

Sex Matters in Health and Disease: a review of biological sex differences with an emphasis on glioma

Authors: Susan Christine Massey,¹ Paula Whitmire,¹ Tatum E. Doyle,² Joseph E. Ippolito,^{3,4} Maciej M. Mrugala,⁵ Leland S. Hu,⁶ Peter Canoll,⁷ Alexander R. A. Anderson,⁸ Melissa A. Wilson,⁹ Susan M. Fitzpatrick,¹⁰ Margaret M. McCarthy,^{11,12} Joshua B. Rubin,^{13,14} Kristin R. Swanson^{1, 15}

¹Mathematical NeuroOncology Laboratory, Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ

²College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI

³Division of Urology, Washington University School of Medicine, St. Louis, MO

⁴Department of Radiology, Washington University School of Medicine, St. Louis, MO

⁵Department of Neurology, Mayo Clinic, Phoenix, AZ

⁶Department of Radiology, Mayo Clinic, Phoenix, AZ

⁷Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY

⁸Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL

⁹School of Life Sciences, Arizona State University, Tempe, AZ

¹⁰James S. McDonnell Foundation, St. Louis, MO

¹¹Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD

¹²Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD

¹³Department of Pediatrics, Washington University School of Medicine, St. Louis, MO

¹⁴Department of Neuroscience, Washington University School of Medicine, St. Louis, MO

¹⁵School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ

Corresponding author:

Susan Christine Massey

5777 East Mayo Blvd

SSB 02-700

Phoenix, AZ 85054

Massey.Susan@mayo.edu

Conflicts of interest: The authors declare that no conflicts of interest exist.

Acknowledgements: This work was supported by the James S. McDonnell Foundation.

Abstract: Humans are sexually dimorphic, with sex being the most persistent difference among humans over the course of our evolutionary history. Beyond the visible sex differences that can be considered true dimorphisms, there are also sex differences at the molecular and cellular scales. The role of these biological sex differences for human health, while being increasingly recognized, have long been underappreciated and underexplored. Frequently, these differences are only recognized in sex-specific diseases, such as genitourinary diseases and cancers. However, given the evidence for sex differences in the most basic aspects of human biology, including metabolism, cellular composition, and immune activity, these differences could have consequences for the etiology and pathophysiology of a majority of diseases. It is thus essential to consider the extent to which these differences may influence the various mechanisms underlying disease processes, response to treatment, and the maintenance of health in order to better improve patient outcomes. Here we review the evidence for a broad array of biological sex differences in humans and discuss how they may relate to observed sex differences in various diseases, with an emphasis on cancer, specifically glioblastoma. We further propose that mathematical approaches can be useful for exploring the extent to which sex differences affect disease outcomes and accounting for those in the development of therapeutic strategies.

1 INTRODUCTION

2 From a very young age, we are introduced to the dichotomies of sex and gender. Based on
3 external anatomical sexual dimorphism, children are typically assigned a gender at birth and
4 brought up according to distinct gender norms. However, the resulting impacts of this
5 genderedness as a social construct and efforts to avoid gender-based discrimination have at
6 times led to an avoidance of robustly studying and understanding biological sex differences and
7 their role in human medicine. These biological sex differences are related to human sexual
8 dimorphism, but go beyond external anatomical differences and even the more widely understood
9 hormonal differences that we typically associate with gender. At the base of biological sex in
10 humans lies the 23rd chromosome pair—typically XX in genetic females and XY in genetic males,
11 though other combinations such as XXY and X0 are both viable and not rare.^{1,2} The sex
12 determining region Y (SRY) gene on the Y chromosome is initially responsible for gonadal
13 differentiation and contributes to regulating differences in expression of testosterone, but this is
14 not the only difference seen at the chromosomal level between the sexes.^{3,4} As such, treatment
15 with cross-sex hormones in transgender individuals⁵ and people with atypical sex chromosome
16 karyotypes does not completely change all of the underlying biological factors associated with
17 chromosomal sex. The impacts of sex can be observed throughout the lifespan—from metabolic
18 differences following conception, to differences in lifespan length and response to infectious
19 disease.^{6,7}

20
21 In this review, we use “sex” to denote biological sex as determined by chromosomes, following
22 NIH guidelines,⁸ focusing on XX females and XY males. This is distinct from gender, which is a
23 social construct. The societal impacts of gender also have implications for human health, including
24 the conditions referred to in this review, but that is not the focus of this article. We begin by
25 highlighting known biological sex differences in healthy individuals, including the immune system
26 and metabolism. Next, we discuss sex differences observed in nonneoplastic disease and how
27 these relate to underlying biological sex differences. Finally, we review sex differences in
28 neoplastic disease broadly, and focus on one particular cancer for which understanding sex
29 differences may be impactful: glioblastoma. We conclude with recommendations for using
30 computational approaches to facilitate studies investigating the complex impacts of sex in human
31 health and medicine.

32 33 SEX DIFFERENCES IN HEALTHY INDIVIDUALS

34 35 Sex differences in the immune system.

36 The human X chromosome contains many genes related to immune function.⁹ Because the
37 human Y chromosome does not contain alleles for these genes, dosage compensation evolved
38 so that only one complement is needed, thereby necessitating X-inactivation in females (XX) to
39 avoid the consequences of over-expression of these same genes.¹⁰ This inactivation is achieved
40 through a variety of epigenetic mechanisms;¹¹ however, a number of studies have shown that X-
41 inactivation is not complete, with as many as 30% of genes on the inactivated X (Xi) escaping
42 inactivation.^{12,13} Furthermore, recent work has shown that the Xi can be partially reactivated in
43 lymphocytes, leading to the overexpression of X-linked immune genes.¹⁴

44
45 Immune differences between the sexes are also reflected in different relative abundances of
46 various immune cells. In their review of sex differences in immunology across a variety of species,
47 including humans, Klein and Flanagan note that human females have higher T-cell numbers and
48 increased antibody response.¹⁵ On average, females have higher numbers of CD4+ T-cells than
49 males, as well as a higher ratio of CD4+ to CD8+ cells, and this difference is maintained across
50 all adult ages, even as this ratio increases with age in both males and females.^{16–19} Other studies
51 have found a higher count in total lymphocytes among males, but a higher abundance of

52 granulocytes in blood samples from females.²⁰⁻²² These trends have been observed across
53 different ancestries and various geographic regions, suggesting that these differences are
54 maintained in the presence of various genetic and environmental influences.

55
56 In addition to differences attributable to genetics, there are also influences due to sex hormones,
57 which are more notable following puberty. Because technology to detect hormones and to
58 produce synthetic hormones has existed much longer than genetic sequencing technology and
59 other sophisticated microbiological approaches, many studies have focused on immune
60 differences attributable to sex steroids.²³ Physiologic levels of estradiol have been shown to be
61 immunostimulatory.²⁴ One study showed that estradiol may promote the production of
62 corticotropin stimulating hormone by enhancing *CRH* gene transcription in the hypothalamus,
63 suggesting one mechanism for this effect.²⁵ Furthermore, hormonal fluctuations during the female
64 menstrual cycle are associated with alterations in T cell numbers. The overall number of
65 regulatory T-cells (T_{reg}) increase during follicular phase and decrease during the luteal phase.²⁶
66 Additionally, the relative abundance of type 1 versus type 2 helper T cell (T_h1 and T_h2 ,
67 respectively) responses vary with estrogen levels, with T_h2 responses being predominant during
68 the follicular phase (when estrogen levels are high) and T_h1 responses predominating during the
69 luteal phase.^{27,28} Studies have also shown that estrogens play a dynamic role in wound healing.
70 Estrogens stimulate various growth factor pathways to improve re-innervation and
71 epithelialization, as well as enhance the formation of granulation tissue.²⁹ There is an age-related
72 decline in wound healing in healthy females, which is counteracted by hormone replacement
73 therapy with progesterone and either conjugated estrogen or estradiol.³⁰

74
75 *Immune Sex Differences seen in Animal Studies.* Studies among murine models have revealed
76 further immunological sex differences, suggesting the existence of additional immunological
77 differences between healthy human males and females. For example, resident leukocyte
78 populations in murine females are more numerous than in males, and they have a greater density
79 of pathogen/injury-sensing toll-like receptors³¹ and dendritic cells express estrogen receptor
80 alpha.³² Experiments have also shown a role for the X chromosome in autoimmune disease
81 susceptibility in females.³³ In the brain, there are also sex differences in microglia, suggesting
82 implications for neuroimmune differences between the sexes. In particular, the abundance and
83 morphology of microglia in various brain regions differs between the sexes,^{34,35} as do their
84 phenotype and transcriptome.^{36,37} Due to the role of microglia in modulating synaptic connectivity,
85 neuroimmune sex differences have implications for neurological development, as reviewed
86 elsewhere.^{38,39} These immunological sex differences may even have implications for pain
87 perception and morphine response, with microglia required for sensing pain in male rodents, but
88 not in females,⁴⁰ and sex differences in microglia may drive the observation of reduced sensitivity
89 to morphine in females.⁴¹ Neurons and astrocytes can produce estrogen and microglia and
90 oligodendrocytes express estrogen receptor, particularly ERb.⁴² In vivo studies in mice with
91 experimental autoimmune encephalomyelitis (a model of multiple sclerosis) have demonstrated
92 that Δ^5 -androstenediol bound to ERb inhibits inflammation, while E2 bound to ERb prevents this
93 in brain vascular SMCs.⁴³ Additionally, there has been increased recognition of the role that the
94 microbiome plays in immune response. In one study using the nonobese diabetic mouse model
95 of type 1 diabetes, gut microbiota were transferred from adult male subjects to immature females,
96 which resulted in elevated testosterone production and reduced islet inflammation, protecting
97 against development of diabetes. This suggests that microbiota may participate in signaling loops
98 that can influence sex hormone levels and thereby affect immune response and metabolism.⁴⁴

99
100 **Sex differences in metabolism.**
101 Sex differences in human metabolism have been noted during periods of exercise and fasting, as
102 well as in hypoglycemia, with females having increased lipolysis relative to males and males

103 having increased carbohydrate oxidation relative to females.^{45,46} There are also differences in
104 protein use and muscle turnover, with slightly less amino acid metabolism in females (particularly
105 reduced leucine oxidation).⁴⁶ While these differences are small between young males and
106 females, they may be more pronounced in response to resistance exercise and feeding among
107 older adults.^{47,48} After adjusting for body composition, there does not appear to be a sex difference
108 in overall basal metabolic rate (BMR).^{49,50} However, in one study, the sample size was quite small
109 after restricting subjects to postmenopausal ages (>49 years) for females and age-matched males
110 in order to exclude the effect of circulating sex steroid hormones.⁵⁰ Another study noted that
111 females had higher levels of circulating leptin which did not impact residual BMR, although there
112 was an association between residual BMR and the thyroid hormone thyroxine that remained
113 significant for males but not females when the sex cohorts were analyzed separately.⁴⁹ A review
114 of metabolic sex differences by Mauvais-Jarvis goes into further depth on these and also includes
115 animal studies that may help distinguish the hormonal versus chromosomal impacts of sex on
116 metabolism.⁵¹

117
118 Studies have also revealed metabolic sex differences in the brain, specifically in cerebral glucose
119 metabolism. Although these have sometimes been framed to discuss potential differences in
120 cognitive abilities and emotional processing, this is not our focus here; rather, we include them to
121 highlight possible (sub)cellular biological differences that could be related to disease
122 pathogenesis and outcome. Most studies in cerebral glucose metabolism largely rely on 2-deoxy-
123 2-(¹⁸F)fluoro-D-glucose (¹⁸F-FDG) positron emission tomography (PET) to study global and
124 regional differences in the brain. Two studies have showed increased whole brain glucose
125 metabolism in females.^{52,53} Another study found that resting glucose metabolism in the temporal
126 limbic region and the cerebellum was higher in males than females, while the opposite was true
127 in the cingulate region.⁵⁴ Still another study found that cerebral glucose metabolism was higher in
128 the orbital frontal region in females than in males, in addition to a global increase, but no difference
129 was found in the left anterolateral prefrontal cortex.⁵³ The significance of these differences is not
130 well-understood, but they point to potential differences in underlying biology at the cellular level.
131

132 Some have focused on the role of the menstrual cycle, hypothesizing that metabolic sex
133 differences in the brain may be driven by hormonal differences. One study showed globally
134 elevated (19% higher) glucose metabolism on ¹⁸F-FDG PET in the whole brain of females in the
135 follicular phase of the menstrual cycle as compared to males, with no particular neuroanatomical
136 structures or regions outstanding.⁵² Another compared cerebral glucose metabolism during the
137 follicular and luteal phases in menstruating females.⁵⁵ This study found no difference in whole
138 brain glucose metabolism between the menstrual phases, but did find regional differences, with
139 higher glucose metabolism in the thalamic, prefrontal, temporoparietal, and inferior temporal
140 regions during the mid-follicular phase, and in the superior temporal, anterior temporal, occipital,
141 cerebellar, cingulate, and anterior insular regions during the mid-luteal phase. These regional
142 differences may or may not be associated with regional differences in hormone receptor
143 expression, and the finding of no differences in whole brain glucose metabolism during different
144 phases of the menstrual cycle suggests that sex hormones may not be the primary cause of sex
145 differences in whole brain glucose metabolism.

146
147 There are also important sex differences in drug metabolism, with some drugs being metabolized
148 slower in females than males and other drugs metabolized faster in females than males.⁵⁶ For
149 example, drugs catalyzed by the cytochrome P450 CYP3A have faster rates of clearance in
150 females, who demonstrate twice the level of CYP3A4 expression in their livers.⁵⁷ Differences in
151 expression of various cytochrome P450s (CYPs) may be related to their role in steroid hormone
152 synthesis and metabolism.⁵⁸ Other drugs have slower clearance in females than males, and may
153 thus have higher toxicity.⁵⁶ This difference has also been observed among children treated with

154 6-mercaptopurine for leukemia, with males requiring higher levels of the drug to attain similar
155 efficacy.^{59,60} Sex differences in growth hormone secretion patterns may be just one factor
156 contributing to observed sex differences in CYP expression, through effects on expression of
157 STAT5b, which has regulatory effects on a number of CYP genes.^{61,62}

158
159 **Sex differences in development.**

160 Sex differences in metabolism start as early as conception, prior to the development of gonads
161 or existence of gonadal hormones, and are linked to developmental differences between the
162 sexes. One large retrospective study found that low gestational weight gain results in more male
163 fetal losses than female,⁶³ a finding that was also observed in a study of births occurring during
164 the 1959-1961 Chinese Great Leap Forward famine.⁶⁴ Another study demonstrated differences
165 in cell count and uptake of resources during the early stages of human embryonic development.⁶
166 Sex plays a significant role in the physical development of humans, particularly in sexual
167 differentiation through the development of gonads and secondary sexual characteristics that lead
168 to physical sexual dimorphism. Further, female life expectancy is longer than that for males, a
169 finding that persists in survival data across countries throughout the lifespan, including in very
170 early life (birth to age 5) and in later life (ages 50+), indicating that these differences are not solely
171 attributable to sex-specific societal exposures (e.g., war and violence, or different pressures
172 toward risk-taking behaviors).⁷

173
174 Beyond the more obvious sexually dimorphic traits, such as physical size and gonads, other
175 morphological differences between males and females occur throughout the body. Females have
176 stiffer arterial walls (as measured by pulse pressure) in prepubescent childhood and post
177 menopause as compared to menstruating females, while males' arterial stiffness increases
178 linearly over the lifespan.⁶⁵ Further, males have larger brain volumes than females,⁶⁶ with a higher
179 percentage of that volume consisting of white matter.^{67,68} Regional differences in gray matter
180 volume between males and females has been shown to be independent of overall brain size in
181 studies where male and female subjects were matched on the basis of total brain volume.⁶⁹
182 Further, there appear to be sex differences in the timing of volumetric growth and maturation of
183 various brain regions during development.^{70,71} Still other studies have examined inter- and intra-
184 hemispheric brain connectivity and found sex differences.^{72,73} However, it is worth noting that
185 these studies in humans have been conducted on subjects of age 8 years and older, and therefore
186 we cannot rule out the possible contributions of socialization and gender roles on these observed
187 brain differences. This is particularly important to be aware of, since some studies on sex
188 differences in the brain have erroneously been interpreted to reinforce stereotypes about
189 differential cognitive capabilities between the sexes, as discussed comprehensively
190 elsewhere.^{74,75}

191
192 *Developmental Sex Differences seen in Animal Studies.* Because of the difficulty in teasing apart
193 the contributions of socialization and innate biology on neurocognitive development in humans,
194 animal studies can be particularly useful. In a series of murine experiments, alterations in
195 prostaglandin-E2 (PGE2) expression during development were shown to affect neurogenesis in
196 the rat preoptic area (POA). Specifically, increased PGE2 was associated with increased dendritic
197 spine density (and vice versa), as well as masculine sexual behavior.^{76,77} Studies using the four
198 core genotypes (FCG) mouse model allow for the separation of gonadal vs chromosomal
199 contributions to biological sex differences by moving the SRY gene to an autosome to create XX
200 and XY individuals with ovaries as well as XX and XY mice with testes.⁷⁸ In one study using FCG
201 mice, both chromosomes and estrogen were shown to contribute to differences in growth
202 hormone (GH) regulation in some regions of the brain.⁷⁹ Specifically, estradiol increased GH in
203 the hippocampus and cerebellum, while XX mice had more GH in the arcuate nucleus of the
204 hypothalamus than XY mice. Various other sex hormones, including androgens and progestins,

205 have been shown to affect adult hippocampal neurogenesis as well.⁸⁰ Early life adverse events
206 also have sex- and age-specific impacts on hippocampal neurogenesis in developing rodents.⁸¹
207

208 SEX DIFFERENCES IN PATHOLOGICAL CONDITIONS

209 Sex differences in nonneoplastic disease.

210 Sex differences not only impact healthy day-to-day functioning, there are also many differences
211 that influence disease risk/incidence, pathophysiology, and outcome. This has been particularly
212 noted for autoimmune diseases, which generally affect females more frequently than males.⁸²
213 Given the normal differences between the sexes in immune function, with females generally
214 having higher levels of immune activation (as discussed above), this difference is perhaps
215 unsurprising, although it must be noted that the relationship between sex and disease incidence
216 is not necessarily clear. Some diseases, such as Sjogren's syndrome, Hashimoto's thyroiditis,
217 and Graves' disease, affect women far more frequently than men (more than 4:1), while other
218 diseases such as sarcoidosis and ulcerative colitis are only slightly more common in females or
219 exhibit no sex differences.^{82,83} A few autoimmune diseases may even affect males more
220 frequently—in particular, studies have found a male bias in incidence of type 1 diabetes among
221 patients diagnosed following puberty,⁸⁴ which may also be connected to sex differences in insulin
222 sensitivity.⁵¹ Sex differences in neuroimmunology, in combination with sex differences in
223 dopamine and glutamate signaling, may contribute to observed sex differences in incidence
224 and/or clinical outcomes of various neurological and psychiatric illness, including multiple
225 sclerosis, Alzheimer's and Parkinson's diseases, autism and schizophrenia.⁸⁵⁻⁸⁷ One systematic
226 review found stroke to be more common in males,⁸⁸ while another review found it to be more
227 common among females;⁸⁹ however, both found worse outcomes for females. Sex differences in
228 arterial wall stiffness and inflammatory pathways may explain some of the differences observed
229 in hypertension and cardiovascular disease between males and females.^{65,90,91} There also appear
230 to be contributions from sex hormones, but results have been contradictory.⁹² A study of
231 cardiovascular disease in transgender patients found that male to female transgender individuals
232 taking cross hormones in the form of oral estrogen had worse cardiovascular outcomes, and thus
233 recommend other routes of administration.⁹³ Beyond diseases themselves, immunological sex
234 differences also contribute to the disparate outcomes in wound healing and susceptibility to
235 infectious disease following injury.⁹⁴ One retrospective study of patients treated for injuries
236 demonstrated that males had a greater prevalence of major infections following moderate injury
237 than female patients.⁹⁵

238 239 Sex differences in neoplastic disease overall.

240 These sex differences also impact incidence and outcome in neoplastic disease. Nonreproductive
241 cancers affect males more frequently than females, and carry poorer prognoses in males.⁹⁶⁻⁹⁸
242 While this is sometimes attributed to different sociological factors, such as a greater propensity to
243 have been a smoker, a number of studies that controlled for these (such as looking at only those
244 who were previously smokers) suggest that such sociological differences are not wholly
245 responsible for the observed differences in incidence and outcome.⁹⁸ This is further supported by
246 studies among childhood cancers, where males make up a greater proportion of affected
247 individuals overall and among most cancer types.⁹⁹ The preponderance of males among children
248 affected by cancers also suggests that hormonal differences may not necessarily be primarily
249 responsible for the observed sex difference at other ages. In one recent study, it was found that
250 sex differences relating to metabolism may enable prognostic stratification of females with clear
251 cell renal cell carcinoma.¹⁰⁰ Specifically, high relative visceral fat area (compared to subcutaneous
252 fat area) on computed tomography was associated with poorer survival outcomes in females but
253 not males. Conversely, females with low relative visceral fat area and low tumor glycolysis rates
254 had remarkably good survival outcomes, which was not seen to be as strong in males.
255 Additionally, an analysis of gene regulatory networks in colon cancer identified sex differences in

256 expressed and targeted genes.¹⁰¹ Interestingly, while all of the 20 most sex differentially
257 expressed genes in this study were linked to sex chromosomes, 19 of the 20 most sex
258 differentially targeted genes were of autosomal origin, and many of those more highly targeted
259 among females were genes involved in drug metabolism. Of course, sex hormones interact with
260 immune and metabolic functions, and thus likely play some further role in sex differences among
261 cancers. Estrogens and androgens can modulate immune responses,^{102,103} as well as gene
262 expression *in vitro* and *in vivo*, with effects on tissues being further mediated by intracellular sex
263 hormone receptors.^{104–106} A lower risk of hepatocellular carcinoma in females has been attributed
264 to prolactin,¹⁰⁷ and estrogen has been associated with colorectal cancer risk reduction in
265 premenopausal females.^{108–110} Further, women were found to be more susceptible to oral cancers
266 following menopause.¹¹¹ While research on sex differences in cancer has historically focused
267 more on the contributions of sex hormones, this is only one facet of the biological sex differences
268 that may impact disparate incidence and outcome in neoplastic disease.
269

270 SEX DIFFERENCES IN GLIOMA

271 Thus far, we have reviewed the significant sex differences observed in healthy bodies, pathologic
272 conditions, and non-brain cancers. The presence of consistent sex differences throughout the
273 body and in healthy and pathologic conditions have led researchers to hypothesize that sex
274 differences play a role in both primary and secondary brain cancers.^{112,113} There are known
275 hormonally driven sex differences seen particularly in meningioma and pituitary
276 adenoma.^{113,114} In this section, we will focus on the most common primary malignant brain cancer,
277 glioma and glioblastoma (GBM, grade IV glioma), in which sex differences has been relatively
278 understudied. The strongest and most consistent evidence for sex differences in GBM is related
279 to incidence, with GBM being more common in males, resulting in a M:F ratio of GBM patients of
280 about 1.4-1.6:1.^{115,116} The M:F ratio of the average annual age-adjusted incidence rate from the
281 most recent CBTRUS report is also about 1.6:1.¹¹⁶ Additionally, female GBM patients have been
282 observed to live longer than their male counterparts when given the same standard-of-care
283 treatment.¹¹⁷ These two differences allude to the existence of underlying biological sex differences
284 that enhance male risk for GBM and extend female life during treatment.
285

286 Sex differences in glioma metabolism

287 Aerobic glycolysis, or the Warburg effect, refers to the metabolism of glucose to lactate in
288 proliferating cancer cells despite the presence of oxygen that would otherwise support the
289 complete oxidation of glucose in mitochondria.¹¹⁸ Cancer cells, including glioma cells, use this
290 pathway to rapidly produce ATP and other metabolic precursors that are needed to combat
291 oxidative stress and enable rapid proliferation.^{119–121} Considering the observed metabolic sex
292 differences in glucose uptake in proliferating embryos, as well as those in healthy adults during
293 exercise and conditions of oxidative stress, one might hypothesize that nutrient uptake and
294 metabolism in cancer cells may also display sex differences. One study found that the level of
295 expression of glycolytic genes significantly stratified survival among males with lower grade
296 gliomas, even when the males were split up by grade, histology, and select mutations. For
297 females, glycolytic gene expression level only stratified survival among IDH1 wild-type patients.
298 Additionally, glycolytic metabolite levels (pyruvate and the lactate/pyruvate ratio) stratified male
299 survival, and not female, among grade II glioma patients.¹¹⁹ A different study used advanced
300 imaging and found differences in magnetic resonance imaging (MRI) metrics and relative
301 metabolite levels between male and female high-grade glioma rat models. They concluded that
302 the male tumors were more aggressive than female tumors, warranting further investigation in
303 human subjects.¹²² With the increased utilization of FDG-PET and other advanced imaging on
304 brain tumor patients and the potential for this information to be used to predict tumor grade and
305 patient prognosis,¹²³ it will be increasingly important that we understand how sex impacts tumor
306 metabolism and patient outcomes.

307 Sex differences in glioma and immune system

308 Once thought to be immune-privileged with limited intervention against antigens, the immune
309 system in the CNS is now known to have both adaptive and innate components, with antigens
310 triggering both T cell and macrophage responses. Ideally, the immune system combats cancerous
311 growth by detecting tumor-associated antigens on malignant cells. While glioblastoma is usually
312 accompanied by inflammation and an immune response consisting of T cells, macrophages, and
313 microglia, this is not necessarily a sign of tumor rejection, since these cancer cells are known to
314 secrete immunosuppressive cytokines and manipulate immune activity.^{124,125} There is very little
315 information on sex differences in the neuroimmune system based on the analysis of human
316 subjects, but microglia are known to play an important role in human brain development, and rat
317 models have shown sex differences in the abundance of microglia and effect of T-cells on the
318 development of rat brains.³⁸ Considering the previously described role of X inactivation in immune
319 activity and the observed immune sex differences in the rest of the body, one would hypothesize
320 that the interactions between GBM cells and the immune system might also be impacted by sex.
321 Two studies using case-control methods found an inverse relationship between pre-diagnostic
322 IgE levels and risk for high-grade glioma among females only.^{126,127} Contrarily, another study
323 found an inverse relationship between pre-diagnostic IgE levels and glioma risk among all patients
324 and did not find that this relationship was more significant among females.¹²⁸ At baseline, males
325 were found to have higher levels of total IgE compared to females among both glioma cases
326 (tested after diagnosis) and healthy controls.¹²⁴ Considering the vast potential impact of sex
327 differences on immune-glioma interactions and the necessity of understanding sex's role in these
328 interactions when deploying immune-dependent treatments (e.g., chimeric antigen receptor
329 (CAR) T cell therapy), there is a startling shortage of research on this subject.
330

331 Sex differences in glioma related to hormones

332 The sex differences in glioblastoma incidence have been observed across age groups,^{129,130} indicating that sex hormones alone do not cause this disparity. However, it is reasonable to
333 hypothesize that sex hormones influence glioma growth and/or treatment response. Literature on
334 this subject has been primarily focused on the role of sex hormones in glioma risk and the results
335 have been largely inconsistent. A prospective study of over 200,000 women (European
336 Prospective Investigation into Cancer and Nutrition) found no significant association between
337 glioma risk and reproductive factors like age at menarche, parity, age at first birth, menopausal
338 status, and age at menopause.¹³¹ A meta-analysis of multiple case-control studies found that
339 higher age at menarche was associated with increased risk for glioma, but did not find any risk
340 associated with other reproductive factors.¹³² Oral contraceptives (OC) have also been
341 investigated for their impact on glioma risk. The meta-analysis found that OC use was associated
342 with lower risk for glioma,¹³² while the prospective study found no association between glioma risk
343 and OC use.¹³¹ Among postmenopausal women, the meta-analysis found that hormone
344 replacement therapy (HRT) users had a lower risk for glioma,¹³² and the prospective study found
345 no association between HRT usage and glioma risk.¹³¹ However, neither of these studies
346 examined the role of the dosage strength or type of hormones used. A different prospective study
347 of over one million postmenopausal women found that estrogen-only HRT users had an increased
348 risk for glioma, while estrogen-progesterone users did not have an increased risk compared to
349 never users.¹³³ There is minimal research on the impact of sex hormones on glioma growth or
350 treatment response and the role of sex hormones in the observed sex differences in prognosis
351 and outcome has yet to be elucidated.
352

353 Other observed sex differences in glioma

354 Genetic differences, either in coding or expression, are thought to play a role in the sex differences
355 observed in GBM. A comprehensive study of both the mutation and expression profiles of multiple
356 kinds of cancer found that low grade gliomas and GBMs both fit into the "weak sex-effect" group,
357

358 indicating that there were less sex-biased patterns in gene coding and expression in glioma
359 compared to cancers like bladder urothelial carcinoma and thyroid carcinoma.¹³⁴ Despite being a
360 “weak sex-effect” cancer, multiple studies have used genetic coding and expression data to reveal
361 sex differences in GBM. By applying a framework for assessing mutational clonality to the genetic
362 coding data of glioma patients, one study found that females had higher overall and subclonal
363 mutation burden than males among both LGG and GBM groups. While the X chromosome
364 contributed to the higher overall mutation burden in females, other chromosomes were implicated
365 in this finding as well.¹³⁵ Their results suggest that sex-biased mutagenesis may play a role in
366 glioma development and that sex chromosomes may play an important role in cancer evolution.
367 Focusing on genetic expression, a recent study on GBM patients used a joint and individual
368 variance explained (JIVE) analysis to identify sex-specific patterns of gene expression. After
369 clustering patients into five male and five female groups based on patterns of gene expression,
370 they found that the longest surviving male group had unique expression of genes related to cell
371 cycle regulation and the longest-surviving female group had unique expression of genes related
372 to regulation of integrin signaling.¹³⁶ Additionally, IDH1 mutant female patients mostly clustered
373 into a single group that had improved survival over the other female groups, while IDH1 mutant
374 male patients did not cluster in the same way. These results suggest that while males and females
375 may have similar patterns of genetic expression at a population level, these expression patterns
376 may have sex-specific implications for outcome. The same study also used segmented, serial MR
377 imaging of GBM to find that females had a stronger volumetric response to adjuvant
378 temozolomide therapy compared to males. Finally, using a larger cohort of GBM patients with
379 segmented pre-surgical images, this study found that patient-specific, estimated parameters of
380 tumor growth kinetics, specifically estimated tumor cell diffuse invasion rate, was predictive of
381 overall survival among females and not males.¹³⁶ Two studies have used segmented MR imaging
382 to find sex differences in tumor volume with mixed results,^{137,138} while another study found that
383 these volumes have a sex-specific impact on overall survival.¹³⁹ Taken together, these studies
384 emphasize the need to consider sex differences in studies of glioma genetics and neuroimaging,
385 particularly in the growing field of radiomics.
386

387 **COMPLEX ADAPTIVE SYSTEMS AND MODELING**

388 During a meeting on sex differences in the brain and brain tumors sponsored by the James S.
389 McDonnell Foundation in March 2018, we concluded that understanding the contributions of sex
390 to health and disease is imperative for advancing precision medicine. The myriad differences
391 between the sexes and their impact on normal biology and pathology are highly interconnected
392 and complex, necessitating mathematical and computational approaches for investigation.
393 Mechanistic mathematical models, including differential equation models, can allow us to bridge
394 spatiotemporal scales in testing hypotheses about the impacts of biological sex differences on
395 health and disease outcomes. Agent-based models, in particular, can be useful for discovering
396 emergent phenomena in complex adaptive systems, integrating various processes that have been
397 well-described in isolation to better understand their interacting effects. Computational machine
398 learning models can be useful for identifying patterns in data that provide further understanding
399 of the extent to which various biological sex differences affect health outcomes. Machine learning
400 models can also be combined with mechanistic models wherein we constrain algorithms with well-
401 understood phenomena in order to better elucidate that which is less well understood. In order to
402 fully make use of these quantitative methods, it is vital to collect data related to sex as part of
403 clinical studies. In particular, clinical trial coordinators should pre-consider which data might be
404 needed to examine sex differences prior to initiating a clinical study (for example, data on subjects’
405 menstrual status and noting any type of hormone therapy a subject is taking, or explicitly
406 measuring subjects’ hormone levels, including sex steroids other than estrogen/testosterone).
407 Additionally, clinical trial coordinators should be informed about the social situations surrounding
408 sex and gender disparities, including gender identity, and be sensitive to potential patient

409 concerns to improve data collection.¹³⁵ To reduce the impact of gendered social norms for self-
410 reported symptoms, emphasis in clinical studies should be placed on quantitative assessment of
411 symptoms whenever possible. With these approaches, we can build the individualized patient-
412 specific medicine of the future, wherein all aspects of a patient's biology are fully considered—
413 including their sex.

REFERENCES

1. Nielsen J, Wohlert M. Chromosome abnormalities found among 34910 newborn children: results from a 13-year incidence study in Århus, Denmark. *Hum Genet*. 1991;87(1):81-83. doi:10.1007/BF01213097
2. Samango-Sprouse C, Kırkızlar E, Hall MP, et al. Incidence of X and Y Chromosomal Aneuploidy in a Large Child Bearing Population. *PLoS One*. 2016;11(8):e0161045. doi:10.1371/journal.pone.0161045
3. Gunter C. Genome biology: she moves in mysterious ways. *Nature*. 2005;434(7031):279-280. doi:10.1038/434279a
4. Ross MT, Graham DV, Coffey AJ, et al. The DNA sequence of the human X chromosome. *Nature*. 2005;434(7031):325-337. doi:10.1038/nature03440
5. Hembree WC, Cohen-Kettenis P, Delemarre-van de Waal HA, et al. Endocrine treatment of transsexual persons: an Endocrine Society clinical practice guideline. *J Clin Endocrinol Metab*. 2009;94(9):3132-3154. doi:10.1210/jc.2009-0345
6. Ray PF, Conaghan J, Winston RM, Handyside AH. Increased number of cells and metabolic activity in male human preimplantation embryos following in vitro fertilization. *J Reprod Fertil*. 1995;104(1):165-171. <https://www.ncbi.nlm.nih.gov/pubmed/7636798>.
7. Austad SN, Bartke A. Sex Differences in Longevity and in Responses to Anti-Aging Interventions: A Mini-Review. *Gerontology*. 2015;62(1):40-46. doi:10.1159/000381472
8. Sex & Gender | Office of Research on Women's Health. <https://orwh.od.nih.gov/sex-gender>. Accessed February 12, 2019.
9. Bianchi I, Lleo A, Eric Gershwin M, Invernizzi P. The X chromosome and immune associated genes. *J Autoimmun*. 2012;38(2-3):J187-J192. doi:10.1016/j.jaut.2011.11.012
10. Wilson Sayres MA, Makova KD. Gene survival and death on the human Y chromosome. *Mol Biol Evol*. 2013;30(4):781-787. doi:10.1093/molbev/mss267
11. Heard E. Delving into the diversity of facultative heterochromatin: the epigenetics of the inactive X chromosome. *Curr Opin Genet Dev*. 2005;15(5):482-489. doi:10.1016/j.gde.2005.08.009
12. Carrel L, Cottle AA, Goglin KC, Willard HF. A first-generation X-inactivation profile of the human X chromosome. *Proceedings of the National Academy of Sciences*. 1999;96(25):14440-14444. doi:10.1073/pnas.96.25.14440
13. Tukiainen T, Villani A-C, Yen A, et al. Landscape of X chromosome inactivation across human tissues. *Nature*. 2017;550(7675):244-248. doi:10.1038/nature24265
14. Wang J, Syrett CM, Kramer MC, Basu A, Atchison ML, Anguera MC. Unusual maintenance of X chromosome inactivation predisposes female lymphocytes for increased expression from the inactive X. *Proc Natl Acad Sci U S A*. 2016;113(14):E2029-E2038. doi:10.1073/pnas.1520113113

15. Klein SL, Flanagan KL. Sex differences in immune responses. *Nat Rev Immunol*. 2016;16(10):626-638. doi:10.1038/nri.2016.90
16. Amadori A, Zamarchi R, De Silvestro G, et al. Genetic control of the CD4/CD8 T-cell ratio in humans. *Nat Med*. 1995;1(12):1279-1283. <https://www.ncbi.nlm.nih.gov/pubmed/7489409>.
17. Lee BW, Yap HK, Chew FT, et al. Age- and sex-related changes in lymphocyte subpopulations of healthy Asian subjects: from birth to adulthood. *Cytometry*. 1996;26(1):8-15. doi:3.0.CO;2-E">10.1002/(SICI)1097-0320(19960315)26:1<8::AID-CYTO2>3.0.CO;2-E
18. Lisse IM, Aaby P, Whittle H, Jensen H, Engelmann M, Christensen LB. T-lymphocyte subsets in West African children: impact of age, sex, and season. *J Pediatr*. 1997;130(1):77-85. <https://www.ncbi.nlm.nih.gov/pubmed/9003854>.
19. Uppal SS, Verma S, Dhot PS. Normal values of CD4 and CD8 lymphocyte subsets in healthy Indian adults and the effects of sex, age, ethnicity, and smoking. *Cytometry B Clin Cytom*. 2003;52(1):32-36. doi:10.1002/cyto.b.10011
20. Abdullah M, Chai P-S, Chong M-Y, et al. Gender effect on in vitro lymphocyte subset levels of healthy individuals. *Cell Immunol*. 2012;272(2):214-219. doi:10.1016/j.cellimm.2011.10.009
21. Bain BJ. Ethnic and sex differences in the total and differential white cell count and platelet count. *J Clin Pathol*. 1996;49(8):664-666. <https://www.ncbi.nlm.nih.gov/pubmed/8881919>.
22. Chng WJ, Tan GB, Kuperan P. Establishment of adult peripheral blood lymphocyte subset reference range for an Asian population by single-platform flow cytometry: influence of age, sex, and race and comparison with other published studies. *Clin Diagn Lab Immunol*. 2004;11(1):168-173. <https://www.ncbi.nlm.nih.gov/pubmed/14715565>.
23. Straub RH. The complex role of estrogens in inflammation. *Endocr Rev*. 2007;28(5):521-574. doi:10.1210/er.2007-0001
24. Kovacs EJ, Messingham KAN, Gregory MS. Estrogen regulation of immune responses after injury. *Mol Cell Endocrinol*. 2002;193(1-2):129-135. <https://www.ncbi.nlm.nih.gov/pubmed/12161012>.
25. Vamvakopoulos NC, Chrousos GP. Evidence of direct estrogenic regulation of human corticotropin-releasing hormone gene expression. Potential implications for the sexual dimorphism of the stress response and immune/inflammatory reaction. *J Clin Invest*. 1993;92(4):1896-1902. doi:10.1172/JCI116782
26. Arruvito L, Sanz M, Banham AH, Fainboim L. Expansion of CD4+CD25+ and FOXP3+ regulatory T cells during the follicular phase of the menstrual cycle: implications for human reproduction. *J Immunol*. 2007;178(4):2572-2578. <https://www.ncbi.nlm.nih.gov/pubmed/17277167>.
27. Pernis AB. Estrogen and CD4 T cells. *Curr Opin Rheumatol*. 2007;19(5):414-420. doi:10.1097/bor.0b013e328277ef2a
28. Fish EN. The X-files in immunity: sex-based differences predispose immune responses. *Nat Rev Immunol*. 2008;8(9):737-744. doi:10.1038/nri2394

29. Kanda N, Watanabe S. Regulatory roles of sex hormones in cutaneous biology and immunology. *J Dermatol Sci.* 2005;38(1):1-7. doi:10.1016/j.jdermsci.2004.10.011
30. Ashcroft GS, Dodsworth J, Van Boxtel E, et al. Estrogen accelerates cutaneous wound healing associated with an increase in TGF- β 1 levels. *Nat Med.* 1997;3(11):1209-1215. doi:10.1038/nm1197-1209
31. Scotland RS, Stables MJ, Madalli S, Watson P, Gilroy DW. Sex differences in resident immune cell phenotype underlie more efficient acute inflammatory responses in female mice. *Blood.* 2011;118(22):5918-5927. doi:10.1182/blood-2011-03-340281
32. Kovats S. Estrogen receptors regulate an inflammatory pathway of dendritic cell differentiation: mechanisms and implications for immunity. *Horm Behav.* 2012;62(3):254-262. doi:10.1016/j.yhbeh.2012.04.011
33. Smith-Bouvier DL, Divekar AA, Sasidhar M, et al. A role for sex chromosome complement in the female bias in autoimmune disease. *J Exp Med.* 2008;205(5):1099-1108. doi:10.1084/jem.20070850
34. Schwarz JM, Sholar PW, Bilbo SD. Sex differences in microglial colonization of the developing rat brain. *J Neurochem.* 2012;no - no. doi:10.1111/j.1471-4159.2011.07630.x
35. Lenz KM, McCarthy MM. A starring role for microglia in brain sex differences. *Neuroscientist.* 2015;21(3):306-321. doi:10.1177/1073858414536468
36. Villa A, Gelosa P, Castiglioni L, et al. Sex-Specific Features of Microglia from Adult Mice. *Cell Rep.* 2018;23(12):3501-3511. doi:10.1016/j.celrep.2018.05.048
37. Villa A, Della Torre S, Maggi A. Sexual differentiation of microglia. *Front Neuroendocrinol.* November 2018. doi:10.1016/j.yfrne.2018.11.003
38. McCarthy MM, Nugent BM, Lenz KM. Neuroimmunology and neuroepigenetics in the establishment of sex differences in the brain. *Nat Rev Neurosci.* 2017;18(8):471-484. doi:10.1038/nrn.2017.61
39. Osborne BF, Turano A, Schwarz JM. Sex Differences in the Neuroimmune System. *Curr Opin Behav Sci.* 2018;23:118-123. doi:10.1016/j.cobeha.2018.05.007
40. Sorge RE, Mapplebeck JCS, Rosen S, et al. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. *Nat Neurosci.* 2015;18(8):1081-1083. doi:10.1038/nn.4053
41. Doyle HH, Eidson LN, Sinkiewicz DM, Murphy AZ. Sex Differences in Microglia Activity within the Periaqueductal Gray of the Rat: A Potential Mechanism Driving the Dimorphic Effects of Morphine. *J Neurosci.* 2017;37(12):3202-3214. doi:10.1523/JNEUROSCI.2906-16.2017
42. Cui J, Shen Y, Li R. Estrogen synthesis and signaling pathways during aging: from periphery to brain. *Trends Mol Med.* 2013;19(3):197-209. doi:10.1016/j.molmed.2012.12.007

43. Saijo K, Collier JG, Li AC, Katzenellenbogen JA, Glass CK. An ADIOL-ER β -CtBP transrepression pathway negatively regulates microglia-mediated inflammation. *Cell*. 2011;145(4):584-595. doi:10.1016/j.cell.2011.03.050
44. Markle JGM, Frank DN, Mortin-Toth S, et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. *Science*. 2013;339(6123):1084-1088. doi:10.1126/science.1233521
45. Hedrington MS, Davis SN. Sexual Dimorphism in Glucose and Lipid Metabolism during Fasting, Hypoglycemia, and Exercise. *Front Endocrinol* . 2015;6:61. doi:10.3389/fendo.2015.00061
46. Tarnopolsky MA. Sex Differences in Exercise Metabolism and the Role of 17-Beta Estradiol. *Med Sci Sports Exercise*. 2008;40(4):648-654. doi:10.1249/mss.0b013e31816212ff
47. Burd NA, Tang JE, Moore DR, Phillips SM. Exercise training and protein metabolism: influences of contraction, protein intake, and sex-based differences. *J Appl Physiol*. 2009;106(5):1692-1701. doi:10.1152/japplphysiol.91351.2008
48. Smith GI, Atherton P, Villareal DT, et al. Differences in muscle protein synthesis and anabolic signaling in the postabsorptive state and in response to food in 65-80 year old men and women. *PLoS One*. 2008;3(3):e1875. doi:10.1371/journal.pone.0001875
49. Johnstone AM, Murison SD, Duncan JS, Rance KA, Speakman JR. Factors influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin, or triiodothyronine. *Am J Clin Nutr*. 2005;82(5):941-948. doi:10.1093/ajcn/82.5.941
50. Klausen B, Toubro S, Astrup A. Age and sex effects on energy expenditure. *Am J Clin Nutr*. 1997;65(4):895-907. doi:10.1093/ajcn/65.4.895
51. Mauvais-Jarvis F. Sex differences in metabolic homeostasis, diabetes, and obesity. *Biol Sex Differ*. 2015;6:14. doi:10.1186/s13293-015-0033-y
52. Baxter LR Jr, Mazziotta JC, Phelps ME, Selin CE, Guze BH, Fairbanks L. Cerebral glucose metabolic rates in normal human females versus normal males. *Psychiatry Res*. 1987;21(3):237-245. <https://www.ncbi.nlm.nih.gov/pubmed/3498176>.
53. Andreasen PJ, Zametkin AJ, Guo AC, Baldwin P, Cohen RM. Gender-related differences in regional cerebral glucose metabolism in normal volunteers. *Psychiatry Res*. 1994;51(2):175-183. <https://www.ncbi.nlm.nih.gov/pubmed/8022952>.
54. Gur R, Mozley L, Mozley P, et al. Sex differences in regional cerebral glucose metabolism during a resting state. *Science*. 1995;267(5197):528-531. doi:10.1126/science.7824953
55. Reiman EM, Armstrong SM, Matt KS, Mattox JH. The application of positron emission tomography to the study of the normal menstrual cycle. *Hum Reprod*. 1996;11(12):2799-2805. <https://www.ncbi.nlm.nih.gov/pubmed/9021395>.
56. Schwartz JB. The Influence of Sex on Pharmacokinetics. *Clin Pharmacokinet*. 2003;42(2):107-121. doi:10.2165/00003088-200342020-00001

57. Wolbold R, Klein K, Burk O, et al. Sex is a major determinant of CYP3A4 expression in human liver. *Hepatology*. 2003;38(4):978-988. doi:10.1053/jhep.2003.50393
58. Nebert DW, Russell DW. Clinical importance of the cytochromes P450. *Lancet*. 2002;360(9340):1155-1162. doi:10.1016/S0140-6736(02)11203-7
59. Chessells JM, Richards SM, Bailey CC, Lilleyman JS, Eden OB. Gender and treatment outcome in childhood lymphoblastic leukaemia: report from the MRC UKALL trials. *Br J Haematol*. 1995;89(2):364-372. <https://www.ncbi.nlm.nih.gov/pubmed/7873387>.
60. Lennard L, Welch JC, Lilleyman JS. Thiopurine drugs in the treatment of childhood leukaemia: the influence of inherited thiopurine methyltransferase activity on drug metabolism and cytotoxicity. *Br J Clin Pharmacol*. 1997;44(5):455-461. <https://www.ncbi.nlm.nih.gov/pubmed/9384462>.
61. Waxman DJ, O'Connor C. Growth hormone regulation of sex-dependent liver gene expression. *Mol Endocrinol*. 2006;20(11):2613-2629. doi:10.1210/me.2006-0007
62. Waxman DJ, Holloway MG. Sex differences in the expression of hepatic drug metabolizing enzymes. *Mol Pharmacol*. 2009;76(2):215-228. doi:10.1124/mol.109.056705
63. Navara KJ. Low Gestational Weight Gain Skews Human Sex Ratios towards Females. *PLoS One*. 2014;9(12):e114304. doi:10.1371/journal.pone.0114304
64. Song S. Malnutrition, sex ratio, and selection: a study based on the great leap forward famine. *Hum Nat*. 2014;25(4):580-595. doi:10.1007/s12110-014-9208-1
65. Rossi P, Francès Y, Kingwell BA, Ahimastos AA. Gender differences in artery wall biomechanical properties throughout life. *J Hypertens*. 2011;29(6):1023-1033. doi:10.1097/HJH.0b013e328344da5e
66. Gur RC, Mozley PD, Resnick SM, et al. Gender differences in age effect on brain atrophy measured by magnetic resonance imaging. *Proc Natl Acad Sci U S A*. 1991;88(7):2845-2849. <https://www.ncbi.nlm.nih.gov/pubmed/2011592>.
67. Paus T, Otaki N, Caramanos Z, et al. In vivo morphometry of the intrasulcal gray matter in the human cingulate, paracingulate, and superior-rostral sulci: hemispheric asymmetries, gender differences and probability maps. *J Comp Neurol*. 1996;376(4):664-673. doi:3.0.CO;2-M>10.1002/(SICI)1096-9861(19961223)376:4<664::AID-CNE12>3.0.CO;2-M
68. Allen JS, Damasio H, Grabowski TJ, Bruss J, Zhang W. Sexual dimorphism and asymmetries in the gray-white composition of the human cerebrum. *Neuroimage*. 2003;18(4):880-894. <https://www.ncbi.nlm.nih.gov/pubmed/12725764>.
69. Luders E, Gaser C, Narr KL, Toga AW. Why sex matters: brain size independent differences in gray matter distributions between men and women. *J Neurosci*. 2009;29(45):14265-14270. doi:10.1523/JNEUROSCI.2261-09.2009
70. Sowell ER, Trauner DA, Gamst A, Jernigan TL. Development of cortical and subcortical brain structures in childhood and adolescence: a structural MRI study. *Dev Med Child Neurol*. 2002;44(1):4-16. <https://www.ncbi.nlm.nih.gov/pubmed/11811649>.

71. Giedd JN, Rapoport JL. Structural MRI of pediatric brain development: what have we learned and where are we going? *Neuron*. 2010;67(5):728-734. doi:10.1016/j.neuron.2010.08.040
72. Ingallalikar M, Smith A, Parker D, et al. Sex differences in the structural connectome of the human brain. *Proc Natl Acad Sci U S A*. 2014;111(2):823-828. doi:10.1073/pnas.1316909110
73. Tunç B, Solmaz B, Parker D, et al. Establishing a link between sex-related differences in the structural connectome and behaviour. *Philos Trans R Soc Lond B Biol Sci*. 2016;371(1688):20150111. doi:10.1098/rstb.2015.0111
74. Maney DL. Perils and pitfalls of reporting sex differences. *Philos Trans R Soc Lond B Biol Sci*. 2016;371(1688):20150119. doi:10.1098/rstb.2015.0119
75. Joel D, Fausto-Sterling A. Beyond sex differences: new approaches for thinking about variation in brain structure and function. *Philos Trans R Soc Lond B Biol Sci*. 2016;371(1688):20150451. doi:10.1098/rstb.2015.0451
76. Amateau SK, McCarthy MM. Induction of PGE2 by estradiol mediates developmental masculinization of sex behavior. *Nat Neurosci*. 2004;7(6):643-650. doi:10.1038/nn1254
77. Wright CL, McCarthy MM. Prostaglandin E2-induced masculinization of brain and behavior requires protein kinase A, AMPA/kainate, and metabotropic glutamate receptor signaling. *J Neurosci*. 2009;29(42):13274-13282. doi:10.1523/JNEUROSCI.3603-09.2009
78. De Vries GJ, Rissman EF, Simerly RB, et al. A Model System for Study of Sex Chromosome Effects on Sexually Dimorphic Neural and Behavioral Traits. *J Neurosci*. 2002;22(20):9005-9014. doi:10.1523/JNEUROSCI.22-20-09005.2002
79. Quinones KM, Bonthuis PJ, Harris EP, Shetty SR, Rissman EF. Neural growth hormone: regional regulation by estradiol and/or sex chromosome complement in male and female mice. *Biol Sex Differ*. 2015;6:8. doi:10.1186/s13293-015-0026-x
80. Mahmoud R, Wainwright SR, Galea LAM. Sex hormones and adult hippocampal neurogenesis: Regulation, implications, and potential mechanisms. *Front Neuroendocrinol*. 2016;41:129-152. doi:10.1016/j.yfrne.2016.03.002
81. Loi M, Koricka S, Lucassen PJ, Joëls M. Age- and sex-dependent effects of early life stress on hippocampal neurogenesis. *Front Endocrinol*. 2014;5:13. doi:10.3389/fendo.2014.00013
82. Whitacre CC. Sex differences in autoimmune disease. *Nat Immunol*. 2001;2(9):777. doi:10.1038/ni0901-777
83. Beeson PB. Age and sex associations of 40 autoimmune diseases. *Am J Med*. 1994;96(5):457-462. <https://www.ncbi.nlm.nih.gov/pubmed/8192178>.
84. Gale EA, Gillespie KM. Diabetes and gender. *Diabetologia*. 2001;44(1):3-15. doi:10.1007/s001250051573
85. Loke H, Harley V, Lee J. Biological factors underlying sex differences in neurological disorders. *Int J Biochem Cell Biol*. 2015;65:139-150. doi:10.1016/j.biocel.2015.05.024

86. Wickens MM, Bangasser DA, Briand LA. Sex Differences in Psychiatric Disease: A Focus on the Glutamate System. *Front Mol Neurosci*. 2018;11:197. doi:10.3389/fnmol.2018.00197
87. Polyak A, Rosenfeld JA, Girirajan S. An assessment of sex bias in neurodevelopmental disorders. *Genome Med*. 2015;7:94. doi:10.1186/s13073-015-0216-5
88. Appelros P, Stegmayr B, Terént A. Sex differences in stroke epidemiology: a systematic review. *Stroke*. 2009;40(4):1082-1090. doi:10.1161/STROKEAHA.108.540781
89. Reeves MJ, Bushnell CD, Howard G, et al. Sex differences in stroke: epidemiology, clinical presentation, medical care, and outcomes. *Lancet Neurol*. 2008;7(10):915-926. doi:10.1016/S1474-4422(08)70193-5
90. Arain FA, Kuniyoshi FH, Abdalrhim AD, Miller VM. Sex/gender medicine. The biological basis for personalized care in cardiovascular medicine. *Circ J*. 2009;73(10):1774-1782. <https://www.ncbi.nlm.nih.gov/pubmed/19729858>.
91. Humphries KH, Izadnegahdar M, Sedlak T, et al. Sex differences in cardiovascular disease - Impact on care and outcomes. *Front Neuroendocrinol*. 2017;46:46-70. doi:10.1016/j.yfrne.2017.04.001
92. Yang X-P, Reckelhoff JF. Estrogen, hormonal replacement therapy and cardiovascular disease. *Curr Opin Nephrol Hypertens*. 2011;20(2):133-138. doi:10.1097/MNH.0b013e3283431921
93. Gooren LJ, Wierckx K, Giltay EJ. Cardiovascular disease in transsexual persons treated with cross-sex hormones: reversal of the traditional sex difference in cardiovascular disease pattern. *Eur J Endocrinol*. 2014;170(6):809-819. doi:10.1530/EJE-14-0011
94. Bird MD, Karavitis J, Kovacs EJ. Sex differences and estrogen modulation of the cellular immune response after injury. *Cell Immunol*. 2008;252(1-2):57-67. doi:10.1016/j.cellimm.2007.09.007
95. Offner PJ. Male Gender Is a Risk Factor for Major Infections After Surgery. *Arch Surg*. 1999;134(9):935. doi:10.1001/archsurg.134.9.935
96. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. *CA Cancer J Clin*. 2015;65(1):5-29. doi:10.3322/caac.21254
97. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. *CA Cancer J Clin*. 2015;65(2):87-108. doi:10.3322/caac.21262
98. Clocchiatti A, Cora E, Zhang Y, Dotto GP. Sexual dimorphism in cancer. *Nat Rev Cancer*. 2016;16(5):330-339. doi:10.1038/nrc.2016.30
99. Dorak MT, Karpuzoglu E. Gender differences in cancer susceptibility: an inadequately addressed issue. *Front Genet*. 2012;3:268. doi:10.3389/fgene.2012.00268
100. Nguyen GK, Mellnick VM, Yim AK-Y, Salter A, Ippolito JE. Synergy of Sex Differences in Visceral Fat Measured with CT and Tumor Metabolism Helps Predict Overall Survival in Patients with Renal Cell Carcinoma. *Radiology*. 2018;287(3):884-892. doi:10.1148/radiol.2018171504

101. Lopes-Ramos CM, Kuijjer ML, Ogino S, et al. Gene Regulatory Network Analysis Identifies Sex-Linked Differences in Colon Cancer Drug Metabolism. *Cancer Res.* 2018;78(19):5538-5547. doi:10.1158/0008-5472.CAN-18-0454
102. Olsen NJ, Kovacs WJ. Gonadal Steroids and Immunity*. *Endocr Rev.* 1996;17(4):369-384. doi:10.1210/edrv-17-4-369
103. Klein SL. Immune Cells Have Sex and So Should Journal Articles. *Endocrinology.* 2012;153(6):2544-2550. doi:10.1210/en.2011-2120
104. Kato S, Sato T, Watanabe T, et al. Function of nuclear sex hormone receptors in gene regulation. *Cancer Chemother Pharmacol.* 2005;56(S1):4-9. doi:10.1007/s00280-005-0102-8
105. Heldring N, Pike A, Andersson S, et al. Estrogen Receptors: How Do They Signal and What Are Their Targets. *Physiol Rev.* 2007;87(3):905-931. doi:10.1152/physrev.00026.2006
106. Scheller A, Hughes E, Golden KL, Robins DM. Multiple receptor domains interact to permit, or restrict, androgen-specific gene activation. *J Biol Chem.* 1998;273(37):24216-24222. <https://www.ncbi.nlm.nih.gov/pubmed/9727045>.
107. Hartwell HJ, Petrosky KY, Fox JG, Horseman ND, Rogers AB. Prolactin prevents hepatocellular carcinoma by restricting innate immune activation of c-Myc in mice. *Proc Natl Acad Sci U S A.* 2014;111(31):11455-11460. doi:10.1073/pnas.1404267111
108. Lawrence T, Hageman T, Balkwill F. Cancer. Sex, cytokines, and cancer. *Science.* 2007;317(5834):51-52. doi:10.1126/science.1146052
109. Weige CC, Allred KF, Allred CD. Estradiol alters cell growth in nonmalignant colonocytes and reduces the formation of preneoplastic lesions in the colon. *Cancer Res.* 2009;69(23):9118-9124. doi:10.1158/0008-5472.CAN-09-2348
110. Slattery ML, Potter JD, Curtin K, et al. Estrogens reduce and withdrawal of estrogens increase risk of microsatellite instability-positive colon cancer. *Cancer Res.* 2001;61(1):126-130. <https://www.ncbi.nlm.nih.gov/pubmed/11196149>.
111. Suba Z. Gender-related hormonal risk factors for oral cancer. *Pathol Oncol Res.* 2007;13(3):195-202. doi:PAOR.2007.13.3.0195
112. Sun T, Warrington NM, Rubin JB. Why does Jack, and not Jill, break his crown? Sex disparity in brain tumors. *Biol Sex Differ.* 2012;3(1):3. doi:10.1186/2042-6410-3-3
113. Sun T, Plutynski A, Ward S, Rubin JB. An integrative view on sex differences in brain tumors. *Cell Mol Life Sci.* 2015;72(17):3323-3342. doi:10.1007/s00018-015-1930-2
114. Arasho BD, Schaller B, Sandu N, Zenebe G. Gender-related differences in pituitary adenomas. *Exp Clin Endocrinol Diabetes.* 2009;117(10):567-572. doi:10.1055/s-0029-1202831
115. Ho VKY, Reijneveld JC, Enting RH, et al. Changing incidence and improved survival of gliomas. *Eur J Cancer.* 2014;50(13):2309-2318. doi:10.1016/j.ejca.2014.05.019

116. Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011-2015. *Neuro Oncol.* 2018;20(suppl_4):iv1-iv86. doi:10.1093/neuonc/noy131

117. Ostrom QT, Rubin JB, Lathia JD, Berens ME, Barnholtz-Sloan JS. Females have the survival advantage in glioblastoma. *Neuro Oncol.* 2018;20(4):576-577. doi:10.1093/neuonc/noy002

118. Warburg O. On the origin of cancer cells. *Science.* 1956;123(3191):309-314. <https://www.ncbi.nlm.nih.gov/pubmed/13298683>.

119. Ippolito JE, Yim AK-Y, Luo J, Chinnaiyan P, Rubin JB. Sexual dimorphism in glioma glycolysis underlies sex differences in survival. *JCI Insight.* 2017;2(15). doi:10.1172/jci.insight.92142

120. Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. *Nat Rev Cancer.* 2013;13(4):227-232. doi:10.1038/nrc3483

121. Agnihotri S, Zadeh G. Metabolic reprogramming in glioblastoma: the influence of cancer metabolism on epigenetics and unanswered questions. *Neuro Oncol.* 2016;18(2):160-172. doi:10.1093/neuonc/nov125

122. Pérez-Carreiro R, Cauli O, López-Larrubia P. Multiparametric magnetic resonance in the assessment of the gender differences in a high-grade glioma rat model. *EJNMMI Res.* 2014;4(1). doi:10.1186/s13550-014-0044-4

123. Padma MV, Said S, Jacobs M, et al. Prediction of pathology and survival by FDG PET in gliomas. *J Neurooncol.* 2003;64(3):227-237. <https://www.ncbi.nlm.nih.gov/pubmed/14558598>.

124. Wiemels JL, Wiencke JK, Patoka J, et al. Reduced immunoglobulin E and allergy among adults with glioma compared with controls. *Cancer Res.* 2004;64(22):8468-8473. doi:10.1158/0008-5472.CAN-04-1706

125. Brown NF, Carter TJ, Ottaviani D, Mulholland P. Harnessing the immune system in glioblastoma. *Br J Cancer.* 2018;119(10):1171-1181. doi:10.1038/s41416-018-0258-8

126. Schwartzbaum J, Ding B, Johannessen TB, et al. Association between prediagnostic IgE levels and risk of glioma. *J Natl Cancer Inst.* 2012;104(16):1251-1259. doi:10.1093/jnci/djs315

127. Schlehofer B, Siegmund B, Linseisen J, et al. Primary brain tumours and specific serum immunoglobulin E: a case-control study nested in the European Prospective Investigation into Cancer and Nutrition cohort. *Allergy.* 2011;66(11):1434-1441. doi:10.1111/j.1398-9995.2011.02670.x

128. Calboli FCF, Cox DG, Buring JE, et al. Prediagnostic plasma IgE levels and risk of adult glioma in four prospective cohort studies. *J Natl Cancer Inst.* 2011;103(21):1588-1595. doi:10.1093/jnci/djr361

129. Chakrabarti I, Cockburn M, Cozen W, Wang Y-P, Preston-Martin S. A population-based description of glioblastoma multiforme in Los Angeles County, 1974-1999. *Cancer*. 2005;104(12):2798-2806. doi:10.1002/cncr.21539
130. Karkouri M, Zafad S, Khattab M, et al. Epidemiologic profile of pediatric brain tumors in Morocco. *Childs Nerv Syst*. 2010;26(8):1021-1027. doi:10.1007/s00381-010-1097-y
131. Michaud DS, Gallo V, Schlehofer B, et al. Reproductive Factors and Exogenous Hormone Use in Relation to Risk of Glioma and Meningioma in a Large European Cohort Study. *Cancer Epidemiol Biomarkers Prev*. 2010;19(10):2562-2569. doi:10.1158/1055-9965.epi-10-0447
132. Qi Z-Y, Shao C, Zhang X, Hui G-Z, Wang Z. Exogenous and endogenous hormones in relation to glioma in women: a meta-analysis of 11 case-control studies. *PLoS One*. 2013;8(7):e68695. doi:10.1371/journal.pone.0068695
133. Benson VS, Pirie K, Green J, et al. Hormone replacement therapy and incidence of central nervous system tumours in the Million Women Study. *Int J Cancer*. 2010;127(7):1692-1698. doi:10.1002/ijc.25184
134. Yuan Y, Liu L, Chen H, et al. Comprehensive Characterization of Molecular Differences in Cancer between Male and Female Patients. *Cancer Cell*. 2016;29(5):711-722. doi:10.1016/j.ccr.2016.04.001
135. Zhang H, Liao J, Zhang X, et al. Sex difference of mutation clonality in diffuse glioma evolution. *Neuro Oncol*. September 2018. doi:10.1093/neuonc/noy154
136. Yang W, Warrington NM, Taylor SJ, et al. Sex differences in GBM revealed by analysis of patient imaging, transcriptome, and survival data. *Sci Transl Med*. 2019;11(473). doi:10.1126/scitranslmed.aa05253
137. Colen RR, Wang J, Singh SK, Gutman DA, Zinn PO. Glioblastoma: imaging genomic mapping reveals sex-specific oncogenic associations of cell death. *Radiology*. 2015;275(1):215-227. doi:10.1148/radiol.14141800
138. Bilello M, Akbari H, Da X, et al. Population-based MRI atlases of spatial distribution are specific to patient and tumor characteristics in glioblastoma. *Neuroimage Clin*. 2016;12:34-40. doi:10.1016/j.nic.2016.03.007
139. Whitmire P, Rickertsen CR, Hawkins-Daarud A, et al. Sex-specific impact of patterns of imageable tumor growth on survival of primary glioblastoma patients. 2018. doi:10.1101/325464
140. Maragh-Bass AC, Torain M, Adler R, et al. Is It Okay To Ask: Transgender Patient Perspectives on Sexual Orientation and Gender Identity Collection in Healthcare. *Acad Emerg Med*. 2017;24(6):655-667. doi:10.1111/acem.13182