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In the retail domain, estimating the sales before actual sales become known plays a key
role in maintaining a successful business. This is due to the fact that most crucial decisions
are bound to be based on these forecasts. Statistical sales forecasting models like ARIMA
(Auto-Regressive Integrated Moving Average), can be identified as one of the most
traditional and commonly used forecasting methodologies. Even though these models are
capable of producing satisfactory forecasts for linear time series data they are not suitable
for analyzing non-linear data. Therefore, machine learning models (such as Random Forest
Regression, XGBoost) have been employed frequently as they were able to achieve better
results using non-linear data. The recent research shows that deep learning models (e.g.
recurrent neural networks) can provide higher accuracy in predictions compared to
machine learning models due to their ability to persist information and identify temporal
relationships. In this paper, we adopt a special variant of Long Short Term Memory (LSTM)
network called LSTM model with peephole connections for sales prediction. We first build
our model using historical features for sales forecasting. We compare the results of this
initial LSTM model with multiple machine learning models, namely, the Extreme Gradient
Boosting model (XGB) and Random Forest Regressor model(RFR). We further improve the
prediction accuracy of the initial model by incorporating features that describe the future
that is known to us in the current moment, an approach that has not been explored in
previous state-of-the-art LSTM based forecasting models. The initial LSTM model we
develop outperforms the machine learning models achieving 12% - 14% improvement
whereas the improved LSTM model achieves 11\% - 13\% improvement compared to the
improved machine learning models. Furthermore, we also show that our improved LSTM
model can obtain a 20% - 21% improvement compared to the initial LSTM model,
achieving significant improvement.
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ABSTRACT9

In the retail domain, estimating sales before actual sales become known plays a key role in maintaining a

successful business. This is due to the fact that most crucial decisions are bound to be based on these

forecasts. Statistical sales forecasting models like ARIMA (Auto-Regressive Integrated Moving Average),

can be identified as one of the most traditional and commonly used forecasting methodologies. Even

though these models are capable of producing satisfactory forecasts for linear time series data they are

not suitable for analyzing non-linear data. Therefore, machine learning models (such as Random Forest

Regression, Extreme Gradient Boosting) have been employed frequently as they were able to achieve

better results using non-linear data. The recent research shows that deep learning models (e.g. recurrent

neural networks) can provide higher accuracy in predictions compared to machine learning models due

to their ability to persist information and identify temporal relationships. In this paper, we adopt a special

variant of Long Short Term Memory (LSTM) network; LSTM with peephole connections for the sales

forecasting tasks. We first introduce an LSTM model that solely depends on historical information for sales

forecasting. We appraise the accuracy of this initial LSTM against two state-of-the-art machine learning

techniques, namely, Extreme Gradient Boosting (XGB) and Random Forest Regressor (RFR) using 8

randomly chosen stores from the Rossmann data-set. We further improve the prediction accuracy of the

initial LSTM model by incorporating features that describe the future that is known to us in the current

moment, an approach that has not been explored in previous state-of-the-art LSTM based forecasting

models. The initial LSTM we develop outperforms the two regression techniques achieving 12% - 14%

improvement whereas the improved LSTM achieves 11% - 13% reduction in error compared to the

machine learning approaches with the same level of information as the improved LSTM. Furthermore,

using the information describing the future with the LSTM model, we achieve a significant improvement

of 20% - 21% compared to the LSTM that only uses historical data.
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INTRODUCTION32

Time series forecasting involves performing forecasts on data with a time component. Forecasting33

typically considers historical data and provides estimations based on them for the future. Sales forecasting34

is a time series forecasting task. It is the process of predicting future sales values. In the retail domain,35

estimating sales before actual sales become known plays a key role in maintaining a successful business.36

This is due to the fact that most crucial decisions are bound to be based on these forecasts. Before37

technology dominated the world, the forecasting process was done manually by an experienced individual38

in the domain. This intuition required a lot of experience and was prone to human error. Due to this reason,39

individuals started realizing the need for automating the sales forecasting process. Thus, research and40

experiments were carried out with statistical, machine learning, deep learning and ensemble techniques to41

achieve more accurate sales forecasts.42

Statistical sales forecasting models like Auto-Regressive Integrated Moving Average (ARIMA), can43

be identified as one of the most traditional and commonly used forecasting methodologies. Even though44

these models are capable of producing satisfactory forecasts for linear time series data they are not45

suitable for analyzing non-linear data (Zhang, 2003). Therefore, machine learning models were employed46

frequently as they were able to achieve better results using non-linear data. The use of state-of-the-art47
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machine learning models like Support Vector Regression (SVR), Extreme Gradient Boosting (XGB) and48

Random Forest Regressor (RFR) can be seen in the literature. Though the behaviour of SVR models with49

sales forecasting has been studied extensively (Carbonneau et al., 2008; Xiangsheng Xie, 2008; Gao et al.,50

2009) analysis on XGB and RFR model’s behaviour is not as common. However, even though machine51

learning models are capable of handling non-linear information they are not tailored towards capturing52

time series specific information.53

In recent years, types of Recurrent Neural Networks (RNN) have been frequently employed for54

sales forecasting tasks and have shown promising results (Bandara et al., 2019; Chniti et al., 2017;55

Carbonneau et al., 2008). This is mainly due to RNNs having the ability to persist information about56

previous time steps and being able to use that information when processing the current time step. When57

performing a time series forecasting task, it is important to remember what the model saw in the previous58

time steps when processing the current data in order to capture the complex correlations and patterns.59

Furthermore, compared to other sales forecasting methods, using RNNs eliminate the need to perform60

manual traditional modelling methods like stability checking, auto-correlation function checking and61

partial auto-correlation function checking, thus simplifying the modelling process (Yunpeng et al., 2017).62

Müller-Navarra et al. (2015) proposes neural network architectures for sales forecasting of a real-world63

sales data-set and empirically proves that partial recurrent neural networks can outperform statistical64

models. Carbonneau et al. (2008) have used RNN and SVM for demand-forecasting and achieve higher65

accuracy compared to conventional regression techniques. Although the basic RNN architecture can66

persist short term dependencies due to it being prone to vanishing gradients it is unable to persist long67

term dependencies. Long Short Term Memory (LSTM) network is a type of RNN that was introduced to68

persist long term dependencies. This helps in persisting information of many previous time-steps and69

allow to derive correlations from the information of older time-steps compared to a traditional RNN. It70

is evident that LSTM networks have often been used in identifying correlations between cross series71

Bandara et al. (2019); Chniti et al. (2017). Recently, it has been shown that multivariate LSTM with72

cross-series features can outperform the univariate models for similar time series forecasting tasks. Chniti73

et al. (2017) propose to forecast the prices of mobile phones while considering the correlations between74

the prices of different phone models by multiple providers in the cell phone market, as a cross-series75

multivariate analysis. Their technique achieves a significant accuracy gain compared to an SVR model76

that uses the same information as lag features. Bandara et al. (2019) proposes a similar multivariate77

approach, they have used cross-series sales information of different products to train a global LSTM78

model to exploit demand pattern correlations of those products.79

In this paper we adopt a special variant of LSTM called “LSTM with peephole connections” (Lipton,80

2015; Gers et al., 1999) that can more accurately capture the time-based patterns in sales forecasting81

tasks. We first present a multivariate LSTM model (based on peephole connections) in which we use82

historical features for sales forecasting with daily sales values. We compare the results of this initial83

LSTM model with multiple machine learning models, namely, XGB and RFR. We then further improve84

the prediction accuracy of the initial model by incorporating features that describe the future that is known85

to us in the current moment, an approach that has not been explored in previous state-of-the-art LSTM86

based forecasting models. These new features were added in addition to the historical information and87

daily sales values. Similar to the initial model, we compare the results of the improved LSTM model88

with the improved machine learning models and ultimately analyze how the improved LSTM performed89

compared to the initial LSTM model. The initial LSTM model that we developed outperformed machine90

learning models achieving 12% - 14% improvement whereas the improved LSTM model achieved 11% -91

13% improvement compared to the improved machine learning models. Furthermore, we also show that92

our improved LSTM model can obtain a 20% - 21% improvement compared to the initial LSTM model,93

achieving significant improvement.94

In order to evaluate the forecasting accuracy of the models, we used the Rossmann data-set 1. It can95

be seen that the Rossmann data-set has been used frequently for sales forecasting in numerous occasions96

(Lin et al., 2015; Pavlyshenko, 2016; Doornik and Hansen, 1994) Rossmann is a company that governs97

over 3000 drug stores in 7 European countries and this data-set contains sales information of 1,115 stores98

located across Germany. The data-set offers convoluted sales patterns and also offers many different99

unique features of stores like competition distance, promotion interval and competition open since a100

month which facilitates in exploring novel forecasting methodologies. All stores in the data-set were101

1https://www.kaggle.com/c/rossmann-store-sales
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divided into 4 types. In our analysis we randomly chose 2 stores from each type, thus doing the evaluation102

based on 8 stores. We were unable to evaluate all 1115 stores due to resource and time limitations.103

The rest of the paper is organized as follows. In the methodology section, we discuss our LSTM104

model and the forecasting pipeline of the LSTM analysis. In the machine learning models section, we105

discuss the two machine learning models and their analysis pipeline. In the next section, we present our106

obtained results. The discussion section elaborates on the obtained results. Related work section discusses107

existing literature in the domain and the final section concludes the paper.108

METHODOLOGY109

This section provides the methodology we used to build the LSTM models. Let us first define the problem110

we attempt to tackle in the paper.111

Consider a set of d temporal attributes Xt = {xt, j}
d
j=1 that describes a store and its operations for a112

given time t (e.g. day, availability of a promotion etc), which leverage the number of sales St . A typical113

sales forecasting task involves estimating F n
m such that,114

St+n = F
n
m

(

[Xt−m,Xt ], [St−m,St ],(Zt ,Zt+n]
)

Here n > 1 and m > 0 are corresponding to the number of steps from the current time to the predicted115

future and number of steps that are taken into account from the history to predict the future, respectively.116

However, in our specific task, we only consider the scenarios where n = 1, which forecast the daily sales117

of the very next day. Moreover, Zt are the set of attributes from Xt that is known to us always prior to n118

time steps.119

It should be emphasized that we do not use any time-invariant features in our analysis since we120

consider sales as a whole, not for individual products. Therefore, time-invariant information will not add121

any value in this context.122

LSTM Network Architecture123

LSTM (Hochreiter and Schmidhuber, 1997) is a descendent of traditional neural networks. Although124

traditional neural networks have its perks, it suffered from a major flaw of not being able to persist125

information about previous time-steps, thus losing possible information about correlations. The RNN126

(Lipton, 2015) solved this issue as it is equipped with an architectural component called the “hidden state”.127

This acts as a memory and helped the RNN to persist information of the previous time-steps. Due to RNN128

being subject to vanishing gradients rather heavily, it could only retain short term dependencies. The129

LSTM model was introduced to mitigate this issue. It has a “hidden state” as well but in addition to that130

it also has an architectural component named the “cell state”. The hidden state helps in retaining short131

term dependencies and the “cell state” helps in retaining long term dependencies. LSTM architecture also132

introduces several gates as the forget gate, input gate and output gate. The forget gate and the input gate133

controls which part of the information should be removed or reserved and the output gate generates an134

output according to the processed information (Yunpeng et al., 2017). In our work, we used a special135

variant of LSTM called “LSTM with peephole connections” (Lipton, 2015; Gers et al., 1999; Gers et al.,136

2003). This incorporates the previous state of the cell state into the LSTM input and the forget gate137

Bandara et al. (2019). The peephole connections help in boosting the performance of timing tasks like138

counting objects and emitting a meaningful output when a defined number of objects have been seen139

by the network. This ability helps the network to learn to accurately measure intervals between events140

(Lipton, 2015), which is useful in time-series analysis to learn the contribution of certain intervals towards141

the final prediction. As an example, consider a feature “day of the week” which will be fed to an LSTM142

network. We can expect some fixed number of sales for each day that contributes to the total sales for that143

day, that is solely determined by the day of the week. Therefore, the model must now learn to count the144

days of the week as they repetitively appear and produce a suitable output reflecting the number of sales145

that occurs as a repetitive pattern.146

In our work, we initially introduce using historical information (HF) with daily sales values and later147

on in our improved model we incorporate information about the known future (FF) into the features of the148

initial model. We expect the features to have correlations illustrated in Figure 1. Ultimately, we can predict149

the number of sales by understanding the existence and intensity of such relationships. Our selection of150

LSTM is based on its ability to capture all these relationships without any additional effort apart from its151
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Figure 1. feature correlation graph

reputation in time-series analysis. Using the hidden state and cell state of LSTM, it can learn relationships152

in the temporal axis for each HF feature ({Xi}
t
i=t−m, {Si}

t+1
i=t−m) and FF feature ({Zi}

t
i=t−m). On the other153

hand, LSTM also captures the correlations between number of sales (St) for each time step with the HF154

features ({xt j}
d
i=1) and FF features ({zt j}

d̄
i=1) at the same time step. Moreover, the peephole connections155

help in extracting crucial insights from temporal intervals in HF, FF and daily sales information. Finally,156

we can model the relationship between all the information captured and the sales value that is being157

predicted St+1 using additional layers in between the LSTM layer and the output layer.158

We used the same basic architecture for both the initial and the improved LSTM models. The first layer159

of our model’s architecture comprises of an LSTM layer with peephole connections. This aids in capturing160

all the time series specific information about our data. The output of the LSTM model may have remaining161

non-linearities, to capture these we then employed two dense hidden layers. Then we implemented a162

dropout layer to reduce possible chances of over-fitting through regularizing the output. Finally, the output163

layer is put to structure the model’s output to derive the desired prediction. To reduce the magnitude164

in the change of the learning rate as the training progresses, we used exponential decay, a learning rate165

decay algorithm. This increased the ability of the model to converge. Adam optimizer was used as166

the optimization function in our model as it is widely known to perform better than backpropagation167

methods. Moreover, we used the mean squared error function to calculate the loss of each training step.168

We implemented this LSTM model using TensorFlow library 2.169

2https://www.tensorflow.org/
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Figure 2. LSTM architecture

Features170

This section presents the features we used when training the models. We conducted our analysis as a171

multivariate forecasting task thus, we employed several other features apart from using the historical daily172

sales values. For the initial stage, we wanted to study how historical data can be employed to forecast173

the number of sales analogous to traditional time series forecasting tasks. The original data-set included174

attributes like date, state holiday, promotion availability, school holiday, store open/close information175

and the number of customers. We decomposed the composite attribute date into three separate features176

like day, month and year. Moreover, we further simplified the day to indicate the day of the week, as177

most of the sales trends are directly co-related to the day of the week. Through empirical analysis we178

identified that day of the week, promotion availability information and school holiday information were179

the best combinations of historical features that maximize the forecasting accuracy. We have omitted180

any information related to the number of customers because we do not know that information for the181

day being predicted, it is observed at the end of that particular day along with the true number of sales.182

Therefore, we implemented the initial model based on these three features combined with daily sales183

values.184

Then, we extend our initial model employing the information that described the future that is known to185

us at the ahead of a sufficient number of time steps (FF). Features like the day of the week and state holiday186

information can be considered as information from the future that is known by us even before years ahead.187

Of course, the government may unexpectedly declare state holidays under certain circumstances, yet such188

are rare occasions and still, we will learn such changes prior to adequate time. Therefore, we obtain FF189

features from the HF features by selecting the features that are known to us. In our specific scenario,190

any HF can be used as FF. It should be noted that we could use any feature that qualifies as FF though191

we consider only the features already identified as HF. Through empirical analysis, we identified that192

promotion availability and school holiday information to provide the best accuracy with the validation193

split. We used these features to train the improved models apart from the HF features that was used with194

the initial model. Hence, we now have 6 features for our improved models, namely, sales value at time195

step t, day of the week at time step t, promotion availability information at time step t, school holiday196

information at time step t, promotion information at time-step t+1 and school holiday information at time197

step t+1.198

Data Preparation199

For both initial and improved models, first and foremost, we divided the entire data-set (with 942 data200

samples) for each store into three splits as training, validation and testing set. Here we consider the last201

two months of data as the validation and testing split, allocating exactly one month per each split. Then202

each of these splits was scaled to values between 0 and 1 using min-max scaling. For the features that203

have known bounds, we use them (i.e. the lower bound and upper bound of the day of the week are204

respectively 1 and 7, number of sales are non-negative etc) and rest of the bounds are found based on the205

minimum or maximum value reported with training split. It should be pointed out that scaling is crucial in206

this analysis since each feature was operating in significantly different intervals (e.g. sales values ranged207

between 1000 - 30,000, values of a day of week ranged between 1 -7 etc). Therefore, raw values would208

5/16PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27712v1 | CC BY 4.0 Open Access | rec: 8 May 2019, publ: 8 May 2019



Figure 3. pipeline of LSTM analysis

Hyperparameter Search Space

number of steps 2 - 14

LSTM size 8 - 128

batch size 5 - 65

Initial learning rate 0.0001 - 0.1

learning rate decay 0.7 - 0.99

initial number of epoch 5 - 50

maximum number of epoch 60- 200

number of nodes in the first hidden layer 4 - 64

number of nodes in the second hidden layer 2 - 32

dropout rate 0.1 - 0.9

activation of first hidden layer ReLU , Tanh

activation of the second hidden layer ReLU , Tanh

activation of LSTM ReLU , Tanh

Table 1. hyperparameter search space for initial and improved models for Bayesian optimization

have given more influence to the larger sales values over the day of the week, which have affected the209

accuracy of our models considerably.210

However, we kept the original sales values for validation and testing sets. During our evaluations, we211

re-scaled the predicted outputs to its original scale in order to compute the error metrics for non-scaled212

sales.213

Hyperparameter Optimization214

We realized that LSTM model requires tuning too many hyperparameters and manually tuning each215

hyperparameter for the enormous search space is not a feasible task. The evaluation included 8 stores and216

needed tuning 13 hyperparameters for two different LSTM models thus, forcing us to tune 13×8×2217

hyperparameters if we can run each experiment exactly once. Therefore, the need to automate the218

hyperparameter optimization process became mandatory.219

To automate the hyperparameter optimization process we employed a Bayesian optimization based220

on the Gaussian Process (GP)3. Bayesian optimization finds a posterior distribution as the function221

to be optimized during the parameter optimization, then uses an acquisition function to sample from222

that posterior to find the next set of parameters to be explored (Brochu et al., 2010). Since Bayesian223

optimization decides the next point based on more systematic approach considering the available data it is224

expected to yield achieve better configurations faster compared to the exhaustive parameter optimization225

techniques such as Grid Search and Random Search. Therefore, Bayesian optimization is more time226

and resource efficient compared to those exhaustive parameter optimization techniques, especially when227

we are required to optimize 13 parameters including 3 parameters with a continues search space. Table228

1 illustrate the optimized hyperparameter and the search spaces used for each hyperparameter in each229

experiment. In our implementation, we will be striving towards minimizing the regression error metric of230

the model.231

Figure 3 presents the complete pipeline used in our experiments to construct the LSTM models. We232

perform feature engineering as explained in section Features on top of the raw data which is followed by233

3https://scikit-optimize.github.io/#skopt.gp minimize
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Hperparameter Grid Search Values

learning rate 0.1, 0.01, 0.75

maximum depth 2, 5

subsample 0.5, 1, 0.1, 0.75

colsample by tree 1, 0.1, 0.75

n estimators 50, 100, 1000

Table 2. hyperparameter search space explored for XGB with Grid Search

Hperparameter Grid Search Values

n estimators 50, 100, 1000

maximum depth 2, 5

Table 3. hyperparameter search space explored for RFR with Grid Search

data preparation elaborated in the previous section. Then we construct the LSTM model with the best234

hyperparameter configuration using train and validation sets following the automatic hyperparameter235

optimization explained in this section. Finally, our pipeline outputs the optimal LSTM model, which we236

use for the evaluations.237

MACHINE LEARNING MODELS238

To compare the results we obtained from the LSTM model we conducted the same evaluation on two239

state-of-the-art ensemble machine learning models that are capable of dealing with non-linearities in data.240

They are the RFR (Breiman, 2001) and the XGB regression (Chen and Guestrin, 2016). RFR makes use241

of multiple decision trees and bagging techniques that involve training each decision tree on a different242

data sample where sampling is done using replacement. The work-flow of RFR is as follows: At each step243

of building an individual tree, it finds the best split of data. Then while building a tree it uses a bootstrap244

sample from the data-set. Finally, it aggregates the individual tree outputs by averaging. XGB is a tree245

boosting based model that is highly scalable. When using gradient boosting for regression, the weak246

learners are regression trees, and each regression treemap an input data point to one of its leaves that247

contains a continuous score. The training proceeds iteratively, adding new trees that predict the residuals248

or errors of prior trees that are then combined with previous trees to make the final prediction. Both stages249

of the analysis carried out when evaluating the LSTM model were done when evaluating both the machine250

learning models. The feature selection, scaling and data splitting of the initial and the improved stages251

were also carried out the same way as described in the LSTM forecasting methodology. However, when252

including FF features into the machine learning models, lagging the data was not necessary as machine253

learning models have no notion of time steps.254

Hyperparameter Optimization255

This section discusses the pipeline of hyperparameter optimization, training, validating and testing of both256

the initial and the improved machine learning models. Both XGB and RFR and both the initial and the257

improved models used the same pipeline.258

Similar to the LSTM model’s methodology, we employed a hyperparameter optimization for both the259

initial and the improved models. XGB and RFR have a set of hyperparameters that affect its performance.260

Even Though the number of parameters is not as many as in the LSTM model, manually tuning each of261

these parameters for 8 stores is a rather tedious task. Thus, we decided to implement a Grid Search for262

the hyperparameter optimization task. We have used the Grid Search approach here as the number of263

hyperparameter values to be optimized was small so that the process would not be overly time-consuming.264

We defined the value bounds for the hyperparameters that the Grid Search algorithm should explore.265

The Grid Search was implemented the same way for both machine learning algorithms. The optimized266

hyperparameters in XGB were learning rate, maximum depth, subsample, colsample by tree and n267

estimators. The optimized hyperparameters in RFR were max-depth and n estimators. Shown in Table 2268
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Store Store type RFR (RMSE) XGB (RMSE) LSTM (RMSE)

749 a 791.97 738.65 627.03

85 b 804.03 803.154 617.93

519 c 763.27 757.78 826.60

725 d 789.02 650.35 584.66

165 a 382.47 391.17 342.22

335 b 1,290.12 1,312.85 1,772.99

925 c 987.47 980.65 1,065.23

1089 d 930.71 984.88 1,161.25

Table 4. initial model: comparison using RMSE values

Store Store type RFR (MAE) XGB (MAE) LSTM (MAE)

749 a 535.33 503.07 483.04

85 b 646.71 630.65 473.94

519 c 556.26 579.89 641.26

725 d 681.15 539.44 481.85

165 a 316.70 312.11 276.85

335 b 954.77 944.06 1,346.65

925 c 763.74 758.11 878.56

1089 d 654.04 703.00 854.89

Table 5. initial model: comparison using MAE values

and Table 3 are the hyperparameter search values used for each hyperparameter in both approaches for269

XGB and RFR.270

Before initiating the execution, the optimal m for each store needed to be found in order to achieve a271

better accuracy as the forecasting is heavily dependent on m when using machine learning models. For272

this task, we implemented a mechanism to exhaustively check through a defined range of values (2 to 14)273

for the optimal m for each store. We used the validation set for this task.274

The m that provided the lowest error metric value for each store for the validation set was identified as275

the optimal m. After obtaining the optimal m for each store, we split the data using the derived m and ran276

the train input data set through the Grid Search of the RFR model and the XGB model and derived the277

validation predictions using the validation input data to determine the optimal hyperparameter values that278

gave the lowest error metric value for the validation set for both models. We then initialized the model279

with the obtained respective optimal hyperparameter values and ran the test set through the models to280

obtain the final predictions. This process was executed for both initial and improved models for all 8281

stores.282

EXPERIMENTAL RESULTS283

This section provides the analysis of results for the initial and improved LSTM models. To evaluate both284

LSTM and machine learning models, we used Root Mean Squared Error (RMSE) and the Mean Absolute285

Error (MAE) as error metrics. We have employed RMSE for the hyperparameter optimization task of both286

LSTM and machine learning models. Considering yi and ȳi respectively as the true sales and predicted287

sales , shown in Equations 1 and 2 are the respective equations for RMSE and MAE;288

RMSE =

√

∑
n
i=1(yi − ȳi)2

n
(1)

MAE =
∑

n
i=1(yi − ȳi)

n
(2)

Table 4 and table 5 show the RMSE and MAE values for initial models. Table 6 and table 7 shows the289

RMSE and MAE values for the improved models.Considering these tables, the values in bold show the290
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Store Store type RFR (RMSE) XGB (RMSE) LSTM (RMSE)

749 a 716.96 674.59 494.44

85 b 750.56 719.27 683.38

519 c 765.21 665.88 732.08

725 d 603.38 565.42 541.01

165 a 393.96 415.41 347.57

335 b 1,208.06 1,455.11 949.28

925 c 865.40 914.29 986.86

1089 d 985.14 921.87 816.24

Table 6. improved model:comparison using RMSE values

Store Store type RFR (MAE) XGB (MAE) LSTM (MAE)

749 a 464.65 427.00 328.23

85 b 603.45 573.71 546.00

519 c 558.90 501.68 516.71

725 d 475.45 446.61 431.00

165 a 310.90 313.19 261.81

335 b 907.29 1,072.77 766.97

925 c 643.29 676.97 768.71

1089 d 649.87 648.52 614.13

Table 7. improved model: comparison using MAE values

lowest RMSE/MAE values achieved for each store from the 3 algorithms. The orange colour portrays the291

comparison of results between the machine learning algorithms, thus the orange coloured cells show the292

lowest RMSE/MSE values when comparing the results of RFR and XGB. The yellow colour portrays the293

comparison of results between the LSTM and the machine learning algorithms, thus the yellow-coloured294

cells show the lowest RMSE/MAE value when comparing the LSTM model with the machine learning295

algorithms.296

The graph in Fig 4 depicts how the predicted values of the initial LSTM model and the initial machine297

learning models compare with the true sales values of store 85 and the graph in Fig 5 depicts how the298

prediction values of the improved LSTM model and the improved machine learning models compare with299

the true sales values of store 335. Both the graphs illustrate the ability of the LSTM model to closely300

follow the spikes of the true values comparatively better than both XGB model and RFR model.301

The graph in Fig 6 portrays how the initial LSTM model and the improved LSTM model compare302

with the true sales values of store 335. It can clearly be seen how the improved LSTM model follows the303

true values closely while the initial LSTM model shows deviations at most of the spikes of the graph.304

DISCUSSION305

Let us first consider the performance of LSTM models compared to the conventional regression techniques.306

In the tables 4 and 5, we observe a significant improvement in both RMSE and MAE for initial LSTM307

with 4 stores (749, 85, 725, 165) out of 8 compared to both of the machine learning models. Furthermore,308

the improved LSTM model has achieved considerably better results for 6 stores (749, 85, 725, 165, 335,309

1089) out of 8 compared to the machine learning models based on the error values from the tables 6 and 7.310

The results clearly suggest that the LSTM model has obtained a significant improvement over both of the311

two state-of-the-art regression techniques.312

The better performance of LSTM is due to its superior ability to model time-series features. Machine313

learning algorithms have no notion of the different time steps of data or any kind of time series specific314

information, they merely perform a regression task on the given data, whereas the LSTM understands the315

concept of times steps and are strong tools used extensively in time-series forecasting (Bandara et al.,316

2019). LSTMs are capable of modelling long-range dependencies. The LSTM architecture contains a cell317

state in addition to a hidden state, that enables the LSTM to propagate the network error for much longer318
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Figure 4. predicted values vs true values graph of store 85 - initial model

Figure 5. predicted values vs true values graph of store 335 - improved model

sequences while capturing their long-term temporal dependencies (Bandara et al., 2019; Chniti et al.,319

2017) LSTMS can also fit a wider range of data patterns compared to the traditional models (Yunpeng320

et al., 2017). These factors have enabled the LSTM to produce more accurate forecasts compared to two321

conventional machine learning models.322

On the other hand, initial LSTM has shown the worst accuracy for the rest of the four stores (519, 335,323

925, 1089). Even though RFR and XGB have obtained comparable performance against each other, the324

error values of initial LSTM model has significantly deviated from the RMSE and MAE of XGB and325

RFR. We believe this surprisingly poor accuracy of LSTM is a result of the over-fitting of the LSTM326

due to insufficient data. It should be noticed that we only use 881 (942−31−30) data samples to train327

each model, yet LSTM is known to yield better results with larger data-sets. On the other hand, RFR and328

XGB are specifically designed to work with small data-sets minimizing the over-fitting. Therefore, we329

can justify the poor accuracy of LSTM with the rest of the stores as an indication of over-fitting due to330

insufficient data.331

Interestingly, the improved LSTM outperforms the initial LSTM for 6 stores (749, 519, 725, 335, 925,332

1089) and 7 (749, 519, 725, 165, 335, 925, 1089) stores respectively based on the RMSE (table 8) and333

MAE (table 9). The reduction in error is significant (20%-21%) when considered the FF features for sales334

forecasting. Moreover, we see similar improvements with improved XGB and RFR compared to the initial335

XGB and RFR. Our observations emphasize the significance of using information describing the future to336
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Store Store type LSTM - Initial LSTM - Improved

749 a 627.03 494.44

85 b 617.93 683.38

519 c 826.60 732.08

725 d 584.66 541.01

165 a 342.22 347.57

335 b 1,772.99 949.28

925 c 1,065.23 986.86

1089 d 1,161.25 816.24

Table 8. comparison of LSTM results of the initial model and the improved model - RMSE

Store Store type LSTM - Initial LSTM - Improved

749 a 483.04 328.23

85 b 473.94 546.00

519 c 641.26 516.71

725 d 481.85 431.00

165 a 276.85 261.81

335 b 1,346.65 766.97

925 c 878.56 768.71

1089 d 854.89 614.13

Table 9. comparison of LSTM results of the initial model and the improved model - MAE

anticipate daily sales. For an example, knowing whether the day being foretasted has a promotion can337

provide essential information to the models because the anticipation of such unpredictable events is not338

possible even with state-of-the-art time series models such as LSTM (unless the promotions follow a339

certain time-series).340

Discussing the machine learning models, in the initial model, 5 stores (749, 85, 519, 725, 925) have341

performed better with the XGB model and the remaining 3 stores (165, 335, 1089) have done better with342

RFR model when evaluated using RMSE metric. When evaluating with MAE metric, 6 stores (749, 85,343

725, 165, 335, 925) have done better with the XGB model and 2 stores (519, 1089) have done better with344

the RFR model. Considering the improved model’s results, 5 stores (749, 85, 519, 725, 1089) have done345

better with the XGB model and the remaining 3 (165, 335, 925) stores have done better with the RFR346

model out of 8 stores when evaluating with the RMSE metric. However, unlike in the initial stage analysis,347

the same stores that have a better improvement with XGB compared to RFR when evaluating with the348

RMSE metric have also shown a better improvement with XGB than with RFR when evaluating with349

the MAE metric. According to the obtained results, when comparing the two machine learning models,350

we can state that the XGB model has outperformed the RFR model. The reason for XGB obtaining351

better results compared to the RFR is mainly because of it’s boosted trees being derived by optimizing an352

objective function which makes it easier to solve all objective functions that a gradient can be written for.353

These type of tasks are harder for RFR models to achieve. Furthermore, XGB performs the optimization354

in a function space rather than in parameter space, which makes the use of custom loss functions much355

easier than in RFR models.356

RELATED WORK357

A significant amount of work has been done to improve the task of sales forecasting. These approaches358

are mainly based on statistical models, machine learning, neural networks, ensemble techniques, and359

RNN/LSTM based approaches. In our literature analysis, we discuss RNN/LSTM based approaches360

in detail since they are much closer to our approach. Let’s consider each approach. Among statistical361

methods, the traditional Auto-Regressive Integrated Moving Average (ARIMA) model has been used as362

the baseline in most studies for sales forecasting (Müller-Navarra et al., 2015; Pavlyshenko, 2016; Gurnani363

et al., 2017). However, the traditional ARIMA models cannot handle multivariate features (Bandara364
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Figure 6. predictions of improved LSTM model vs predictions of initial LSTM model - Store 335

et al., 2019) and also shows poor performance in handling seasonality and trend (Gurnani et al., 2017).365

Xiangsheng Xie (2008) and Wu et al. (2012) have adopted two variants of ARIMA; Seasonal ARIMA and366

Vector Auto-Regressive Moving Average (ARMAV) with the linear trend to handle above properties in367

sales forecasting tasks. Gurnani et al. (2017) show that ARIMA with external regressors is most suitable368

to model the linearity in time series data, yet fail to capture non-linear patterns (Zhang, 2003).369

On the other hand, though machine learning and regression techniques are not specifically built for370

time-series forecasting, they have been considered as promising contenders compared to most of the371

statistical methods due to their ability to handle both linear and non-linear tasks by considering time-series372

features as lag features (Doornik and Hansen, 1994). For example, most of the work in sales forecasting373

based on Rossmann data-set have adopted various machine learning techniques to model such non-linear374

patterns effectively. Doornik and Hansen (1994) performs sales forecasting analysis for Rossmann data-set375

using linear regression, softmax regression and Support Vector Machine (SVR) where SVR managed376

to significantly outperform softmax regression. Lin et al. (2015) also explored sales forecasting using377

SVR and Frequency Domain Regression (FDR) with the Rossmann data-set. His findings show that378

SVR with polynomial kernel outperformed FDR as it achieved the best balance between overfitting and379

underfitting. Pavlyshenko (2016) explores different linear, machine learning and probabilistic models for380

sales forecasting. He discussed the advantages of using probabilistic models such as Bayesian inference381

and copulas modelling for the risk assessment of forecasted sales. Moreover, Xiangsheng Xie (2008) also382

illustrated the superiority of machine learning approaches such as SVM over statistical methods for both383

short and long term forecasting of sales from the catering industry.384

In recent years, deep neural networks have also been adopted for sales-forecasting due to their385

superior performance in modelling complex non-linear patterns compared to both statistical methods386

and most of the machine learning approaches. Qin and Li (2011) explores sales forecasting of a fast387

food manufacturing corporation using a backpropagation neural networks. They claim that the end388

result is better than the traditional regression analysis approaches. Omar and Liu (2012) tackles the389

sales forecasting task of magazines by introducing a back propagation neural network (BPNN) based390

architecture using historical sales data and popularity indexes of magazine article titles. They state that391

the BPNN algorithm outperforms other statistical algorithms and that by providing additional information392

on the popularity index gives better accuracy numbers. Li et al. (2012) also illustrate that backpropagation393

neural networks can yield satisfactory results for vehicle sales forecasting. As traditional BPNN algorithms394

were providing promising results, studies were conducted on improving BPNN networks by adding395

different extensions to it. Jiang (2012) proposed an improved back propagation neural network with a396

conjugate gradient algorithm that shortens training time and improves the forecasting precision for sales397

forecasting of a corporation. A sales forecasting based on fuzzy neural networks (FNN) was proposed by398

Liu and Liu (2009) and the study claims that FNNs with weight elimination can outperform traditional399

artificial neural networks. Gao et al. (2009) discusses rearranging Holt-Winters model to build a neural400

12/16PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27712v1 | CC BY 4.0 Open Access | rec: 8 May 2019, publ: 8 May 2019



network on top of it and he has empirically proven that the neural network approach can yield better401

results than the traditional Holt-Winters model (Makridakis et al., 1984). Kaneko and Yada (2016)402

constructed a sales prediction model using deep learning and L1 regularization which when given the403

sales of a particular day, predicts changes in sales on the following day. Their experiments show that404

deep learning is highly suitable for constructing models that include multi-attribute variables compared to405

logistic regression.406

Most of the work has established that the ensemble-based approaches to provide more accurate407

forecasts compared to individual models for sales forecasting tasks. ARIMA combined with XGB408

(Pavlyshenko, 2016), ARIMA with ARNN Gurnani et al. (2017), ARIMA with SVM (Gurnani et al.,409

2017), SARIMA with wavelet transform (Choi et al., 2011) and ARMAV with linear trend model (Wu410

et al., 2012) are some examples for combinations with statistical algorithms. In addition to the statistical411

combinations, there are also ensemble techniques that combine deep learning and machine learning412

algorithms. Chang et al. (2017) proposed a deep neural network algorithm for forecasting sales of a413

pharmaceutical company with an architecture that comprises of an autoencoder that generates the hidden414

layer abstractions and two other shallow neural nets which specializes in one week ahead predictions.415

Pavlyshenko (2019) has used regression-based approaches for sales forecasting rather than considering416

it as a time series forecasting task. They propose stacking several machine learning models and neural417

networks together into several layers to obtain forecasts and claims that this approach outperforms the418

individual performance of regression models and neural networks. Doganis et al. (2006) proposes a sales419

forecasting technique that combines the radial basis function (RBF), neural network architecture and420

a specially designed genetic algorithm for input selection. They claim that the proposed architecture421

gives better results compared to other ensemble methods like Linear AR-Linear MA, Neural Network422

AR-Neural Network MA, Neural Network AR-Linear MA, Linear AR-Neural Network MA and individual423

methods as well. Katkar et al. (2015) has introduced a sales forecasting method that uses fuzzy logic424

combined with a Naı̈ve Bayesian classifier and the results show that it can achieve satisfactory results.425

Apart from ensemble methods, some studies have explored decomposing approaches where the sales426

forecasting tasks are decomposed to multiple, simple modelling components. Gurnani et al. (2017) has427

explored different statistical, machine learning, hybrid and decomposing methods. They proposed to428

break the series into three parts: seasonal, trend and remainder and analyzed each component using429

different machine learning and statistical algorithms. They demonstrated that decomposing the series430

and tackling individual aspects of the data separately can give better results than individual and hybrid431

methods. It is also worth mentioning that apart from the above-mentioned methodologies, there are also432

sales forecasting methodologies carried out using data mining (OZSAGLAM, 2015) and extreme learning433

approaches as well (Gao et al., 2014).434

However, most recent and state-of-the-art sales forecasting approaches are mostly based on the ability435

to persist memory in deep neural networks using RNNs and LSTMs. Müller-Navarra et al. (2015)436

discusses the performance of 3 partial recurrent neural network architectures for sales forecasting of a437

real-world sales data-set and empirically proves that partial recurrent neural networks can outperform438

statistical models. Carbonneau et al. (2008) analyzed several different machine learning and deep439

learning approaches on a slightly different task from sales forecasting. They adopted RNN and SVM440

for demand-forecasting and achieve the best accuracy compared to a set of conventional regression441

techniques. Recently, it has been shown that multivariate LSTM with cross-series features to outperform442

the univariate models for similar time series forecasting tasks. Chniti et al. (2017) propose to forecast the443

prices of mobile phones while considering the correlations between the prices of different phone models444

by multiple providers in the cell phone market, as a cross-series multivariate analysis. Their technique445

achieves a significant accuracy gain compared to an SVR model that uses the same information as lag446

features. Bandara et al. (2019) also use a similar multivariate approach, they have used cross-series sales447

information of different products to train a global LSTM model to exploit demand pattern correlations of448

those products. Their multivariate LSTM model with the additional cross-series information significantly449

outperformed the traditional univariate LSTM models that consider each product individually. We derive450

our approach for sales forecasting based on the multivariate LSTM models due to their recent success in451

time-series forecasting in similar tasks. In cross series multivariate prediction the number of sales for452

store a is predicted using the numbers of sales of stores that have a relationship with a. However, with the453

data-set we have, we cannot identify which stores have relationships to which store. Therefore we cannot454

consider cross-series correlations between similar entities as seen in previous approaches. Instead, we455
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have multiple features describing a single store thus, using a multivariate approach we attempt to find the456

relationship between those features and the number of sales for that particular store. We adopt a special457

variant of the LSTM model called peephole LSTM connections (Lipton, 2015; Gers et al., 1999) that can458

aid in identifying time-based patterns in our data-set better than a normal LSTM model. We train the459

model using historical information attached with the number of daily sales such as the day of the week460

and whether a particular day is a holiday, etc. In addition to such historical features, we improve our461

models by including the information that describes the future that is known to us at the current moment462

(i.e. even though the number of sales is unknown to us for the day being forecast, we still know the day463

of the week and whether that particular day is considered a holiday). This has not been explored in the464

previous state-of-the-art for sales forecasting techniques to our knowledge.465

CONCLUSION466

In this paper, we adopt a special variant of Long Short Term Memory (LSTM) network; “LSTM with467

peephole connections” for the sales forecasting tasks. We expose the LSTM to two levels of information.468

We first introduce a multivariate LSTM model that solely depends on historical information for sales469

forecasting. We appraise the accuracy of this initial LSTM against two state-of-the-art machine learning470

techniques, namely, Extreme Gradient Boosting (XGB) and Random Forest Regressor (RFR) using 8471

randomly selected stores from the Rossmann data-set. We further improve the prediction accuracy of the472

initial LSTM model by incorporating features that describe the future that is known to us in the current473

moment, an approach that has not been explored in previous state-of-the-art LSTM based forecasting474

models. The initial LSTM we develop outperforms the two regression techniques achieving 12% - 14%475

improvement whereas the improved LSTM achieves 11% - 13% reduction in error compared to the476

machine learning approaches with the same level of information as the improved LSTM, thus highlighting477

the superior capabilities of LSTM for sales forecasting. Furthermore, using the information describing the478

future with the LSTM model, we achieve a significant improvement of 20% - 21% compared to the LSTM479

that only uses historical data. Therefore, our analysis emphasizes the significance of using information480

describing the future for sales forecasting even with state-of-the-art time-series prediction models such as481

LSTM.482

In the future, we are planning to explore the ability to incorporate multiple stores with a single483

LSTM to extract cross-series information to improve forecasting accuracy. We expect such features to484

improve time-series forecasting by comprehending the interdependencies between the stores such as485

competition, partnerships, market distribution etc. Moreover, it is interesting to investigate the importance486

of incorporating information that describes the future beyond the day being predicted. For instance,487

the customer buying behaviour for a particular day can significantly affect the fact whether the store is488

going to be closed in the following day. Yet, the time-series models may not be able to anticipate such489

relationships without explicitly providing information that represents the future even beyond the day that490

is being forecast. Therefore, we will be exploring such extensions with our technique in the future.491

REFERENCES492

Bandara, K., Shi, P., Bergmeir, C., Hewamalage, H., Tran, Q., and Seaman, B. (2019). Sales de-493

mand forecast in e-commerce using a long short-term memory neural network methodology. CoRR,494

abs/1901.04028.495

Breiman, L. (2001). Random forests. Mach. Learn., 45(1):5–32.496

Brochu, E., Cora, V. M., and de Freitas, N. (2010). A tutorial on bayesian optimization of expensive cost497

functions, with application to active user modeling and hierarchical reinforcement learning. CoRR,498

abs/1012.2599.499

Carbonneau, R., Laframboise, K., and Vahidov, R. (2008). Application of machine learning techniques500

for supply chain demand forecasting. European Journal of Operational Research, 184(3):1140 – 1154.501

Chang, O., Naranjo, I., and Guerron, C. (2017). A deep learning algorithm to forecast sales of pharmaceu-502

tical products.503

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22Nd504

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pages505

785–794, New York, NY, USA. ACM.506

14/16PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27712v1 | CC BY 4.0 Open Access | rec: 8 May 2019, publ: 8 May 2019



Chniti, G., Bakir, H., and Zaher, H. (2017). E-commerce time series forecasting using lstm neural network507

and support vector regression. In Proceedings of the International Conference on Big Data and Internet508

of Thing, BDIOT2017, pages 80–84, New York, NY, USA. ACM.509

Choi, T.-M., Yu, Y., and Au, K.-F. (2011). A hybrid sarima wavelet transform method for sales forecasting.510

Decision Support Systems, 51(1):130 – 140.511

Doganis, P., Alexandridis, A., Patrinos, P., and Sarimveis, H. (2006). Time series sales forecasting for512

short shelf-life food products based on artificial neural networks and evolutionary computing. Journal513

of Food Engineering, 75(2):196 – 204.514

Doornik, J. and Hansen, H. (1994). A practical test for univariate and multivariate normality. Technical515

report, Nuffield College, Oxford, UK, Discussion paper.516

Gao, M., Xu, W., Fu, H., Wang, M., and Liang, X. (2014). A novel forecasting method for large-scale517

sales prediction using extreme learning machine. In 2014 Seventh International Joint Conference on518

Computational Sciences and Optimization, pages 602–606.519

Gao, Y., Liang, Y., , Zhan, S., and Ou, Z. (2009). A neural-network-based forecasting algorithm for retail520

industry. In 2009 International Conference on Machine Learning and Cybernetics, volume 2, pages521

919–924.522

Gers, F. A., Schmidhuber, J., and Cummins, F. (1999). Learning to forget: continual prediction with lstm.523

In 1999 Ninth International Conference on Artificial Neural Networks ICANN 99. (Conf. Publ. No.524

470), volume 2, pages 850–855 vol.2.525

Gers, F. A., Schraudolph, N. N., and Schmidhuber, J. (2003). Learning precise timing with lstm recurrent526

networks. J. Mach. Learn. Res., 3:115–143.527

Gurnani, M., Korke, Y., Shah, P., Udmale, S., Sambhe, V., and Bhirud, S. (2017). Forecasting of sales by528

using fusion of machine learning techniques. In 2017 International Conference on Data Management,529

Analytics and Innovation (ICDMAI), pages 93–101.530

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9:1735–80.531

Jiang, X.-F. (2012). The research on sales forecasting based on rapid bp neural network. In 2012532

International Conference on Computer Science and Information Processing (CSIP), pages 1239–1241.533

Kaneko, Y. and Yada, K. (2016). A deep learning approach for the prediction of retail store sales. In 2016534

IEEE 16th International Conference on Data Mining Workshops (ICDMW), pages 531–537.535

Katkar, V., Gangopadhyay, S. P., Rathod, S., and Shetty, A. (2015). Sales forecasting using data warehouse536

and naı̈ve bayesian classifier. In 2015 International Conference on Pervasive Computing (ICPC), pages537

1–6.538

Li, Z., Li, R., Shang, Z., Wang, H., Chen, X., and Mo, C. (2012). Application of bp neural network to sale539

forecast for h company. In Proceedings of the 2012 IEEE 16th International Conference on Computer540

Supported Cooperative Work in Design (CSCWD), pages 304–307.541

Lin, S., Yu, E. S. K., and Guo, X. (2015). Forecasting rossmann store leading 6-month sales cs 229 fall542

2015.543

Lipton, Z. C. (2015). A critical review of recurrent neural networks for sequence learning. CoRR,544

abs/1506.00019.545

Liu, Y. and Liu, L. (2009). Sales forecasting through fuzzy neural networks. In 2009 International546

Conference on Electronic Computer Technology, pages 511–515.547

Makridakis, S., C. Wheelwright, S., and Hyndman, R. (1984). Forecasting: Methods and Applications,548

volume 35.549

Müller-Navarra, M., Lessmann, S., and Voß, S. (2015). Sales forecasting with partial recurrent neural550

networks: Empirical insights and benchmarking results. In 2015 48th Hawaii International Conference551

on System Sciences, pages 1108–1116.552

Omar, H. and Liu, D.-R. (2012). Enhancing sales forecasting by using neuro networks and the popularity553

of magazine article titles. pages 577–580.554

OZSAGLAM, M. Y. (2015). Data mining techniques for sales forecastings. International Journal of555

Technical Research and Applications, 34.556

Pavlyshenko, B. M. (2016). Linear, machine learning and probabilistic approaches for time series analysis.557

In 2016 IEEE First International Conference on Data Stream Mining Processing (DSMP), pages558

377–381.559

Pavlyshenko, B. M. (2019). Machine-learning models for sales time series forecasting. Data, 4(1).560

Qin, Y. and Li, H. (2011). Sales forecast based on bp neural network. In 2011 IEEE 3rd International561

15/16PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27712v1 | CC BY 4.0 Open Access | rec: 8 May 2019, publ: 8 May 2019



Conference on Communication Software and Networks, pages 186–189.562

Wu, L., Yan, J. Y., and Fan, Y. J. (2012). Data mining algorithms and statistical analysis for sales data563

forecast. In 2012 Fifth International Joint Conference on Computational Sciences and Optimization,564

pages 577–581.565

Xiangsheng Xie, Jiajun Ding, G. H. (2008). Forecasting the retail sales of china’s catering industry using566

support vector machines. In 2008 7th World Congress on Intelligent Control and Automation, pages567

4458–4462.568

Yunpeng, L., Di, H., Junpeng, B., and Yong, Q. (2017). Multi-step ahead time series forecasting for569

different data patterns based on lstm recurrent neural network. In 2017 14th Web Information Systems570

and Applications Conference (WISA), pages 305–310.571

Zhang, G. (2003). Time series forecasting using a hybrid arima and neural network model. Neurocomput-572

ing, 50:159 – 175.573

16/16PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27712v1 | CC BY 4.0 Open Access | rec: 8 May 2019, publ: 8 May 2019


	References

