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Abstract

Management raw sequencing data and its preprocessing (conversion into sequences and 

demultiplexing) remains a challenging topic for groups running sequencing devices. They face 

many challenges in such efforts and solutions ranging from manual management of spreadsheets 

to very complex and customized LIMS systems handling much more than just sequencing raw 

data. In this manuscript, we describe the software package DigestiFlow that focuses on the 

management of Illumina flow cell sample sheets and raw data. It allows for automated extraction 

of information from flow cell data and management of sample sheets. Furthermore, it allows for 

the automated and reproducible conversion of Illumina base calls to sequences and the 

demultiplexing thereof using bcl2fastq and Picard Tools, followed by quality control report 

generation.

1 Introduction

Laboratories operating modern sequencing facilities face a multitude of challenges. These 

include sample tracking, raw data preprocessing (conversion of raw sequencer output into 

sequences and demultiplexing of pooled experiments which is usually done in the same step), 

quality control of sequencing results, and delivery to the requesting party. While there is no clear

consensus of what comprises a Laboratory Information Management System (LIMS), the term 

LIMS is often used to describe systems supporting these step. Simple “pure peopleware” 

implementations consist of spreadsheets on network shares while comprehensive commercial 

packages such as Illumina BaseSpace Clarity LIMS offer highly adjustable but very expensive 
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solutions. A number of academic and open solutions fall in between, offering a variable number 

of features and degrees of customizability.

The general lack of agreement of what a LIMS should cover or not cover stems from the fact that

sequencing laboratories alone differ greatly. Areas of difference include the types of samples 

accepted (tissues/blood, DNA/RNA, final libraries/pools, or a subset thereof), and the type of 

data generated (raw base calls, sequences, aligned reads, or bioinformatics analytical reports). In 

addition, the surrounding information technology (IT) infrastructure varies greatly as does the 

degree of integration with such additional IT systems.

In this manuscript we present our approach DigestiFlow (DF) that addresses the different needs 

of organizations by focusing on a small, well-defined subset of tasks: management of Illumina 

flow cell and sample sheet information and orchestrating the step converting base calls to 

sequences and demultiplexing pooled sequencing runs. To the best knowledge of the authors, in 

this domain DF offers unparalleled functionality. Flow cells can be filled with an arbitrary 

combination of libraries using any combination of index and molecular barcode reads. DF also 

supports the barcode being part of the template sequence. DF provides extensive features for 

sanity checking and comparison of expected indexing reads with those actually seen in the raw 

base call data.

This is particularly important in an era where technologies such as single cell and low input 

sequencing require an ever-growing complexity of barcoding and indexing schemes and the 

amount of sequencer throughput is growing dramatically. We have encountered flow cells with 

more than 600 libraries and expect this to grow with increasing sequencer throughput.

A fundamental link to central IT is the integration with existing authentication infrastructure via 

directory servers, e.g., Microsoft ActiveDirectory (AD). DF supports linking accounts to central 

AD instances as well as using user accounts that only exist within the system. Beyond this, the 

system provides its functionality through a REST API (representational state transfer application 

programmable interface application programming interface) such that other services can be 

easily integrated. Instead of covering all possible functionality and sample tracking schemes, DF 

avoids the complexity of a monolithic system and can be integrated as a part of a modular 

system. However, it can also just be standalone without integration with any other system.

2 Methods

DigestiFlow (DF) consist of three major components. The architecture of the system is shown in 

Figure 1. The figure also shows interaction with a minimal set of external systems.

2.1 Digestiflow Server
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DF Server is a web app implemented with the SODAR-Core (Nieminen, Stolpe, Schumann, 

Holtgrewe, & Beule, n.d.) and Django frameworks in the Python programming language. It uses 

a PostgreSQL database system. It allows for the curation of flow cells and libraries together with 

arbitrarily complex index and barcoding schemes. Barcodes can be organized in barcode sets 

such that their sequence can be entered once and subsequently be referred to by name. 

Furthermore, sequencing machines can be registered with their main properties (e.g., whether the

second barcode read needs to be reverse-complemented, depending on the paired indexing 

workflow used). DF Server allows the visualization of barcodes detected by DF Client in the 

BCL files (see Figure 2) and compares them to the libraries and barcodes entered by the users 

into the flow cell sample sheet. DF Server provides a number of sanity checks for both barcodes 

from raw sequencing data, including a barcode frequency distribution and recognizing expected 

spike-ins such as PhiX sequence. It can also cross check between sample sheets and barcodes in 

the raw sequences, detecting barcodes present in one but missing in the other. Furthermore, users

can add comments to flow cells and attach arbitrary files, which is useful for exchanging 

spreadsheets or concentration measurement reports from the wet lab.

2.2 DF Client

DF Client is meant to be called periodically via a cron job to monitor the storage volume where 

sequencer(s) write output data. It reads the metadata files and registers any new flow cell with 

DF Server (or alternately, flow cells can be pre-registered in DF Server and their properties are 

then updated by DF Client). Once the barcodes have been sequenced completely, the DF Client 

extracts and evaluates their sequences and posts this information to DF Server. The client also 

detects when sequencing has succeeded (and various failure conditions) and updates the 

information in the server. DF Client is written in the Rust programming language.

2.3 Digestiflow Demux

DF Demux is also meant to watch the storage volume where the sequencers write their output 

data. Once sequencing of a flow cell is complete and marked as ready in DF Server, it starts the 

preprocessing by first obtaining the flow cell information from DF Server. Flow cells can be 

marked for delivery as base call (BCL) files, (possibly) demultiplexed sequences, or both. If raw 

BCL files are to be delivered, DF Server simply creates a TAR (tape archive) file for each lane 

that contains all the information required for demultiplexing this one lane.

For preprocessing, it first checks whether the flow cell can be processed by simply calling the 

Illumina vendor software bcl2fastq (version 1 or 2, depending on the needs of the raw data) and 

calls the program accordingly. Otherwise, it generates a series of calls to bcl2fastq and Picard 
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Tools (http://broadinstitute.github.io/picard/) to  perform the required preprocessing. An example

for this is the Agilent XT protocol where molecular barcode sequences are stored in the second 

barcode read which bcl2fastq does not support. We refer to homogenous flow cell loads that can 

be processed with the bcl2fastq as basic preprocessing while flexible preprocessing allows 

arbitrary combination of library indexing and barcoding schemes.

Once preprocessing is complete, FastQC 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) is run on the results and the quality

control results are be collected with MultiQC (Ewels, Magnusson, Lundin, & Käller, 2016). 

Finally, the MultiQC report is posted as a message to the flow cell in DF Server using the REST 

API together with the log files as attachment. This then allows the sequencing staff to review the 

results and react accordingly. DF Demux is implemented in the Python programming language 

with a Snakemake (Köster & Rahmann, 2012) workflow using Bioconda (Grüning et al., 2018) 

for software package management.

3 Results

3.1 The States of a Flow Cell

DF tracks three components of sequencing: (a) the sequencing process itself, (b) preprocessing, 

and (c) data delivery. The possible state values differ for each of these three steps. See the 

manual in the Supplemental Material for full details, but they can be summarized as follows.

Each step starts in the initial state. For preprocessing, an operator has to set the state of the 

preprocessing step to ready which signals DF Demux to start. Once the client detects that the 

sequencing of a flow cell has started the sequencing state changes to running. Similarly, once DF

Demux has started, the preprocessing state changes to running. If sequencing or demultiplexing 

fails or succeeds, the corresponding state is updated accordingly (failed/success). For both, a 

human operator can set a special confirmed failure/success state manually. For example, a 

confirmed failure state will be set manually after they determine preprocessing failed due to 

overall low sequencing quality and it is not possible to “rescue” preprocesisng by fixing a sample

sheet. Or a confirmed success state may be set after a human operator determines that QC passes 

visual inspection. A special success with warning state allows users to flag situations such as 

sequencing which succeeded for all but one lane due to technical issues.

For delivery, a human user has to set the state explicitly. This built-in system for keeping track of

the delivery state is particularly useful if more than one user is handling data delivery, especially 

when used in conjunction with the message feature for leaving notes on flow cells.

3.2 Comparison with Existing Methods
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Existing methods include the following: openBIS ELN-LIMS (Barillari et al., 2016) which 

builds on top of openBIS (Bauch et al., 2011) and has a high number of features for sample 

submission and -tracking yet also has a large number of dependencies, MendeLIMS (Grimes & 

Ji, 2014) which has basic sample tracking functionality yet is bound to a rigid data processing 

workflow, MISO (Masella et al., 2019) which offers basic sample tracking functionality yet does 

not include features for preprocessing, and Parkour LIMS (Anatskiy et al., 2019) which provides 

extensive sample tracking and advanced lab notebook features yet also does not integrate 

automated preprocessing. While being out of scope of this manuscript, we note that DF could be 

integrated with other software packages as long as they provide an API with additional code. The

integration with Parkour LIMS appears particularly appealing as it is based on the same 

technology as DF (Python/Django) and has few other dependencies itself. Table 1 contains a 

comparison of the listed tools given some important features

3.3 Features for Improving Sequencing Results

Sample Sheet Validation. Based on practical experience, we greatly appreciate the automated 

comparison of observed adapter sequence content and sample sheet. Unexpected sequence in 

either set is an indication for possible errors. DF Server provides fine-grained control to 

acknowledge and suppress inconsistency warnings (after either fixing errors or accepting errors 

and then excluding corresponding data). Furthermore, common artifacts such as PhiX sequence 

are automatically recognized and show up as information rather than warnings or errors. Figure 2

shows an example.

Reproducibility, Automation, and Quality Control. The Digestiflow Client and Demux 

components are available from Bioconda as Conda packages and Docker images, thus allowing 

for future proof installations and creating reproducible workflows. By offering REST APIs and 

two useful client applications, DF greatly supports sequencing and demultiplexing operators in 

automating their work. Further automation can be added later as the APIs are open. Automated 

quality control using FastQC and aggregation using MultiQC also allows users to spot problems 

earlier (together with the sample sheet adapter checks described above). In our experience this 

allows for the early detection of many common issues. For example, from time to time, it occurs 

that the same adapter was used for two different libraries in the same lane. This error might be 

hard to spot on paper or in spreadsheets but applications such as DF Server can easily detect and 

report such problems similar to the example shown in Figure 2.
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Tables

Table 1 Comparison important properties and features in commercial and free software for the 

management of Illumina flow cells information popular in the sequencing community based.

Metric DF BSCL OBLE ML MISO PL

License MIT com. f.f.n. f.f.n. GPL GPL

Self-Hosted  ─    

LDAP Auth      ─

(REST) API    ─  

Sample Tracking min. adv. basic basic basic adv.

Basic Preproc.     ─ 

Flexible Preproc.  ─ ─ ─ ─ ─

Sheet Checks  ─ ─ ─ ─ ─

BCL Checks  ─ ─ ─ ─ ─

Abbreviations used in the table: DF (DigestiFlow), BSCL (BaseSpace Clarity LIMS), OBLE (OpenBIS LIMS-

ELN), ML (MendeLIMS), PL (Parkour LIMS), com. (commercial), f.f.n. (free for non-commercial), min. (minimal),

adv. (advanced), preproc. (preprocessing).
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Figures

Figure 1 Architectural overview. Sequencing instruments write data to a specified file system 

storage. A periodically running DF Client detects new flow cells and registers them with the DF 

Server. Once sequencing is complete and sample sheet information has been approved by the 

operator, DF Demux performs the conversion to FASTQ files and creates all QC reports. Users 

can not only browse and view, but also manage and curate flow cells and their sample sheets 

through DF Server.
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Figure 2

When adding the sample sheet (not shown), the operator made a small mistake. The adapter P37 

is given twice for the same lane in the sample sheet while the adapter sequence “AAGACCGT” 

occurs in the raw base calls but not in the sample sheet. This information can then be used for 

debugging sample sheet information. This is highlighted in the sample sheet (a) and the display 

of the adapters read from the raw base call data (b). 
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Supplemental Material

 Digestiflow Server Documentation
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