anatskiy et al., 2019) which provides

extensive sample tracking and advanced lab notebook features yet also does not integrate

automated preprocessing. While being out of scope of this manuscript, we note that DF could be

integrated with other software packages as long as they provide an API with additional code. The

integration with Parkour LIMS appears particularly appealing as it is based on the same

technology as DF (Python/Django) and has few other dependencies itself. Table 1 contains a

comparison of the listed tools given some important features

3.3 Features for Improving Sequencing Results

Sample Sheet Validation. Based on practical experience, we greatly appreciate the automated

comparison of observed adapter sequence content and sample sheet. Unexpected sequence in

either set is an indication for possible errors. DF Server provides fine-grained control to

acknowledge and suppress inconsistency warnings (after either fixing errors or accepting errors

and then excluding corresponding data). Furthermore, common artifacts such as PhiX sequence

are automatically recognized and show up as information rather than warnings or errors. Figure 2

shows an example.

Reproducibility, Automation, and Quality Control. The Digestiflow Client and Demux

components are available from Bioconda as Conda packages and Docker images, thus allowing

for future proof installations and creating reproducible workflows. By offering REST APIs and

two useful client applications, DF greatly supports sequencing and demultiplexing operators in

automating their work. Further automation can be added later as the APIs are open. Automated

quality control using FastQC and aggregation using MultiQC also allows users to spot problems

earlier (together with the sample sheet adapter checks described above). In our experience this

allows for the early detection of many common issues. For example, from time to time, it occurs

that the same adapter was used for two different libraries in the same lane. This error might be

hard to spot on paper or in spreadsheets but applications such as DF Server can easily detect and

report such problems similar to the example shown in Figure 2.

References

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27717v4 | CC BY 4.0 Open Access | rec: 11 Nov 2019, publ: 11 Nov 2019

Anatskiy, E., Ryan, D. P., Grüning, B. A., Arrigoni, L., Manke, T., & Bönisch, U. (2019). Parkour LIMS:

high-quality sample preparation in next generation sequencing. Bioinformatics.

doi:10.1093/bioinformatics/bty820

Barillari, C., Ottoz, D. S. M., Fuentes-Serna, J. M., Ramakrishnan, C., Rinn, B., & Rudolf, F. (2016).

openBIS ELN-LIMS: an open-source database for academic laboratories. Bioinformatics, 32(4), 638–640.

doi:10.1093/bioinformatics/btv606

Bauch, A., Adamczyk, I., Buczek, P., Elmer, F.-J., Enimanev, K., Glyzewski, P., … Rinn, B. (2011).

openBIS: a flexible framework for managing and analyzing complex data in biology research. BMC

Bioinformatics, 12(1), 468. doi:10.1186/1471-2105-12-468

Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: summarize analysis results for

multiple tools and samples in a single report. Bioinformatics, 32(19), 3047–3048.

https://doi.org/10.1093/bioinformatics/btw354

Grimes, S. M., & Ji, H. P. (2014). MendeLIMS: A web-based laboratory information management system

for clinical genome sequencing. BMC Bioinformatics. doi:10.1186/1471-2105-15-290

Grüning, B., Dale, R., Sjödin, A., Chapman, B. A., Rowe, J., Tomkins-Tinch, C. H., … Köster, J. (2018).

Bioconda: sustainable and comprehensive software distribution for the life sciences. Nature Methods,

15(7), 475–476. doi:10.1038/s41592-018-0046-7

Köster, J., & Rahmann, S. (2012). Snakemake--a scalable bioinformatics workflow engine. Bioinformatics,

28(19), 2520–2522. doi:10.1093/bioinformatics/bts480

Masella, A., Cooke, D., Armstrong, H., Davey, R., DeBat, T., Bian, X., … Leipzig, J. (2019). miso-

lims/miso-lims: v0.2.183. doi:https://10.5281/ZENODO.3341739

Nieminen, M., Stolpe, O., Holtgrewe, M., Beule, D. SODAR Core: a Django-based framework for scientific

data management and analysis web apps. under review

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27717v4 | CC BY 4.0 Open Access | rec: 11 Nov 2019, publ: 11 Nov 2019

Tables

Table 1 Comparison important properties and features in commercial and free software for the

management of Illumina flow cells information popular in the sequencing community based.

Metric DF BSCL OBLE ML MISO PL

License MIT com. f.f.n. f.f.n. GPL GPL

Self-Hosted ─

LDAP Auth ─

(REST) API ─

Sample Tracking min. adv. basic basic basic adv.

Basic Preproc. ─

Flexible Preproc. ─ ─ ─ ─ ─

Sheet Checks ─ ─ ─ ─ ─

BCL Checks ─ ─ ─ ─ ─

Abbreviations used in the table: DF (DigestiFlow), BSCL (BaseSpace Clarity LIMS), OBLE (OpenBIS LIMS-

ELN), ML (MendeLIMS), PL (Parkour LIMS), com. (commercial), f.f.n. (free for non-commercial), min. (minimal),

adv. (advanced), preproc. (preprocessing).

199

200

201

202

203

204

205

206

207

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27717v4 | CC BY 4.0 Open Access | rec: 11 Nov 2019, publ: 11 Nov 2019

Figures

Figure 1 Architectural overview. Sequencing instruments write data to a specified file system

storage. A periodically running DF Client detects new flow cells and registers them with the DF

Server. Once sequencing is complete and sample sheet information has been approved by the

operator, DF Demux performs the conversion to FASTQ files and creates all QC reports. Users

can not only browse and view, but also manage and curate flow cells and their sample sheets

through DF Server.

208

209

210

211

212

213

214

215

216

217
218

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27717v4 | CC BY 4.0 Open Access | rec: 11 Nov 2019, publ: 11 Nov 2019

Figure 2

When adding the sample sheet (not shown), the operator made a small mistake. The adapter P37

is given twice for the same lane in the sample sheet while the adapter sequence “AAGACCGT”

occurs in the raw base calls but not in the sample sheet. This information can then be used for

debugging sample sheet information. This is highlighted in the sample sheet (a) and the display

of the adapters read from the raw base call data (b).

219

220

221

222

223

224

225

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27717v4 | CC BY 4.0 Open Access | rec: 11 Nov 2019, publ: 11 Nov 2019

Supplemental Material

 Digestiflow Server Documentation

226

227

228

229

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27717v4 | CC BY 4.0 Open Access | rec: 11 Nov 2019, publ: 11 Nov 2019

